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Preface

Game theory provides a framework for the mathematical analysis of interactive situa-
tions in which the individual expediency of each agent’s choice of action may essen-
tially depend on the choices the other agents make. For this reason it has sometimes
been suggested that game theory had perhaps better been called ‘interactive decision
theory’ or ‘the analysis of conflict’. We take it that conflict, thus conceived, is a com-
mon and natural phenomenon inherent in social interaction.

One of the concerns of formal logic, traditionally the study of valid reasoning, is
with formal languages and the extent to which they can be employed to describe and
reason about abstract structures in a mathematically precise way. Within computer
science logics are commonly used for the specification and verification of computer
programs. The behavior of a complex computer system can in some cases be under-
stood as the result of interaction between various autonomous processes and for its
precise description an appeal to the conceptual apparatus of the social and economic
science has proved to be fruitful.

This forms the background to this dissertation, which tells of an explorative in-
vestigation into logic and game theory. Central to its concerns is the game-theoretical
concept of strategic equilibrium, which intuitively reflects a state from which no one
wishes to deviate by unilaterally making another decision. In the first part of this thesis
we give a logical analysis of this notion, using modal logic for the purposes of game
theory. The second and third part a perspective is assumed in which game theory serves
the purposes of logic. We argue how game-theoretical concepts, in particular notions
of strategic equilibrium, can be invoked to enrich logical analyses. This leads up to a
proposal for game-theoretical concept of logical consequence.

This dissertation recounts the culmination of these investigations, which were per-
formed in the years 1999 to 2004 at the Institute of Information and Computing Sci-
ences (ICS) at Utrecht University in the Intelligent Systems group of Prof. Dr. John-
Jules Meyer. The research is part of by the Collective Agent Based Systems project
(CABS) of the Faculty of Electrical Engineering, Mathematics and Computer Sci-
ence (EEMCS) at the Delft University of Technology. The CABS project pursues
the development of specification methods and algorithmic techniques for large-scale
agent-based systems.

Numerous acknowledgements of support and encouragement during my writing
this thesis are in order. First and for most, my gratitude is due to my supervisors John-
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terexample together. I thank Cees for his confidence in my work — even if I could
not always redeem my promises to involve coalitions in it — and for him letting me
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Frank Veltman for their willingness to participate in the reading committee.
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reld, Leon Aronson, Alexandru Baltag, Annette Bleeker, Frank de Boer, André Bos,
Jan Broersen, Boudewijn de Bruin, Martin Caminada, Mehdi Dastani, Jurriaan van
Diggelen, Frank and Virginia Dignum, Hans van Ditmarsch, Paul Dunne, Francien
Deschesne, Rogier van Eijk, Jelle Gerbrandy, Robert Goijers, Davide Grossi, Remko
Helms, Koen Hindriks, Joris Hulstijn, the members and PhD students of the ICS, Ro-
salie Iemhoff, Geert Jonker, Joost Joosten, Barteld Kooi, Meindert Kroese, Roman van
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Chapter 1

Introduction

Conflict of interest is inherent in any social environment in which several volitional
individuals interact. Such disputes are nothing to worry about or to be ashamed of,
provided that no unseemly means are resorted to in resolving them. The obvious ques-
tion to ask is how to make the best of such situations and how their excesses can be
mitigated.

A situation of conflict may have various possible outcomes, with respect to which
the individuals entertain particular and possibly divergent preferences. Moreover, each
of the individuals exerts control over some of the variables that determine the even-
tual outcome and the individual decisions, taken together, determine the behavior of
the collective. The way each individual’s preferences relate to the individual’s powers
lends a formal structure to conflict situations that renders them amenable to mathemat-
ical investigation. Also other strategic aspects distinguishable in situations of conflict
— such as,e.g., the order in which the individuals are to move and the individuals’
epistemic characteristics or their attitudes towards risk — allow for formalization. The
mathematical analysis of conflict and other situations of social interaction belongs to
the subject matter ofthe theory of gamesor simplygame theory.

Games of strategy — in contrast to games in which an element of skill is predom-
inant — present examples of conveniently delimitated conflict situations. Hence the
name “game theory” as well as the typical accompanying terminology featuring play-
ers, wins and losses, strategies and moves. Astrategyis here understood as a complete
plan of playing a game, prescribing a move in every contingency. Astrategy profile
is a selection of strategies, for each player one, determining a unique outcome. These
notions will be given mathematically precise definitions presently.

An issue that immediately suggests itself in this context concerns the judiciousness
of the different courses of action that are open to the individuals in a particular conflict
situation. This is by no means a trivial question and in the present formulation not
a particularly clear one. There are various perspectives to take with respect to what
judiciousness exactly comes down to and which aspects of conflict situations are to
be taken into account. It is a well-known fact of everyday life that everyone pursuing
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4 INTRODUCTION

brazenly his own ends may result in a social state for which there exists another that is
more desirable for all. TheTragedy of the Commons, originally being the overgrazing
of communal pastures as a result of each farmer unostentatiously exploiting them more
intensively than his sustainable equal share permits, emblematizes a phenomenon that
is all too familiar in social contexts. In the more formal setting of the theory of games,
the incongruity of individual expediency and social desirability is concisely exempli-
fied by the infamousPrisoner’s Dilemma(cf. Section 1.1 of this introduction). An
important task of the theory of games is to provide suitable and mathematically precise
concepts to appraise the issue of the various ways in which behavior on the individ-
ual and the collective level are interrelated and to study their formal properties. Among
these are the so-calledsolution concepts, which, drawing on its mathematical structure,
associate with each game a collection of outcomes that are optimal or formally salient
from a particular perspective of (individual) expediency.

When assessed from the formal point of view of game theory, conflict situations
evince a formal similarity with structures that may be reencountered in domains of
research that need not necessarily or exclusively concernhumaninteraction as such.
Conflict provides a fruitful metaphor for any situation that depends on various vari-
ables the control over which is distributed among different forces with individual ends
or among processes designed for different purposes. This makes for a wide applicabil-
ity of game theory also outside the social and economic sciences, for which it had orig-
inally been conceived. The employment of game-theoretical concepts and techniques
are appropriate for any situation that can be conceived of as a system consisting of
multiple active entities whose individually guided behavior determines, at least partly,
the behavior of the system as a whole. Thus, game theory has proved itself relevant
to such diverse areas of research as evolutionary biology, set theory, logic and, most
recently, also to computer science and artificial intelligence.

This thesis is an exponent of the broadening scope of game theory. It concerns both
logics designed to reason in a formally precise manner about games and the game-
theoretical analysis of propositional logic.

Central to our logical investigations will be the game-theoretical notion ofNash
equilibrium, it being one of the best-known and most widely applied solution concepts.
In the most informal of terms, a strategy profile is a Nash equilibrium if no player
benefits relative to her individual preference order by unilaterally deviating from it.
As such Nash equilibrium captures a notion of stability for the possible outcomes of
a game, though its precise significance continues to be a much discussed and disputed
philosophical issue.

In Part I, we will argue that a strategy profile being a (subgame perfect) Nash
equilibrium in a particular game reflects in a structural property of a Kripke frame
associated with the game in question. We find that this structural property can be
characterized by formula schemes in suitably chosen multi-modal logics.

In the latter two parts we come to construe propositional variables of propositional
languages as decision variables, each one of which in the control of one of a number
of players. This makes that formulas and theories impose agame-theoreticalstructure
on logical space,i.e., the set of valuations for the respective language. Part II concerns



GAME THEORY AND SOLUTION CONCEPTS 5

a class of strictly competitive games in which control over the propositional variables
is distributed over two antagonistic players and which we find constitutes a Boolean
algebramoduloa notion of strategic equivalence. In the final part, control over the
propositional variables may be distributed over a larger number of players. Logical
space then assumes the character of a non-strictly competitive multi-player game. A
notion of strategic equilibrium closely related to Nash equilibrium is then deployed to
formulate a game-theoretical concept of entailment, which generalizes classical conse-
quence.

These researches are ultimately inspired by developments within the field ofDis-
tributed Artificial Intelligence(DAI), which concerns the design and study of environ-
ments in which automated intelligent systems or agents interact (multi-agent systems
or MAS). This interaction may be between different agents each designed to achieve an
individual goal or within a group of agents trying to solve a common problem together.
Such distributed environments instance typically the kind of strategic situation that the
theory of games is concerned with. Game theory provides Distributed Artificial Intel-
ligence with suitable notions to conceptualize and describe distributed computational
environments from a formal and strategic perspective. Reasoning about them formally,
however, requires logic.

Before entering upon our logical explorations, some further reflection on the theory
of games, the nature and role of its solution concepts and its relevance to logic and DAI
is in order.

1.1 Game Theory and Solution Concepts

In their pioneering workTheory of Games and Economic Behaviorvon Neumann and
Morgenstern maintained that the development of classical mathematics had to a great
extent gone hand in hand with the modern advancement of the natural sciences (cf. von
Neumann and Morgenstern (1944), pp. 6–7). In comparison, the formulation of proper
mathematical concepts for the social sciences had been paid only scant attention to.
Still, they claimed that the analysis of situations of conflict faces the mathematician
with a conceptually new problem that had been “nowhere dealt with in classical math-
ematics” (ibid., p. 11). There is noprima faciereason to suppose that the mathematical
methods developed with a view on applications in the natural sciences would also be
suitable for the social sciences. The theory of games was to provide formal and precise
concepts to cope with this unfamiliar problem. Indeed, Luce and Raiffa state in their
classic introduction to the field that:

[G]ame theory is one of the first examples of an elaborate mathematical devel-
opment centered solely in the social sciences. The conception derived from non-
physical problems, and the mathematics [...] was developed to deal with that con-
ception. (Luce and Raiffa (1957), p. 11)

In a situation of conflict, the individuals entertain idiosyncratic preferences as to
the possible outcomes of that situation. Still, the individuals exercise in general limited
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Figure 1.1. Sherlock Holmes and Watson at Canterbury station inThe Final Problem.

control over the variables that determine the eventual outcome. We refer to an individ-
ual player’s choice for the values of the variables in her control as astrategy. If there is
only one individual — even if she is not in control of all variables and some of them are
left to chance — classical mathematics still provides the techniques to calculate which
(randomized or mixed) choice of values for the variables in her control guarantee her an
optimum outcome. This special case involving a single player only is studied by deci-
sion theory. However, things have been argued to change radically if there are multiple
players involved. The problem is then that for each individual it may also depend on the
strategies the other players adopt which outcome will come about. The best outcome
an individual can achieve relative to a particular choice of strategy by the opponents
may differ widely in desirability from the best he can achieve relative to another choice
of strategy by the opponents. Moreover, which strategy guarantees an individual the
best attainable outcome may depend on the strategies his opponents adopt. Waiting in
front of the bank may be your best strategy for meeting a person if that person adopts
the same strategy. Things, however, are quite different if the other person decides to
search for you in the lobby of the hotel. Thus, for each player the optimality of playing
a particular strategy may depend on the strategies his opponents choose. If, moreover,
we assume that there be some proportionate correlation between the optimality of a
player’s strategy and that player adopting it, the optimality of the players’ strategies
may become mutually dependent and a circle becomes apparent (cf.. von Neumann
(1928), p. 295, and Luce and Raiffa (1957), p. 61).

Consider,e.g., the case of Sherlock Holmes, who, trainbound for the Continent,
finds himself being pursued by his murderous adversary Moriarty, who happens to be
on another train. If Moriarty gets off at Canterbury, Holmes’ optimal strategy is to
stay on the train. However, if Holmes acts accordingly, Moriarty’s optimal strategy is
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to remain on his train as well. If, on the other hand, Moriarty decides to remain on
the train, Holmes had better make an intermediate stop at Canterbury, jeopardizing the
expediency of Moriarty’s strategy. Which strategy is optimal for Holmes thus becomes
dependent on which strategy is optimal for Moriarty andvice versa.1

Formally, a situation of conflict can be pictured as a collection of functions, one for
each individual caught in the situation. The values these functions take are, moreover,
dependent on the values of the same set of variables, the control over which has been
distributed over the individuals (and possibly chance). Each of the individual endeavors
to maximize his function with respect to his own preferences.2 Von Neumann and
Morgenstern write:

Thus each participant attempts to maximize a function [...] of which he does not
control all variables. This is certainly no maximum problem, but a peculiar and
disconcerting mixture of several conflicting maximum problems. Every participant
is guided by another principle and neither determines all variables which affect his
interest. (von Neumann and Morgenstern (1944), p. 11)

Von Neumann and Morgenstern argue that, due to the mutual dependence of the op-
timality of the players’s strategies, no player can treat the variables controlled by his
opponents as statistical parameters, which assume values with a particular probabil-
ity:

Every participant can determine the variables which describe his own actions but
not those of the others. Nevertheless, those “alien” variables cannot, from his point
of view, be described by statistical assumptions. (ibid., p. 11)

New mathematical concepts had to be developed to deal with this kind of problem and
take over the role of the optimum, which was no longer thought to be feasible in this
context (cf. ibid., p. 39). Because of the formal and structural similarities between
strategic parlour games and the more general situations of conflict, as studied by eco-
nomics and other social sciences, the mathematical theory that had to achieve this was
coined thetheory of games. The solution concepts of game theory are to take over the
role of the optimum in “solving” a game.

This view that the multi-player case is of an essentially different nature than the
single-player case has met considerable opposition in the past few decades. The point
von Neumann and Morgenstern make relies on their objective interpretation of proba-
bility. It has been argued that by reverting to a subjective conception of probabilities,
as advanced by,e.g., Savage (1954) and Ramsey (1926), it is possible to model an
agent’s expectation about the variables controlled by his opponents as statistical vari-
ables. Then each individual can calculate his optimal strategy in a game as were it a
regular decision problem, with him in control of some variables and chance of the re-
maining ones. Conceived thus, decision theory and game theory are two manifestations

1The example is based on Conan Doyles’The Final Problem. Also compare Schelling (1960), p.87.
Structurally the situation is much similar to the well-known game ofMatching Pennies(cf., page 121 of this
thesis, below).

2In von Neumann (1928) aGesellschaftsspiel, or parlour game, is expressly defined in these terms.
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of a single theory of rational choice. This point has been emphasized and elaborated
upon in Spohn (1982), Bernheim (1984), Pearce (1984), Brandenburger and Dekel
(1987) and Tan and da Costa Werlang (1988).3

Notwithstanding the legitimacy and the technical and conceptual intricacies of this
criticism on von Neumann and Morgenstern’s exposition, there is a sense in which a
situation of conflictis a ‘disconcerting mixture of several conflicting maximum prob-
lems’ to which convolutions no justice is done if construed as a mere optimization
problem. Although each individual might be faced with the problem of optimizing a
function, there is conceptually no unique principle of maximization for the collection
of functions taken together. The fact that we are dealing with a collection of functions
in a strategic conflict, makes that there are at least two perspectives, a collective and
an individual one, from which to single out some outcomes as somehow optimal or
otherwise significant. From the collective perspective, one could try to find a common
principle of optimality for all individuals together, with respect to which the optimal
outcomes can then be distinguished.4 From the other, individual, point of view, the
optimal outcomes of the combined problem could be taken as those outcomes that
combine individually optimal strategies.

The two perspectives suggest different requirements for their respective notions of
optimality to comply with. An outcome is calledPareto efficientif there is no other
outcome in which all individuals are strictly better off. From the collective vantage
point, one may look for outcomes that at least comply with this requirement. It be
noted in passing that the notion of efficiency does not take into account the control of
the individuals over the various variables. On the other hand, an individual’s strategy
is said to(strictly) dominateanother of her strategies, if for each possible choice of
strategy by her opponents, adopting the former invariably leads to (or is expected to
lead to) an outcome that she values higher than the one that would result if she were to
adopt the latter strategy. From the individual point of view, the optimal outcomes are to
be sought among combinations of individuals’ strategies none of which are dominated.

Although the Pareto efficient outcomes and the undominated ones coincide if there
is only one individual, they may be even disjoint if there are multiple individuals in-
volved. The latter phenomenon is epitomized by the familiar but illustrative Prisoner’s
Dilemma, attributed to A.W. Tucker. The story that goes with it is equally well-known;
we give here the version of Luce and Raiffa.

Two suspects are taken into custody and separated. The district attorney is certain
that they are guilty of a specific crime, but he does not have adequate evidence to
convict them at a trial. He points out to each prisoner that each has two alternatives:
to confess to the crime the police are sure they have done, or not to confess. If they

3Also compare Franssen (1997), especially Chapter 3.
4The problem of combining individual preferences into an acceptable social preference order is a notori-

ously difficult one, which is studied by social choice theory. One of the most perplexing results of this respect
is Arrow’s famous theorem, which states the impossibility of a procedure to derive a social preference order
from individual values, if the former is to satisfy certain intuitive properties (cf. Arrow (1963)). Relaxing the
condition that a preference order, collective or individual, should be connected, as we will sometimes do in
this thesis, however, sidesteps this issue.
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Deny Confess

2 3
Deny

2 0

0 1
Confess

3 1

Figure 1.2. The game matrix of thePrisoner’s Dilemma. The figures in the top right corners
of the cells indicate the ordinal preferences of the player who chooses columns. The figures in
the bottom left corners of the cells those of the player who chooses rows. The outcome that
would result if both players avoid playing dominated strategies is represented by the cell bottom
right. Yet, both players are better off if the outcome in the top left cell came about. This is a
manifestation of a vicious phenomenon inherent in social interaction.

will both do not confess, then the district attorney states he will book them on
some very minor trumped up charge such as petty larceny and illegal possession
of a weapon, and they will both receive minor punishment; if they both confess
they will be prosecuted, but he will recommend less than the most severe sentence;
but if one confesses and the other does not, then the confessor will receive lenient
treatment for turning state’s evidence whereas the latter will get “the book” slapped
on him. (Luce and Raiffa (1957), p. 95)

The awkward situation the prisoners are in is depicted in Figure 1.2, with the figures
in the top-right corner of each cell indicating the ordinal preferences of the one pris-
oner, Bonnie, say, and those in the lower-left corner those of the other, Clyde. Here,
all outcomes are Pareto efficient, except the one that results if they both confess. In
contrast, for each of them to confess is the dominant strategy. If the one remains silent,
other achieves a better outcome by confessing. Also if the one decides to squeal, the
other had better do so as well. Still, if the two of them refuse to betray his or her
partner in crime, and thus refrain from playing their dominant strategies, an outcome
is achieved that is preferred by both.

The Prisoners’ Dilemma shows that some outcomes may be salient from the col-
lective perspective and others from the individual and only when considered in unison
they may point at socially significant phenomena that would have escaped notice oth-
erwise. Much of the fascination of game theory, methinks, derives from this tension
between the collective and the individual level of analysis. Any scientific theory of
conflict should provide apposite concepts that do justice to this distinction. Suppose
that in the Prisoners’ Dilemma, Bonnie and Clyde somehow achieve a Pareto efficient
outcome. Any explanation of their behavior should also account for at least one of them
playing a dominated strategy. Similarly, if they both play their undominated strategies,
one should explain what there was in the situation that made them end up in an outcome
that fails to be Pareto efficient.
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The Bellman himself they all praised to the skies
Such a carriage, such ease and such grace!
Such solemnity too! One could see he was wise,
The moment one looked in his face!

He had bought a large map representing the sea,
Without the least vestige of land:
And the crew were much pleased when they found it to be
A map they could all understand.

Whats the good of Mercators North Poles and Equators,
Tropics, Zones, and Meridian Lines?
So the Bellman would cry: and the crew would reply,
They are merely conventional signs!

Other maps are such shapes, with their islands and capes!
But weve got our brave Captain to thank
(So the crew would protest) that hes bought us the best–
A perfect and absolute blank!

This was charming, no doubt: but they shortly found out
That the Captain they trusted so well
Had only one notion for crossing the ocean,
And that was to tingle his bell.

(from Lewis Caroll’sThe Hunting of the Snark)

Figure 1.3. The Bellman’s ocean chart inThe Hunting of the Snark.

Thus, the construal of a situation of conflict as a collection of functions each to
be maximized according to a different principle, gives rise to different mathematical
questions to be asked, depending on the perspective one takes. Appropriate concepts
are called for to get to grips with this type of problem and the interaction between the
collective and the individual level of analysis. Perhaps the situation can be compared
with the sea captain who is used to get his bearings from the stars but now finds him-
self lost in a heavily forested and mountainous region. Although the stars may be of
considerable help to him, he will also have to be proficient in the employment of such
concepts as peaks and passes, glaciers and valleys as well as with that of the tree line.

This simile chimes in well with a general image of science propounded by Aumann
(Aumann (1985)). What the sciences have in common is that ultimately they mean to
improve our understanding of particular phenomena of our world in their abstract and
concrete manifestations. At the most fundamental level, the sciences are to develop
concepts that help us organize, systematize and reason about the phenomena belonging
to a particular field of research and these concepts are to be judged by their success in
doing so. The fundamental concepts of a science are not isolated. Rather, the way they
are interconnected constitutes the scientific edifice. Moreover, if the concepts involved
are of a formal nature, their mutual relationships can be analyzed using mathematical
methods. By raising the analysis to a more abstract level, mathematical study of a
science’s concepts may bring to light expected or unexpected structural correlations
with other sciences and open up new fields of application. These remarks hold in
particular for the theory of games.

However sweeping these generalities may be, they point at a feature of the function
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of the game-theoretical solution concepts when actually put to use in a concrete field of
application. Game theory provides concepts that help us to get to grips with situations
in which a conflict of interests may arise. The various solution concepts facilitate this
endeavor by summarizing information present in the formal description of a conflict
situation as seen from a particular but strategic perspective. Each of them highlights
different specific features and abstracts from others. Without such delimitative con-
cepts we are lost like the Bellman’s crew in the hunting for the Snark (cf. Figure 1.3).

On this conception, the primary task of game-theoretical solution concepts is not
the prediction or description of actual or idealized behavior. Neither is it their role
primarily of a normative nature, in the sense that they prescribe how people or rational
self-interested agentsshouldact in conflictual situations. Rather, they areindicators,
each of them illuminating a situation from a particular angle and emphasizing some of
its characteristics at the expense of disregarding others. They should not primarily be
judged by their predictive or normative power but rather by how they help the scientist
to get a firm hold on and organize his subject matter. This holds for the social scientists
investigating human social behavior and the champions of DAI alike. Aumann puts it
as follows:

People ask, since game theory offers a multiplicity of solution concepts, what good
can it be? Which solution notion is the right one? How do people ‘truly’ behave?
[...] None of the solution notions tells us how people truly behave. [...] Rather,
a solution notion is the scientists’ way of organizing in a single framework many
disparate phenomena and many disparate ideas. (Aumann (1985), pp. 34–35)

In another article (Aumann (1997), especially pp. 10–12 and p. 25), Aumann makes
an apt comparison between game-theoretical solution concepts and statistical concepts
as different as the mean and the median. In virtue of their clear intuitive content, in
their own way, they help the statistician — or anybody employing statistical methods
for that matter — to attain some kind of hold on various kinds of distribution.

In a similar way, the various solution concepts throw light on the social situations
from different angles. The game-theorist develops appropriate solution concepts and
investigates their properties and interrelationships. As the concepts are largely of a
formal nature, game theory is to a great extent a mathematical affair and the methods
employed cannot be too rigorous.

The significance of these concepts for the sciences applying game theory, however,
should derive from somewhere else. A solution concept is significant if it helps the
working scientist in the field to understand situations of social interaction. Which
conclusions she is to draw from the way they are instantiated in a situation of conflict
is ultimately up to her own scientific judgement and integrity.

Formal solution concepts single out outcomes that stand out from the others in a
conflict situation in virtue of its mathematical description as a game. What conclu-
sions to draw from the way they are instantiated in a particular situation of conflict
is ultimately up to the scientist applying game theory. In particular, there need beno
intrinsic connection between solution concepts and prediction, description or prescrip-
tion of actual behavior.E.g., in the Prisoner’s Dilemma, the outcome with both Bonnie
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and Clyde speaking is the only outcome that is not Pareto efficient, still it is the only
combination of the players’ strategies that are not dominated. This says something
significant about the situation and may help the scientist to assess the situation. How-
ever, what conclusions to draw from these data is not univocal and may depend on the
application or kind of explanation the working scientist has in mind.

Game theory is often introduced as making particularassumptionsas to the ratio-
nality of the players. In this context,e.g., expected utility maximization is presented
as an assumption that goes with a particular model of human behavior and the employ-
ment of a particular solution concept. This then raises the question as to the accuracy of
this model and to what extent people are in fact expected utility maximizers. Although
this question is interesting enough in itself, the significance of game theory does not
hang on its fulfillment. What is at issue are the insights in actual human conduct af-
forded by the way it relates to the idealized behavior of a perfectly rational expected
utility maximizer. This points at a considerably weaker connection. There is nothing
wrong with making explicit, say, the epistemological conditions that ideal expected
utility maximizing decision makers are to comply with if they are to arrive at an out-
come distinguished by a particular solution concept. It is possible to establish such a
relation between,e.g., common knowledge of all players being expected utility max-
imizers and iterated strict dominance. However, it should be borne in mind that this
says something about the perspective from which a solution concept assays a situation
of distributed decision making, rather than about the assumptions it makes with respect
to actual human behavior.

As indicators, the important thing for solution concepts is how they coherently
relate to one another in different games and how they relate to other solution concepts
in the same game. Moreover, their role in explanations requires there be some balance
in how much detail of a situation of conflict they should bring to the fore. On the one
hand, a solution concept should be able to make distinctions that are detailed enough to
be of interest for the working scientist. On the other hand, by taking into account too
many features that are specific to a situation, an explanation may become anobscurum
per obscurius, explaining the obscure by the even more obscure. After all, one of the
canons of explanation is to construe a particular phenomenon as a manifestation of a
phenomenon on a more general, more comprehensive and more abstract level.

Solution concepts, in short, chart particular formally remarkable features of a sit-
uation of conflict. In the various fields of application of game theory, situations and
environments are mathematically represented as games. Conceiving of solution con-
cepts as indicators, they are stripped to their bare mathematical essentials. Emancipated
thus from interpretations in terms of actual or ostensibly rational behavior sustains their
application also in fields of research other than the social sciences.

1.2 Nash Equilibrium

In the previous section we championed the view of solution concepts as indicators,
summarizing information about particular formally salient features of a game. It is,
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however, not easy to say how they achieve this apart from reiterating the definitions
from which they derive their intuitive content and plausibility.

The definition of the pivotal game-theoretical concept in this thesis,i.e., that of
Nash equilibrium, has a seemingly clear intuitive content. A Nash equilibrium is a
strategy profile from which none of the players of a game has an incentive to deviate
unilaterally. An equivalent characterization can be given in terms of a best response of
a player against a choice of strategies of his opponents. A Nash equilibrium is then a
combination of players’ strategies, each one of which constitutes a best response for
the respective player against the combination of the other players’ strategies it contains.
As such it captures a notion of stability or that of a self-enforcing agreement. This way
of articulating the perspective Nash equilibrium affords on conflict situations can be
refined by specifying the exact epistemic properties of the agents sufficient for the
outcome of the respective game to be a Nash equilibrium (cf.Brandenburger and Dekel
(1987) and Aumann and Brandenburger (1995)).

In spite of these intricate results, however, it is not inherent in its definition what
conclusions to draw from a particular strategy profile being a Nash equilibrium in a
particular application. In hisPhilosophical Investigations, Wittgenstein compared the
different uses of language with the diverse uses of the various tools in a toolbox:

11. Think of the tools in a toolbox: there is a hammer, pliers, a saw, a screw-driver,
a ruler, a glue-pot, glue, nails and screw.—The functions of words are as diverse
as the functions of these objects. [...] For their application is not presented to us so
clearly. [...]
14. Imagine someone’s saying: ”All tools serve to modify something. Thus
the hammer modifies the position of the nail, the saw the shape of the board,
and so on.”—And what is modified by the rule, the glue-pot, the nails?—”Our
knowledge of thing’s length, the temperature of the glue, and the solidity of
the box.”—–Would anything be gained by this assimilation of expressions?—

(Wittgenstein (1953))

Wittgenstein’s musings led him to a philosophy of language that could be sum-
marized by the slogan “meaning is use”. We could apply a similar rationale to the
game-theoretic solution concepts. Through experience we become conversant with
their employment and may gain insight in their significance in and for different situa-
tions. Rather than searching for a generic meaning of (a strategy profile being a) Nash
equilibrium — which may turn out to be quite spurious anyway — we had better in-
vestigate itsconditions of application. The intuitive content of its definition may serve
as a guide in its employment in many contexts, though in some contexts it may be a
better guide than in others.

Keeping these remarks in mind, Nash equilibrium can innormal circumstancesbe
used as an indicator of rational behavior in situations in which self-interested and util-
ity maximizing agents interact. Especially in two-person strictly competitive games
— in which a player benefits only if it goes to the detriment of the other player in an
equal measure — Nash equilibrium could be taken to refer to “a kind of mathematical
morality, or at least frugality, which claims that the sensible object of the player is to
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gain as much from the game as he can, safely, in the face of a skillful opponent who
is pursuing an antithetical goal” (Williams (1954), p. 23). In the Nash equilibria of
such games, both players choose their strategies as to maximize their respective secu-
rity levels (cf. Osborne and Rubinstein (1994), Section 2.5). By the security level of a
player’s strategy we understand the level of preferability of the least payoff the player
can guarantee himself by playing the strategy in question. This so-called maximin so-
lution has got some particularly desirable formal properties. Its existence is guaranteed
if the players are allowed to mix their strategies,i.e., to play each of their strategies with
a certain probability. Moreover, the equilibria are bothexchangeableandequivalent,
i.e., if (α, β) and(α′, β′) are equilibria, with the first entry denoting the one player’s
strategy and the second that of the other player, so are(α, β′) and(α′, β) and, for each
player, all equilibria are equally desirable.

In the more general setting in which multiple players interact who may have com-
mon as well as opposed interests, Nash equilibria in mixed strategies are still guar-
anteed to exists, but the other desirable properties no longer hold in general. It has
been claimed, and rightly so I daresay, that it is situations that allow for both mutual
dependence as well as reciprocal opposition that are of most interest to the student
of interactive behavior. In such situations one may encounter Nash equilibria that are
Pareto dominated by outcomes that are not in equilibrium. The following well-known
example demonstrates in a dramatic fashion this fascinating though perhaps slightly
disquieting phenomenon.

Consider the case of two players who are to divide a treasure of a number of gems
and jewels. Assume further that they have settled on the following protocol. Alter-
nately, each player has a choice to take either one or two gems. When a player opts
for the two gems, the game stops immediately and each player keeps all the gems he
has taken so far, with the remaining stones being lost forever. Otherwise, the game
continues with the other player making his choice. If the number of gems and jewels
is two, one may expect a self-interested player to take them both at the first opportu-
nity. A similar argument holds if there are three gems, for if the first player were to take
only one, the second also self-interested player is likely to take the two remaining ones,
leaving no jewels for the first player to grab. In contrast, if the treasure is large, consist-
ing of, say, ten thousand stones, one would expect players first to choose one gem for
a number of rounds before terminating the game by taking two at a strategic moment.
Nevertheless, in all Nash equilibria the first player to move takes two stones at his first
opportunity no matter whether the treasure is large or small (and the second player is
to take two jewels at his first opportunity). Observe that, no matter how many stones
involved, in any possible outcome other than the one ensuing if the second player takes
two stones at his first opportunity, both players are better off than when the first player
immediately grabs two stones.5

5The reason for this is that in any given strategy of the second player in which he takes one stone until his
n-th move and then takes two, the first player’s best response is to take one stone until hisn-th move and then
take two. Similarly, the second player’s best response to any strategy of the first player in which he takes
one stone until then-th move and then two, is to take one stone until then-1-st move and then take two. Of
course if the first player takes two at his first move, any choice of strategy will guarantee the second player
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Figure 1.4. A simplified case of the Braess paradox. The left figure depicts a graph along
which edges two players have to find a way froma to d. The labelsyxij with which each edge
is labelled denotes the cost incurred by each player travelling along it, withxij being the number
of players travelling along the edgeij . In the matrix to the right the letter combinations indicate
the different routes the players can decide to take. It can easily be established that without the
edgebc equilibrium will ensue whenever one of the players takes the routeacd and the other
abd, both players incurring a cost of 8. However, if the edgebc is added, equilibrium results if
both players take ‘advantage’ of this new opportunity at the cost of 9.

The guiding principle in the use of Nash equilibrium as an indicator of rational self-
interested behavior seems to go awry in this example and the more so as the number of
stones increases. But rather than dismissing Nash equilibrium on this basis as a solution
concept, the question to ask here concerns its conditions of use and the idiosyncratic
properties of this situation that seem to be strained to their limits. Focussing on this
example only, however, will not do. Pareto dominated Nash equilibria pervade the
realm of social interaction. It rears its not so pretty head,e.g., also in the field of traffic
control and operations research, where the Downs-Thomson and the Braess paradoxes
show how increasing the capacity of a link in an (abstract) road network or even adding
a new link may actuallyincreaseeach road user’s travel time in equilibrium (cf. Braess
(1968), Arnott and Small (1994) and Figure 1.4). These abstract examples are thought
to explain concrete cases of traffic congestion.

A comprehensive survey of these phenomena is beyond the scope of this thesis.
There is, however, a trivial but remarkable detail to observe at this point. In situations
in which each action that benefits one player is to the detriment of at least one other, all
outcomes are Pareto efficient. This implies that the phenomenon of a Nash equilibrium
being Pareto dominated can only occur in situations in which the players have some
common interests. Moreover, the way the Nash equilibria relate to the Pareto efficient
outcomes constitutes a significant feature of the game and to be an important part of

the same number of stones and any of his strategies is just as good a response as the next one. This example
is an instance of the centipede game (cf. e.g., Osborne and Rubinstein (1994), pp.106–107).
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the conditions of application of Nash equilibrium as a solution concept.
In the tradition of game theory, the preferences of the players over the possible out-

comes of a game are traditionally represented by numerical values.6 This expedites the
lavish and fruitful employment of probability theory and the methods of calculus in the
interests of game theory. For the purposes of this thesis, however, we construe the play-
ers’ preferences more generally as relations over the outcomes that satisfy transitivity
and reflexivity. In Part I, these relations are moreover assumed to be connected (viz.,
they aretotal preordersor quasi-orders) and the traditional notion of Nash equilibrium
is still available. This is not the case for partial preorders, which we contemplate in
Part III. To cope with these we come to consider two obvious generalizations of Nash
equilibrium: maximumandmaximal equilibrium(cf. page 28 for the definitions). In
Section 2.1 we find that maximal equilibrium and a similar generalization of Pareto
efficiency to partial preorders can be seen as two borderline cases of the same concept.

1.3 Solution Concepts in the Social Sciences

The remarks concerning solution concepts as indicators are especially importunate for
the social sciences. The connections and relations established between the events and
phenomena as investigated by the natural sciences are to a great extent of an exten-
sional nature,i.e., these relations are to hold between the events independently of the
way these events are described. In contrast, the explanations the social sciences are
after pertain to the actions people perform. We argue that actions are a special kind
of event which require a kind of explanation different from the kind offered by the
natural sciences. The explanation of an action is typically in terms of thereasonsthe
agent had or may have had for its performance; we say a reasonrationalizesan ac-
tion. Whether a particular reason rationalizes a particular action, we claim, however,
depends essentially on the way the action is described. Thus, the relation between ac-
tions and their reasons,i.e., that of rationalization, isintensional. Davidson gives the
following example:

I flip the switch, turn on the light, and illuminate the room. Unbeknownst to me I
also alert a prowler to the fact that I am at home. Here I need not have four things,
but only one, of which four descriptions have been given. I flipped the switch
because I wanted to turn on the light and by saying that I wanted to turn on the
light I explain (give my reason for, rationalize) the flipping. But I do not, by giving
this reason, rationalize my alerting of the prowler nor my illuminating of the room.

(Davidson (1980), p.4–5)

What are the precise conditions for a reason to rationalize an action is — I presume
— still very much an open question and also falls outside the scope of this thesis.
This is not to say that social phenomena can impossibly be explained within a causal

6This is not to say that they are essentially quantitative in nature. The players’ preferences are usually
thought to ensue from their qualitative preferences over lotteries over the outcomes (cf., e.g., von Neumann
and Morgenstern (1944), Myerson (1991) and Osborne and Rubinstein (1994)).
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framework, but this is actually abstracting away from the features that distinguish it
from a physical phenomenon,viz., that actions can be described in terms of reasons.

On this view, an explanation of a particular course of action decided upon by an
agent or a group of agents involves making explicit reasons that agent or that group of
agents may have for that course of action. Due to the intensional nature of rationaliza-
tion, an explanation of this type also involves finding appropriate descriptions of the
actions. Yet, the adequacy of a description of an action may depend on its taking into
account elements that are lost in the mathematical description of a situation. This point
can even be put in slightly stronger terms, by stating that the reason rationalizing an
action may very well involve very specific features of a situation, the formalization of
which may be hard, arbitrary or even spurious. Schelling gives an example in which

[...] husband and wife, separated in a department store, gaily traipse off to the
Lost and Found by a tacit and jocular mutual appreciation that it is the “obvious”
place to meet, [whereas] two mathematicians in the same situation — each aware
that both are mathematicians — might look for a geometrically unique point rather
than one that depended on a play on words. (Schelling (1960), p.114)

Assume for the sake of argument that both husband and wife and the mathematicians
manage to meet at the supposed locations. Explanations of these occurrences should
involve the reasons those separated had for their actions. Moreover, the reasons the for-
mer pair had for their actions are no inferior to those of the latter and, yet, all depended
on specific peculiarities of the situation and the individuals. In a preceding paragraph
Schelling writes:

It is that the mathematical properties of a game, like the aesthetic properties, the
historical properties, the legal and moral properties, and all the other suggestive
and connotative details, can serve to focus the expectations of certain participants
on certain solutions. (Schelling (1960), p.113)

If game theory is seen as primarily an economic framework, Aumann is in an important
sense right in saying that “We must get used to the fact that economics is not astronomy,
and game theory is not physics” (Aumann (1985), p.37).

These considerations are by no means meant to attenuate the role of formal game
theory. They rather accentuate the role of the formal solution concepts as indicators,
instead of as predictors. Consider phenomena as threats and promises, deterrence and
inducement, coordination and commitment or relinquishing the initiative. If anything,
these are interesting issues from a game-theoretical perspective. Both promises and
threats are ways of an agent to conditionally commit herself to a particular course of
action. Interestingly, the success of a threat does not depend on its being fulfilled; if
a threat is efficacious, it deters the other party to take another course of action and
threatener is no longer committed to carry out the threat. Typically, a threat deters
“through its promise of mutual harm”. In contrast, if a promise produces the desired
behavior in the promisee, one remains committed to act in a particular way.
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Figure 1.5. Formal conditions for promises and threats. In the left matrix the column player
may threaten to choose the left column, if the row player choosesTop. In the middle game, a
similar threat is only likely to deterRowfrom playingTop, if it is accompanied by a conditional
promise to playRightotherwise. In the situation on the right, neither playing can try to achieve
a better outcome by posing a threat or making a promise.

In some situations an individual may have good reason to make a threat or a promise
whereas in others it does not quite make so much sense.7 The reasonableness of posing
a threat or making a promise may very well depend on the mathematical structure of
the game and the mathematical structure of the game can in turn be assessed using
solution concepts.E.g., when asked why she made a promise rather than a threat in
a particular situation, an individual might reply that she expected, not knowing of an
ulterior motive for him to do otherwise, her opponent to play his dominant strategy, that
she could achieve a better outcome if he played another strategy and that, moreover, in
virtue the mathematical structure of the situation a promise, in contrast to a treat, could
be effective in this respect.

To illustrate this point consider the leftmost matrix in Figure 1.5. ThereTop-Right
is a combination of the players dominant strategies. Still, the individual choosing
columns,Col, could try to deter the other party from choosing the top row by threat-
ening to play the left column in that case. If the threat is yielded to,Col is no longer
committed to choose the left column and can thus achieve his best possible outcome,
viz., Bottom-Right. Observe that in this situation a promise would dissuade neither
player from playing his dominant strategy. In the middle game, a similar threat byCol
to choose the left column is likely to deterRowfrom playingTop, only if it is accom-
panied by a conditionalpromiseto playRightotherwise. The cellTop-Rightrepresents
the outcome that will result if both players play their dominant strategies. Yet, neither
promise nor threat will induce either player to play another strategy. In contrast, Bon-
nie and Clyde have no reason to threaten one another in the Prisoner’s Dilemma (cf.
Figure 1.2, above). Yet, they may achieve the outcome that Pareto dominatesBottom-
Right if either of them can make a credible promise to remain silent if the other does

7The following examples are from Schelling (1960), to which the reader is referred for a more elaborate
account of this kind of phenomenon.
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so as well. Finally, the formal structure of the situation depicted by the matrix on the
right in Figure 1.5 precludes the possibility of either player making an effective threat
or promise.

These examples illustrate how the formal notion of dominance may help one to
reason about such phenomena as threats and promises. In each case the argumenta-
tion points at theformal basis — or the lack thereof — for posing threats or making
promises. Whether the agents actually do, will or should act accordingly, however,
is at least contingent on the extent in which they can make credible their conditional
commitment to a particular course of action. This, however, may very well depend on
characteristics of the situation which one cannot or would not wish to account for in
the mathematical structure of the game.

One of the aspects we have abstracted from in our exposition so far, however, is
that of the sequential order in which the players are to act. Of course, a conditional
threat is not likely to be effective if the threatener is to act first and the threatened party
after. A similar thing holds for promises. Moreover, the sequential structure of a game
could very well be accounted for in the mathematical representation of a game, giving
rise to the notion of a game inextensive form. It is with this type of game the first part
of this thesis is concerned with.

1.4 Game Theory, Logic and Artificial Intelligence

In the previous section we argued that the explanation of human behavior requires
taking into account features of a situation that do not lend themselves for a sensible
formalization. These reflections are meant neither to dispute the usefulness of the for-
mal concepts of game theory to the social sciences nor to question the success of their
application there. Rather they are meant to contrast the use of game theory in the social
sciences with that in other fields of application that are amenable to a more complete
formalization, as,e.g., distributed computing. Whereas in the social sciences game-
theoretical analyses reveal formal structures that may be invoked for a more compre-
hensive understanding of human behavior in conflict situations, there is a more direct
match between the concepts of game-theory and the interactive behavior of computer-
ized systems. The following quotation gives voice to this observation:8

Most economic models assume idealized, rational decision makers interacting
in narrow, precisely prescribed ways. These assumptions, while critical to the
tractable exposition and implementation of any theory, often fail the test of descrip-
tive adequacy. However, what may be unrealistic with respect to rich environments
populated by imperfectly understood interacting human agents, may often provide
adequate descriptions of restricted environments populated by formally specified
interacting computational agents. (Boutilier, Shoham, and Wellman (1997), p.4)

8The passage also has an apparent critical undercurrent with respect to the employment of formal methods
in the social sciences from which the author dissents.
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Game-theoretical concepts may successfully be deployed in the design of autono-
mous computational systems that are to operate in interactive situations as well as in
fully fledged multi-agent systems. In the latter case the issue is to create environments
for multiple agents with given preferences to interact in such a way that one may expect
the outcome of the interaction to possess certain desirable features (mechanism design).
The specification of auction protocols in which none of the agents has an incentive
to conceal the maximum price it is prepared to pay for a particular good is a case
in point. The design of such and similar systems involving multiple agents requires
suitable models of interaction. Moreover, their formal specification and verification
call for logical frameworks enabling precise mathematical analysis of these systems
with respect to their game-theoretical properties.

To illustrate this point consider,e.g., a glutton and a gobbler about to dispatch a
square cake that can be cut by them simultaneously. Both eat more cake rather than
less. As they both like to have a chance of obtaining a large piece and do not wish to
settle for half the cake from the outset, they agree to divide the cake according to the
following protocol. The glutton and the gobbler cut the cake simultaneously, the latter
vertically and the former horizontally. This results in the cake being divided in four,
not necessarily equal, pieces. The glutton obtains the left upper and the lower right part
of the cake and the gobbler whatever remains. The situation is depicted in Figure 1.6.
A Nash equilibrium results if both cake aficionados separately settle on a strategy that
may be expected to cut the cake in half. Both players may then look forward to half
a cake, and observe that this will not change if one of them deviates unilaterally. To
appreciate this, first observe that both of the two players can guarantee the cake to be
divided equally, by cutting himself the cake in two equal parts, no matter what strategy
his opponent adopts. Now suppose that one of the gorgers decides to play a strategy
that cannot be expected to divide the cake evenly. Then, his adversary obtains more
than half the cake if he also adopts a suitable strategy that divides the cake unequally.
Suppose,e.g., the gobbler cuts the cake vertically such that the left piece is larger than
the right piece. If the glutton adopts a strategy that results in the gobbler obtaining less
than half of the cake, the latter has reason to deviate unilaterally; he obtains a full half
of the cake by cutting the cake vertically in two equal pieces. If, on the other hand,
the gobbler’s division together with the cut of the glutton apportions the glutton half or
less of the cake, the glutton has good reason to deviate unilaterally. Given the gobbler’s
cut, he would have obtained a larger piece had he decided to make the upper part of
the cake larger. This argument can be generalized as to apply to all courses of action
in which one of the players fails to divide the cake evenly; in any such case no Nash
equilibrium ensues. We can prove that in all Nash equilibria of this protocol the cake
is divided equally and this can be taken as an indication that the protocol is fair.

A similar call for game-theoretical methods and concepts in Artificial Intelligence
emerges ifconstraint satisfaction problemsare considered in which the control over
the relevant variables is distributed over multiple agents. In case the variables are bi-
nary, propositional logic can be employed to model such problems (cf. Yokoo, Durfee,
Ishida, and Kuwabara (1998), Walsh, Yokoo, Hirayama, and Wellman (2001), Walsh
and Wellman (2000)). On this view, the distribution of propositional variables obtains
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to Glutton

Glutton’s cut
alternative cut

Gobbler’s cut

Figure 1.6. Division of the cake according to protocol. the glutton obtains the upper left and
lower right pieces and th gobbler gets the remainder. Observe that given the gobbler’s cut slightly
off-center to the right, makes that the glutton had better make the alternative cut even though still
better alternatives are available.

a logical significance and game theory may be invoked for a proper grasp of this phe-
nomenon.

These reflections constitute background of the investigations presented in this the-
sis, in which both game theoretical concepts are subjected to logical analysis and logic
is subjected to game-theoretical analysis.

1.5 Logic and Game Theory

Connections with games are by no means alien to the history of symbolic logic nor to its
more recent developments. Pauly (2001) distinguishes two points of view in this line of
research: the use of game theory for the purposes of logic and the deployment of logic
for the purposes of game theory. The use of Ehrenfeucht-Fraı̈sśe games in model theory
(Hodges (1993, 1985); Doets (1996)) comes under the first heading. Lorenzen’s dia-
logue games in constructive proof theory (Lorenzen and Lorenz (1978) and Hintikka’s
game-theoretical semantics (Hintikka (1983)) have exposed the allegedly fundamental
interactive foundation of logic. Assuming the second perspective, modal logics have
been employed to formally characterize the epistemic requirements on the part of the
players for the outcome of the game to be guaranteed to satisfy a particular solution
concept. Dynamic epistemic logics have been used for the analysis of knowledge and
belief change in particular game settings (Baltag (2002); van Ditmarsch (2000)). In this
context should also be mentioned Pauly’s Coalitional Logic (Pauly (2001)), Parikh’s
Game Logic (Parikh (1984, 1985)) and Boudewijn de Bruin’s analysis of the epistemic
and rationality assumptions inherent in game-theoretical solution concepts (de Bruin
(in preparation)). Their work develops modal logics with expressive power with re-
spect to non-epistemic features of games. In the numerous papers by van Benthem
(cf., e.g., van Benthem (to appear, 2001a, 2002)) neither perspective takes precedence
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and logical and game-theoretical structures are compared and analyzed on an equal
footing.9

In this thesis both points of view are assumed. In the first part, we assume the first
perspective and argue that extensive games —i.e., games in which the sequential order
of play has been made explicit — are relational structures and that modal languages
can be employed to describe and reason about them. The main results comprise a
modal characterization of Nash equilibrium (as well as that of a closely related solution
concept called subgame perfect Nash equilibrium) and the soundness and completeness
of an axiomatization of the accompanying logic.

The other point of view is predominant in the remaining two parts of this thesis.
Propositional logic is subjected to a game-theoretical analysis, in which extensive use
is made of equilibrium concepts. Here the underlying thought is to conceive of propo-
sitional variables as binary decision variables, the control over which is distributed
among various decision making entities. Logical space,i.e., the set of valuations, then
assumes a game-theoretical and interactive character, spawning a number of logical is-
sues. On this basis, game-theoretical extensions of the classical notions of validity and
consequence are defined and studied.

In the second part, control over the propositional variables is distributed over two
antagonists. The one aims to verify a formula by choosing appropriate values for the
variables assigned to her, whereas the other endeavors to falsify the same formula by
choosing values for his variables. This gives rise to the concept of a Boolean game
and the related concept of relativized consequence. In this manner the concept ofcon-
trol is brought within the scope of (propositional) logic. These logical inquiries in this
part are the preamble to the third part, in which the idea of distributed control is ex-
trapolated to many-player environments. The reflections on distributed propositional
control eventually lead up to the issue Chapter 9 is concerned with:Which conclusions
is one to draw from a family of theories, given that, for each of these theories, there is a
player who controls a (disjoint) set of propositional variables and who seeks to satisfy
his theory as well as he can by choosing appropriate values for the variables in his con-
trol? To assess this problem, the game-theoretical concept of amaximum equilibrium
— a generalization of Nash equilibrium to be introduced presently — is resorted to.
We propose an accompanying notion of consequence,game-theoretical consequence,
and study its formal properties in some detail. For the notion of game-theoretical con-
sequence there are various possible definitions, involving different game-theoretical
solution concepts. We have chosen for the option that is closest to classical logic, as
to assure that the features that are specific to the framework can indeed be ascribed to
the game-theoretical perspective taken and not so much to non-standard features of the
underlying propositional logic.

The emphasis in logical investigations relating to game theory has traditionally
been games in which only two antagonistic individuals figure, only one of which
can win. These games constitute a proper subclass of two-person strictly competi-

9For more extensive and comprehensive overviews, the reader be referred to van Benthem (2001b) and
Hintikka and Sandu (1997), Section 3.
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tive games. We observed that this type of game has some particularly elegant and
illuminating formal properties, granting them a prominent role in the development of
game theory (cf., page 14, above). Nevertheless, the strategic problem derives much
of its significance and fascination from its ability to deal with situations in which the
individuals have both common and opposed interests. Accordingly, in this thesis our
logical studies will to focus largely on multi-player games and the accompanying solu-
tion concept of Nash equilibrium.

1.6 Overview

This dissertation is organized in three parts, in each of which logic and game theory
are related in a different way.

The first part concerns extensive games with perfect information and a finite hori-
zon, being a class of games that is associated with a proper subclass of Kripke structures
for a specially designed multi-modal language. The focus is on the logical analysis of
the notion of Nash equilibrium and its subgame perfect refinement. This part is a re-
organized version of Harrenstein, van der Hoek, Meyer, and Witteveen (2003). Many
of the underlying ideas stem from the earlier papers Harrenstein, van der Hoek, Meyer,
and Witteveen (2000) and Harrenstein, van der Hoek, Meyer, and Witteveen (2002).

In Chapter 3, we prove that a strategy profile being a (subgame perfect) Nash equi-
librium in a game is reflected by a particular structural property of the associated Kripke
frame. This property is characterized by a formula scheme of the multi-modal lan-
guage. We also show how this analysis can be executed using the language of proposi-
tional dynamic logic (PDL).

While Chapter 3 is mainly concerned with semantical issues related to the charac-
terization of (subgame perfect) Nash equilibrium, Chapter 4 is devoted the complete-
ness of an axiomatization for the ensuing multi-modal logic. A construction method is
employed in the proof of this result. The main problem encountered in the complete-
ness proof is to ensure that the model constructed belongs to the subclass of Kripke
structures corresponding to the class of extensive games.

In the second and third part, the emphasis is shifted to the game-theoretical anal-
ysis of logic and the logical issues elicited by the particular game-theoretical view on
logic taken. The thought underlying both parts is that the control over the values of
the propositional variables of a propositional language can be thought of as being dis-
tributed among various individuals. The different choices an individual can make with
respect to the variables in his control define a set of strategies he can choose from.
The different sets of valuations he can thus guarantee the outcome of the game to end
up in determine his manipulative powers. On this conception, the valuations used to
interpret the propositional variables are construed as the strategy profiles of a strategic
game. In other words, by distributing control over the variables logical space assumes
a game-theoretical aspect.

In Chapter 5 we introduce a class of strictly competitive two-person games in which
control over a set of binary decision variables is divided among two antagonistic play-
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ers. The outcomes of any of these games are of two kinds only: victories for one
player and victories for the other. Draws are not possible. Each set of binary decision
variables thus defines a set of Boolean games.

We argue that Boolean games can be seen as representing the information struc-
ture of finite games ofimperfect information. A Boolean game consists of a Boolean
game and a distribution of the propositional variables over the two players, player 0
and player 1. We prove the Boolean forms to constitute a Boolean algebra,moduloa
suitable notion of strategic equivalence. This Boolean algebra, moreover, is isomor-
phic to the Lindenbaum algebra of the propositional language with the binary decision
variables as propositional variables. Each propositional formula then corresponds to a
Boolean form.

The correspondence between propositional formulas and Boolean forms makes that
control over propositional variables can be studied from a logical angle as well. This
consideration engenders the notion of relativized logical consequence as advanced in
Chapter 6, which defines a relation between propositional theories relative to each dis-
tribution of the propositional variables. This notion of relativized consequence gener-
alizes the relativized concept of validity, which is such that, for each subset∆ of the
propositional variables, a formulaϕ is∆-valid if and only if the player 1 has a winning
strategy in the Boolean game on the form corresponding toϕ provided she has control
over the propositional variables in∆. Moreover, we find that the relativized notion of
propositional consequence is a conservative extension of the classical notion of conse-
quence. The work in Part II draws on material presented in Harrenstein, van der Hoek,
Meyer, and Witteveen (2001).

In the remaining three chapters we pursue the idea of distributed control over propo-
sitional variables as a concept that is amenable to logical analysis. Boolean games are
strategic games with the valuations of the respective propositional language as strat-
egy profiles. As such a Boolean form, which corresponds to a propositional formula,
and a distribution of the propositional variables impose a game-theoretical structure on
logical space. In Part II the emphasis was on the logical properties of the formulas cor-
responding to the game-theoretical properties of the associated Boolean form, given a
particular distribution of the propositional variables. The perspective taken in Part III is
slightly different. The game-theoretical structure imposed by a Boolean game on log-
ical space allows particular valuations to be singled out by means of game-theoretical
solution concepts and one can investigate which formulas hold in the valuations that
stand out in this way. In Chapter 7 it is argued that on this basis concepts of con-
sequence can be defined. As a first example, the notion ofwinning consequenceis
advanced to illustrate the underlying thoughts. We find that also this notion conserva-
tively extends classical consequence. Examining its formal properties in some detail,
we eventually present a sound and complete Gentzen-style system for this concept.

The conceptualization of winning consequence, however, lends itself for general-
ization. It will be argued that, given a distribution of control over the propositional
variables, theories and families of theories can be employed to define strategic games
that have the valuations as strategy profiles. Moreover, these games may involve multi-
ple players whose preferences need not be antagonistic. Then also more sophisticated
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game-theoretical solution concepts can be invoked to define consequence relations.
Chapter 8 initiates the notion of adistributed evaluation game, which constitutes

the semantical basis for the concept ofgame-theoretical consequenceadvanced in the
final chapter. A distributed evaluation game defines a strategic game on logical space
on the basis of a distribution of the propositional variables over a number of players
and a family of theories indexed by the set of players. The semantical ideas underlying
this definition evince, at an abstract level, particular similarities with some proposals
to formalize non-standard reasoning mechanisms in the field of philosophical logic
and Artificial Intelligence. Veltman’s proposal for an update semantics for defaults
(Veltman (1996)) serves as a particular good example, in this respect. In Section 8.5 an
effort is made to delimitate formally the class of distributed evaluation games within
the more comprehensive class of strategic games with the valuations of a propositional
language as strategy profiles. The material of this section, however, is inessential for a
proper understanding of the subsequent chapter on game-theoretical consequence.

By now the stage has been set for the final chapter, in which the notion of game-
theoretical consequence is introduced. Game-theoretical consequence relates families
of theories relative to a distribution of control over the propositional variables among a
number of individuals. The traditional problem of consequence can be understood
as pertaining to the conclusions one may reasonably draw from a theory. Game-
theoretical consequence bears on the more general issue which conclusions one may
reasonably draw from a family of theories, given that for each theory there is an in-
dividual who strives to satisfy it by choosing appropriate values for the propositional
variables he is assigned control over. Any such problem defines a strategic situation
that can be modelled and evaluated as a distributed evaluation game.

Chapter 9 presents game-theoretical consequence as the logical offshoot of one
of the possible ways to resolve this problem,viz., the one by means of the game-
theoretical solution concept of maximum equilibrium. Then, this notion is subjected
to a formal analysis. Moreover, we find that game-theoretical consequence can be
embedded in classical consequence andvice versa. The proof of this result relies on a
semantical interpretation of game-theoretical consequence using the apparatus of rough
set theory. The material of this chapter has been presented in a condensed form at the
LOFT5 conference in 2002 (cf., Harrenstein (2002)). A compendious statement of its
main tenets can also be found in Harrenstein (to appear-a).

The three parts are largely self-contained and as such can be read independently of
one another. The next chapter constitutes the preliminaries to the main body of work.
They may be skipped on first reading and consulted when need be. Be that as it may,
the results presented in the preliminaries may conduce to a better understanding of,
in particular, the third part. After introducing the notions used in this thesis, strategic
games and related concepts are defined. It be observed that our notion of a strategic
game differs from tradition in that the players’ preferences are not required to be a
connected relation over the outcomes. This requires the generalization of the concept of
Nash equilibrium, giving rise to the definition of maximum and maximal equilibrium.
A similar remark concerns the concept of Pareto efficiency, which plays a lesser role
in this thesis. Section 2.2 presents some elementary definitions and results of rough set
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theory and Section 2.3 concerns some basic facts of propositional logics. Section 2.4
deals with a semantical analysis of propositional logic using rough sets.



Chapter 2

Preliminaries

The material in this chapter is basically for referential purposes and had perhaps better
be skipped on first reading. Unless otherwise stated, all proofs are by the author. Due
to their elementary character, however, no originality can be claimed by him.

2.1 Strategic Games and Maximum Equilibria

We define astrategic gameas a tuple
(
N, {Si}i∈N , {ρi}i∈N

)
, whereN is a countable

non-empty set of players and for each playeri in N andSi is a non-empty set of strate-
gies available toi. Accordingly, the generalized Cartesian product the variousSi , i.e.,∏

i∈N Si, is the set ofstrategy profilesof the game, which we also denote byS. The
pair

(
N, {Si}i∈N

)
we call theframeof the game

(
N, {Si}i∈N , {ρi}i∈N

)
. For eachi ∈ N,

ρi is the empty relation or, otherwise, a reflexive and transitive, but not necessarily con-
nected relation on the strategy profilesS. In this thesis, a relation that is either the empty
relation or both reflexive and transitive we will also refer to as aproto-order.1 We also
use6i as the infix notion ofρi . Hence,S could considered to be an‖N‖-dimensional
space with for each strategy profiles and each playeri in N, si its i-th coordinate. We
will adopt the notation(s−i , s′i ) for the point that is likesexcept for thei-th coordinate,
which is identical with thei-th coordinate ofs′. Intuitively, each(s−i , s′i ) denotes a
strategy profile that playeri can reach fromsby unilaterally deviating.

At this point it should be emphasized that, although reflexive and transitive if not
empty, the preference orders as defined by theories are not in general connected. This
is at variance with the usual assumptions made in the theory of games. The game-
theoretical solution concepts are likewise defined for connected preference relations
and we see ourselves bound to generalize them in such a way that they apply to game

1Defined thus proto-orders satisfy transitivity and the condition that(elementvar, y) ∈ ρ and(y, z) ∈ ρ
imply (x, z) ∈ ρ. Relations for which these two conditions hold are calledpreordersin Kuratowski and
Mostowski (1976). In this thesis, however, we will reserve the concept of preorder for reflexive and transitive
relations.

27
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with partial preference orders as well.
The notion of aNash-equilibriumin pure strategies is usually defined on games

in which the preferences of the players are total pre-orders over the strategy profiles.
Then, for a game

(
N, {Si}i∈N , {ρi}i∈N

)
and any strategy profiles:

s is aNash-equilibrium iff for all i ∈ N, for all s′ ∈ S : (s−i , s
′
i ) 6i s.

A strategy profiles is, or contains,a best response for a player iif for all strategy
profiless′ in s, (s−i , s′i ) 6i s. Obviously, the set of strategy profiles that contain a best
response for each player coincides with the set of Nash-equilibria.

Since, however, our investigations concern games in which the players’ preference
relations are also allowed to be proto-orders over the strategy profiles, we are now
confronted with at least two obvious conservative extensions of the notion of a Nash-
equilibrium. On total pre-orders the notions of a maximal element (no other element
is greater) and a maximum element (greater than any other element) coincide, but on
partial pre-orders or the empty relation they may diverge. Similarly, we define for any
playeri and strategy profiles:

s is amaximal response for i iff for no s′ ∈ S: s<i (s−i , s′i ),

s is amaximum response for iiff for all s′ ∈ S : (s−i , s′i ) 6i s.

Lacking connectivity, the set of maximal responses for a playeri, however, may contain
elementssands′ that are incomparable fori (on thei-th coordinate) but which are such
thatsj = s′j , for eachj 6= i. This possibility is excluded for maximum response strate-
gies. Accordingly, we introduce the concepts of amaximaland amaximumequilibrium
as the intersections of the players’ maximal and maximum response strategies, respec-
tively. Both are (conservative) extensions the original definition of a Nash-equilibrium.
Hence, fors a strategy profile in a gameG, we define:

s is amaximal equilibriumin G iff s is a maximal response for all playersi,

s is amaximum equilibriumin G iff s is a maximum response for all playersi.

Observe that a strategy profile being a maximum equilibrium implies its being a
maximal equilibrium but not in general the other way round. Observe further that by
refining the preference orders of the players —i.e., if the preference relations become
smaller — the number of maximal equilibria may increase, this is impossible with
maximum equilibria. Hence we have the following monotonicity property only for
maximum equilibria.

Proposition 2.1.1 (Monotonicity of maximum equilibria) Let G and G′ be the games(
N, {Si}i∈N , {ρi}i∈N

)
and

(
N, {Si}i∈N , {ρ′i}i∈N

)
, respectively. Let, further, for each

player i,ρ′i ⊆ ρi . Then:

s is a maximum equilibrium in G′ implies s is a maximum equilibrium in G.
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Proof: Consider an arbitrary strategy profiles which isnot a maximum equilibrium
in G. Then for some playeri and for some strategy profiles′,

(
(s−i , s′i ), s

)
/∈ ρi. Since

ρ′i ⊆ ρi,
(
(s−i , s′i ), s

)
/∈ ρ′i. Hence,s is not a maximum equilibrium inG′ either. a

Pareto Efficiency

Other important economic concepts are those ofPareto efficiencyandstrong Pareto
efficiency. Intuitively, a states, or strategy profile, isPareto efficientif it there is no
other state, or strategy profile, which every individual strictly prefers tos. A states is
strongly Pareto efficient, if for every states′ that some player strictly prefers tos there
is another player that strictly preferss to s′.

These notions are usually defined for individual preference orders that aretotal,
i.e., for every pair of statess ands′, a player either valuess at least as high ass′, or
the other way round,i.e., eithers′ 6i s or s 6i s′. For such total individual orders it is
in general the case thats <i s′ if and only if s′ ­i s. Accordingly the following two
definitions of Pareto efficiency are equivalent for total individual preference orders.

s is Pareto1 efficient iff for no s′ ∈ S, for all i ∈ N : s<i s′,

s is Pareto2 efficient iff for all s′ ∈ S, for somei ∈ N : s′ 6i s.

A similar remark applies to the following definitions of strong Pareto efficiency.

s is strongly Pareto1 efficient iff for all s′ ∈ S, for all i ∈ N :
s<i s′ implies for somej ∈ N, s ­j s′,

s is strongly Pareto2 efficient iff for all s′ ∈ S, for all i ∈ N :
s′ ­i s implies for somej ∈ N, s ­j s′,

s is strongly Pareto3 efficient iff for all s′ ∈ S, for all i ∈ N :
s<i s′ implies for somej ∈ N, s′ <j s,

s is strongly Pareto4 efficient iff for all s′ ∈ S, for all i ∈ N :
s′ ­i s implies for somej ∈ N, s′ <j s.

Having assumed the number of players to be greater than zero, it can easily be verified
that strong Pareto efficiency implies Parato efficiency.

If, however, the individual preference orders are allowed to be partial —i.e., if it is
not in general the case thats <i s′ if and only if s′ ­i s — the various definitions of
Pareto efficiency diverge. Of all Pareto notions strong Pareto4 efficiency is the strongest
in the sense that any strategy being strongly Pareto4 efficient implies that strategy to be
Pareto efficient in any of the other five ways as well. The implications are strict, strong
Pareto4 efficiency is not in general implied by any of the other notions. Strong Pareto3

efficiency implies both strong Pareto1 and strong Pareto2 efficiency, but not the other
way round. Strong Pareto1 and strong Pareto2 efficiency are equivalent and both strictly
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Figure 2.1. The interrelations between the various notions of Pareto efficiency for orders that
are not necessarily connected.

imply Pareto1 efficiency. Finally, Pareto2 efficiency entails Pareto1 efficiency, but not
vice versa. Moreover, Pareto2 efficiency entails none of the strong Pareto notions, and
is implied by strong Pareto4 efficiency only. How the various Pareto concepts relate is
depicted in Figure 2.1. The following facts establish these observations.

Fact 2.1.2 Let s be a strategy profile for some strategic game G. Then:

s is strongly Pareto1 efficient iff s is strongly Pareto2 efficient

Proof: That strong Pareto2 efficiency entails strong Pareto1 efficiency is trivial, since
s <i s′ impliess′ ­i s. So assume some strategy profiles to benot strongly Pareto2
efficient. For some strategy profiles′ and some playeri, then,s′ ­i s and, moreover,
s 6j s′, for all playersj. Then in particulars 6i s′, and, therefore, alsos<i s′. We may
conclude thats is not strongly Pareto1 efficient. a

Fact 2.1.3 For every strategy profile s of a game G:

(i) strong Pareto4 efficiency implies strong Pareto3 efficiency,

(ii) strong Pareto3 efficiency implies strong Pareto1 efficiency,

(iii) strong Pareto1 efficiency implies Pareto1 efficiency,

(iv) strong Pareto4 efficiency implies Pareto2 efficiency,

(v) Pareto2 efficiency implies Pareto1 efficiency.

Moreover, none of the implications (i) through (v) hold in the opposite direction.
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Proof: We prove each implication and its failure to hold in the opposite direction
subsequently.

ad. (i) : The proof of the implication is straightforward as in generals <i s′

impliess′ ­i s. As to the failure of the opposite direction, any game with more than
one strategy profile and each player’s preferences being defined by the identity relation
over the strategy profiles will do as a counterexample.

ad. (ii ) : The implication itself is again immediate sinces′ <i s impliess ­i s′,
by definition. For a counterexample for the converse direction, consider a game with
at least two strategy profiless ands′ and only two players 1 and 2. Let 2’s preference
relation be given by the identity relation over the strategy profiles, and that of 1 the
universal relationminusthe pair(s′, s). Then bothsands′ are strongly Pareto1 efficient.
However,s is not strongly Pareto3 efficient.

ad. (iii ) : We may assume thatN is non-empty. Assume further some strategy
profile s not to be Pareto1 efficient. Then, there is some strategy profiles′ is such that
s <i s′ for all i in N. Hence, for alli in N alsos 6i s′. With N not empty, it follows
there is somei∗ such thats<i∗ s′. Hence,s is not strongly Pareto1 efficient either.

For an example refuting the opposite implication, consider a game with at least two
strategy profiless ands′ and at least two players. Assume the players’ preferences be
given by the universal relation, except for those of one player, which are given by the
universal relationminus(s′, s). Thens is Pareto1 efficient, but not strongly so.

ad.(iv) : First assume some strategy profiles to fail as a Pareto2 efficient outcome.
For some strategy profiles′, thens′ ­i s for all i in N. Then alsos′ ≮i s for all i in N.
With N non-empty, there is, moreover, some playeri∗ such thats′ ­i∗ s. Hence,s is
not strongly Pareto4 efficient either.

For a counterexample disproving the implication in the opposite direction to hold,
the same counterexample as in (iii ) will do. The strategy profiles is there Pareto2
efficient, but not strongly Pareto4 efficient.

ad. (v) : The implication is almost trivial, since in generals′ 6i s impliess ≮i s′.
A counterexample witnessing the failure of the opposite direction is provided by the
same as that of (i). a

Fact 2.1.4 Let s be a strategy profile of a strategic game G. The following equiva-
lences donot hold in either direction:

strong Pareto3 efficiency iff Pareto2 efficiency,

strong Pareto2 efficiency iff Pareto2 efficiency,

Proof: We present a strategic game in which some strategy profile is strongly Pareto3

efficient but not Pareto2 efficient, as well as a game in which some strategy profile is
Pareto2 efficient but not strongly Pareto2 efficient. The first counterexample is given by
a game in which all players have the identity relation over the strategy profiles as their
preferences and which has at least two strategy profiles. A game witnessing the second
possibility is given by any game with more than one player, all of which preferences are
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given by the universal relation, except for one playeri∗, whose preferences are given
by the universal relationminus(s′, s).

Hence, strong Pareto3 efficiency does not in general imply Pareto2 efficiency and
Pareto2 efficiency does not in general imply strong Pareto2 efficiency. Now assume
for a reductio ad absurdumthat strong Pareto2 efficiency implies Pareto2 efficiency.
By Fact 2.1.3, strong Pareto3 efficiency implies strong Pareto2 efficiency. But then
strong Pareto3 efficiency would also imply Pareto2 efficiency, quod non. Similarly
assume that Pareto2 efficiency implies strong Pareto3 efficiency. By Fact 2.1.3, strong
Pareto3 efficiency implies strong Pareto2 efficiency and so Pareto2 efficiency would
imply strong Pareto2 efficiency. Against the latter claim, however, we had found a
counterexample. a

Equilibria, Pareto Properties and Partial Preferences

An interesting topic is coalition formation in strategic games. A coalition has, in gen-
eral, a greater enforcing power than each of its members on his own. The strategies of
a coalition could be assumed to be given by the possible combinations of the strategies
of its members. Intuitively, this corresponds to the assumption that the members of
a coalition can coordinate their choice of strategy and, thus, the coalition as a whole
gains greater control over the outcome of the game. This leaves the issue of how the
coalitional preferences depend on the individual preferences of the members.

How to derive a preference order for a coalition from the preferences of its con-
stituent members is a highly non-trivial issue and belongs to the field of social choice
theory. Arrow’s impossibility theorem (cf., Arrow (1963)) states the impossibility of
a general method to define coalitional preferences from the individual preferences —
i.e., of a social choice function — if this method is to comply with certain intuitive
restrictions for each possible collection of individual preferences. One of these restric-
tions is that the coalitional preference order is to be a total preorder over the possible
alternatives over which the individual preferences are defined.

In this thesis, however, we allow the individual preferences to be partial and the
same lenient attitude is taken towards coalitional preferences. A coalition is then said
to value one statesat least as much as another states if and only if all players valuesat
least as much ass′. Formally, the coalitional preferences are obtained by simply taking
the intersection of the preference relations of its constituent members. The coalitional
preferences are then guaranteed to be reflexive and transitive, if all the individual pref-
erences are. If one of the individual preference orders is empty, so is the coalitional
preference order. However, the coalitional preference relation is not in general a total
preorder, not even if all the individual preference relations are. This procedure com-
plies with with thestrong Pareto property, i.e., if all coalition members value a state
at least as much as another state, so does the coalition.I.e., formally, forκ a coalition
of players in a strategic gameG, a coalitional preference relationρκ complies with the
strong Pareto property if and only if for all strategy profiless ands′ of G:

if for all i ∈ κ : s 6i s′ then s 6κ s′.
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Let G be a strategic game. Each way in which coalitions can be formed fixes in a
unique fashion another strategic game in which the coalitions are the players, whose
preferences and powers are defined as above. Assuming that each player is a member
of precisely one coalition, the possible ways in which coalition formation can take
place is exhausted by the possible partitions of the players of the original game. These
partitions of the players constitute a complete lattice, with as top the grand coalition,
of which all players are a member, and as bottom the trivial partition, in which each
coalition consists of exactly one player.

It now so happens that, in the game defined thus for the grand coalition, a strategy
profile is a maximal equilibrium if and only if that strategy profile is strongly Pareto1

efficient. Similarly, a strategy profile is a maximal equilibrium in the game for the
trivial partition if and only if that strategy profile is also a maximal equilibrium in the
original game. This shows that the notion of a maximal equilibrium and that of strong
Pareto1 efficiency are in an important sense extreme instances of one and the same
concept.

The possiblecoalition partitionsare given by the set of partitionsPart(N) overN,
which constitutes a complete lattice under the refinement relation. Forπ andπ′ parti-
tions ofN let the refinement relation6 is formally defined as:

π 6 π′ iff for all x ∈ π there is ay ∈ π′ such thatx ⊆ y.

Intuitively, π 6 π′ denotes thatπ at least as fine asπ′. As such6 defines a partial order
on Part(S). Let κ> andκ⊥ denote respectively the top and bottom of this coalition
lattice, i.e., κ> =df. {N} andκ⊥ =df.

{ {i} : i ∈ N
}

. We now define for each
strategic gameG each coalition partitionκ of its players, the strategic gameGκ, which
intuitively is the game that results of the players ofG join in the coalitionsκ in a way
that complies with the requirements formulated in the remarks above.

Definition 2.1.5 Let G be a strategic game given by
(
N, {Si}i∈N , {ρi}i∈N

)
and letκ

be a coalition partition ofN. Define:

Gκ =df.
(
κ, {Sκ}κ∈κ , {ρκ}κ∈κ

)
,

where for eachκ ∈ κ:

Sκ =df.
∏
i∈κ

Si and ρκ =df.

⋂
i∈κ

ρi .

For eachκ ∈ κ⊥ there is somei ∈ N such thatκ = {i} and(s−κ, s′κ) = (s−i , s′i ).
Similarly, we haveN as the only coalition inκ> and, consequently, for allκ ∈ κ>,
(s−κ, s′κ) = (s−N, s′N) = s′. More in general, we may assume a natural isomorphism
between

∏
κ∈κ> s(κ) and

∏
i∈N Si of the original game. We now have the following

proposition.

Proposition 2.1.6 Let G be the strategic game
(
N, {Si}i∈N , {ρi}i∈N

)
and s a strategy
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profile. Then:

s is a maximum equilibrium Gκ⊥ iff s is a maximum equilibrium in G,

s is a maximal equilibrium Gκ⊥ iff s is a maximal equilibrium in G,

s is a maximal equilibrium Gκ> iff s is strongly Pareto2 efficient in G.

Proof: The first two claims are trivial, given the remarks made in the text above. As to
the third claim, observe for all strategy profiless ands′, that(s−N, s′N) = s′. Consider
the the following equivalences:

s is a maximal equilibriumGκ>

iff for all i ∈ κ> : s is a maximal response fori

iff s is a maximal response forN

iff for all s′ ∈ S: s ≮N (s−N, s′i )

iff for all s′ ∈ S: s ≮N s′

iff for all s′ ∈ S: s ­N s′ or s′ 6N s

iff for all s′ ∈ S: for somei ∈ N, s ­i s′ or for all i ∈ N, s′ 6i s

iff for all s′ ∈ S, for all i ∈ N : s′ ­i s implies for somej ∈ N, s ­j s′

iff s is strongly Pareto2 efficient

This ends the proof. a
It might seem that by appropriately defining coalitional preferences each Pareto

concept could be seen as a borderline case of maximal or maximum equilibrium. Con-
sider,e.g., the case in whichρκ had been defined in such a way that for allsands′:

(s, s′) ∈ ρκ iff for all i ∈ κ : s′ ≮i s.

Then it can in fact be proved that a strategy profiles is strongly Pareto3 efficient in a
gameG if and only if s is a maximal equilibrium inGκ> . However, defined thus, the
coalitional preferences are no longer in general guaranteed to be transitive.

We are now in a position to define the following conservative extensions of the
concepts of maximum and maximal equilibrium.

Definition 2.1.7 (Maximumκ-equilibrium and maximalκ-equilibrium) A strategy
profile s is amaximumκ-equilibrium in a strategic game

(
N, {Si}i∈N , {ρi}i∈N

)
if and

only if s is a maximum equilibrium in the game
(
κ, {Sκ}κ∈κ , {ρκ}κ∈κ

)
. Similarly, a

strategy profiles is amaximalκ-equilibrium in a strategic game
(
N, {Si}i∈N , {ρi}i∈N

)
if and only if s is a maximal equilibrium in the game

(
κ, {Sκ}κ∈κ , {ρκ}κ∈κ

)
.
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G B

1 0

G 1 0

1 0

0 2

B 1 0

0 2

Matrix g

G B

2 0

G 0 1

2 0

0 1

B 0 1

0 1

Matrix b

Figure 2.2. TheGolden Heartgame without coalition formation. Abélard chooses rows, Eloı̈se
chooses columns and the little sister Spoiler chooses matrices. The Nash equilibria are in bold-
face.

In virtue of Proposition 2.1.6, we then find that maximal equilibrium and strong Pareto2

efficiency are extreme cases of one and the same concept,viz., maximalκ-equilibrium.
To conclude this section, we observe that coalition formation in a game results in

at most areductionof the maximum equilibria of a strategic game.

Proposition 2.1.8 Let G a strategic game
(
N, {Si}i∈N , {ρi}i∈N

)
and letκ andκ′ be

coalition partitions of N such thatκ 6 κ′. Then the maximum equilibria in Gκ′ are
also maximum equilibria in Gκ.

Proof: Let s be a maximum equilibrium inGκ′ , i.e., for all κ′ ∈ κ′ and all strategy
profiless′ we have(s−κ′ , s′κ′) 6κ′ s. We prove for an arbitrary coalitionκ in κ, an ar-
bitrary playeri in κ and an arbitrary strategy profiles′ that(s−κ, s′κ) 6i s. Consider the
uniqueκ′ ∈ κ′ such thatκ ⊆ κ′ as well as the valuation

(
s−κ′ , (s−κ, s′κ)κ′

)
. Since,i ∈

κ′, then,
(
s−κ′ , (s−κ, s′κ)κ′

)
6i s. Now observe that(s−κ, s′κ) =

(
s−κ′ , (s−κ, s′κ)κ′

)
,

and we are done. a
The inverse of Proposition 2.1.8, however, does not hold. Coalition formation may

result in a decrease of the number of maximum equilibria, as the following example
shows.

Example 2.1.9 Abélard and Elöıse are a young boy and girl very much in love and
Spoiler is Elöıse’s little sister. Ab́elard and Elöıse plan to go for a romantic ramble
down town. The sister Spoiler would very much like to go as well, but she is allowed
to only if accompanied by her elder sister. The two lovers, of course, would prefer
to go just with the two of them and have the little sister stay behind. Nevertheless,
they would rather have the sister join them than all of them staying at home with their
parents. Moreover, both Abélard and Elöıse are indifferent between not going at all
on the one hand and the two sisters going into the city without Abélard. The younger
sister just wants to join her sister on what promises to be an exciting trip. It now so
happens that if they are to go at all, they have to meet up with one another either in the
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{G,G} {B,G} {G,B} {B,B}
1 0 0 2

g
1 0 1 0

2 0 0 1
b

0 1 0 1

Figure 2.3. Matrix of theGolden Heartgame in which Ab́elard en Elöıse have teamed up. Now
the little sister Spoiler chooses rows and Abélard and Elöıse jointly columns.

pubThe Golden Heartor in front of the bank. Still, they have not yet made a specific
appointment in this respect. If either the two sisters or the two lovers meet at the same
place, they go down town together. If they all meet up at the same place, they go with
the three of them. In any other case they will have to face a boring Saturday afternoon
at home.

Observe that Ab́elard’s and Elöıse’s preferences coincide. The situation is summa-
rized as a game in Figure 2.2, where Abélard chooses rows (G or B) Eloı̈se chooses
columns (G or B) and Spoiler matrices (Matrix g or Matrix b). Abélard’s ordinal pref-
erences are represented by the figures bottom left in each box, those of Eloı̈se’s by
those top right and those of Spoiler’s by those in the middle. We find that there are two
maximum equilibria in this game,viz., when they all meet at the same place and go
down town with the three of them.

Abélard and Elöıse, however, are quite likely to form a coalition in an effort to
withhold the little sister from spoiling all the romantic fun. As a coalition they can
make sure to meet at the same place, still they cannot preclude the sister turning up
there as well. The resulting situation is represented in Figure 2.3, this time Abélard
and Elöıse jointly choosing columns and Spoiler choosing rows. In this game there are
no maximum equilibria.

2.2 Rough Sets

In the last two parts, and then especially Part III, extensive use is made of the theory
of rough sets. In this section the elementary concepts of rough set theory,viz., the
upper and lower approximations of a set, are introduced. In the next sections they are
employed for some results for propositional logics. As such our employment of rough
sets is divergent from normal use. First we will give some basic facts concerning upper
and lower approximations.2

For Swe havePart(S) denote the set of partitions overS. Moreover, forπ a parti-
tion in Sand forx an element ofS, [x]π is the unique block ofπ containingx.

2For a more extensive account the reader be referred to Pawlak (1991)
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: apr
π
(X)

: X

: aprπ(X)

Figure 2.4. Rough sets in a setSpartitioned byπ. The oval represents the setX. The colored
areas indicate the upper approximation and the darkly colored area the lower approximation.

Let S be a set and letπ be a partition ofS. Obviously, it is not in general the
case that a subsetX of S is identical to a union of a number of blocks inπ. Still each
subset can be characterized by two sets which do have this property. Define thelower
approximation apr

π
(X) and theupper approximationaprπ(X) by:

apr
π
(X) =df.

⋃ {
Y ∈ π : Y ⊆ X

}
,

aprπ(X) =df.

⋃ {
Y ∈ π : Y∩ X 6= ø

}
.

Let επ be the equivalence relation overSassociated with the partitionπ. Then we also
have the following equivalent characterizations of the lower and upper approximation
of a subsetX of S. For eachx ∈ S :

x ∈ apr
π
(X) iff for all s′ ∈ Ssuch thats∼π s′ : s′ ∈ X,

x ∈ aprπ(X) iff for somes′ ∈ S: s∼π s′ and s′ ∈ X.

Clearly,aprπ is a cylindrification operator on 2S andapr
π

its dual. As such they ex-
emplify a more general mathematical concept that is also instanced by quantification
and modality in logic. This observation has by no means escaped attention in the lit-
erature (cf. e.g., Yao, Wong, and Lin (1997), D̈untsch (1999) and D̈untsch (no date)).
Figure 2.4 illustrates the lower and upper approximations of a setX. Suppressing the
subscriptπ, the approximation operationsapr andapr satisfy the following elementary
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properties for subsetsX andY of a setS:3

apr(ø) = ø apr(ø) = ø

apr(S) = S apr(S) = S

apr(X) ⊆ X apr(X) ⊇ X

apr(X) ⊆ apr
(
apr(X)

)
apr(X) ⊇ apr(apr(X))

X ⊆ apr(apr(X)) X ⊇ apr
(
apr(X)

)
apr(X) ⊆ apr(apr(X)) apr(X) ⊇ apr

(
apr(X)

)
apr(X) = apr

(
X
)

apr(X) = apr
(
X
)

apr(X ∩ Y) = apr(X) ∩ apr(Y) apr(X ∩ Y) ⊆ apr(X) ∩ apr(Y)

apr(X ∪ Y) ⊇ apr(X) ∪ apr(Y) apr(X ∪ Y) = apr(X) ∪ apr(Y) .

As two obvious consequences of these properties also bothapr
(
apr(X)

)
= apr(X)

andapr(apr(X)) = apr(X). Moreover, the latter four inequalities can be generalized
to infinite sets of sets. LetX ⊆ 2S, then:

apr
( ⋂

X
)

=
⋂
X∈X

apr(X) apr
( ⋂

X
) ⊆

⋂
X∈X

apr(X)

apr
( ⋃

X
) ⊇

⋃
X∈X

apr(X) apr
( ⋃

X
)

=
⋃
X∈X

apr(X) .

Bothapr andapr satisfy upward monotonicity:

X ⊆ Y implies apr(X) ⊆ apr(Y) ,

X ⊆ Y implies apr(X) ⊆ apr(Y) .

We also have the following fact, which says that, given a partition, the fixed points of
the upper and lower approximations coincide.

Fact 2.2.1 Let S be a set, X⊆ S andπ ∈ Part(S). Then:

X = aprπ(X) iff X = apr
π
(X) .

Proof: First assumeX = apr(X). Observe that bothapr(X) ⊆ apr(apr(X))
and apr(apr(X)) ⊆ apr(X) are instances of rough set laws. Henceapr(X) =
apr

(
apr(X)

)
and we may reason as follows:

X =ass. apr(X) = apr(apr(X)) =X = apr (X) apr(X) .

The reasoning in the opposite direction is analogous.4 a
As a generalization of this fact, we also have the following.

3These inequalities are taken from Yao, Wong, and Lin (1997).
4For this elegant proof I am indebted to Boudewijn de Bruin.
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Fact 2.2.2 Letπ be a partition of a set S. Let furtherX a set of subsets of S such that
X ⊆ π. Then:

aprπ(
⋃

X) = apr
π
(
⋃

X) =
⋃

X.

Proof: Straightforward. a
The partitions by means of which sets are approximated may be finer or coarser.

The facts that follow concern the behavior of the approximation operations with respect
to partitions of various degrees of coarseness. Forπ andπ′ partitions of a setS, i.e.,
π, π′ ∈ Part(S), letπ 6 π′ be formally defined as:

π 6 π′ iff for all x ∈ π there is ay ∈ π′ such thatx ⊆ y.

Intuitively, π 6 π′ denotes thatπ at least as fine asπ′. As such6 defines a partial
order onPart(S). Then6 defines a partial order onPart(S). Rather,Part(S) consti-
tutes a complete lattice if ordered thus. We now also have the following monotonicity
properties for the lower and upper approximation operations:

Fact 2.2.3 Letπ andπ′ be partitions of some set S. Then for all X⊆ S:

π 6 π′ implies apr
π
(X) ⊇ apr

π′(X) ,

π 6 π′ implies aprπ(X) ⊆ aprπ′(X) .

Proof: Both cases are analogous; here we prove only the first. Assumeπ 6 π′ and
consider an arbitraryx ∈ apr

π′(X). Consider the block[x]π of π; then, [x]π′ ⊆ X.
By the assumption there is a blockY of π′ such that[x]π ⊆ Y. Then,x ∈ Y and,
therefore,Y = [x]π′ . Hence,[x]π ⊆ [x]π′ ⊆ X. Sincex ∈ [x]π, we may conclude that
x ∈ apr

π
(X). a

In words, the coarser the partition, the larger the upper approximation of a set and the
smaller its lower approximation. The following fact conveys a stronger and closely
related result.

Fact 2.2.4 Letπ andπ′ be partitions of some set S. Then:

π 6 π′ iff for all X ⊆ S: apr
π
(X) ⊇ apr

π′(X) ,

π 6 π′ iff for all X ⊆ S: aprπ(X) ⊆ aprπ′(X) .

Proof: The proofs of both cases run along analogous lines; we will here give that
of the first. The left-to-right direction is immediate by Fact 2.2.3. For the opposite
direction, assume that for allX ⊆ S we haveapr

π
(X) ⊇ apr

π′(X). Consider an
arbitraryX ∈ π. By definition,X is a non-empty subset ofS. As S =

⋃
π′, there is a

Y ∈ π′ such thatX∩Y 6= ø. By the assumption, thenapr
π
(Y) ⊇ apr

π′(Y) =Fact 2.2.2Y.

Because alsoapr
π
(Y) ⊆ Y, it follows thatY = apr

π
(Y). By definition,Y =

⋃ {
X′ ∈
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π : X′ ⊆ Y
}

. Since,X ∩ Y 6= ø, we haveX ∩ X′′ 6= ø, for someX′′ ∈ {
X′ ∈ π :

X′ ⊆ Y
}

. With X andX′′ blocks in the partitionπ, it follows thatX = X′′, and hence,
X ⊆ Y. Having chosenX arbitrarily fromπ, we may conclude thatπ 6 π′. a

In the sequel, we will mostly be interested in a particular class of partitions of a
universe with respect to which the approximations are defined. If the universe set is
the powerset of a setA, we define an equivalence relation holding between any two
subsets ofA if each element of a third subset ofA is in the one subset if and only if it
is an element of the other. LetA be a set and define for eachZ ⊆ A the equivalence
relationεZ on 2A such that for allX,Y ⊆ A:

(X,Y) ∈ εZ iff Z ∩ X = Z ∩ Y.

Sometimes we use the infix notationX ∼Z Y to convey that(X,Y) ∈ εZ. Observe that
it is both a necessary and a sufficient condition forX ∼Z Y to hold that for allz∈ Z, it
is the case thatz∈ X if and only if z∈ Y. Note thatεø andεA are the universal relation
and the identity relation on 2A, respectively. More in general, we haveX ⊆ Y if and
only if εY ⊆ εX. The only-if direction is trivial. For the other direction assume for the
contrapositive thatx ∈ X but x /∈ Y. Then,ø ¿X {x} butø ∼Y {x}, i.e., the relations
εX andεY are distinct. Hence, the set{εX : X ⊆ A} constitute a complete lattice with
relation composition and intersection as join and meet, respectively. To appreciate this,
consider the following fact.

Fact 2.2.5 Let X and Y be subsets of a set A. Then:

εX∩Y = εX ◦ εY and εX∪Y = εX ∩ εY.

Proof: For the⊆-direction of the first claim, assume for arbitrarys, s′ ∈ 2A that
(s, s′) ∈ εX∩Y. Hence,s∩X∩Y = s′ ∩X∩Y. Defines∗ =df. (s∩ X)∪ (

s′ ∩ X
)
. Then:

s∩ X = (s∩ X ∩ X) ∪ (
s′ ∩ X ∩ X

)
=

(
(s∩ X) ∪ (s′ ∩ X)

) ∩ X.

Hence,(s, s∗) ∈ εX. Also consider the following equalities:

s′ ∩ Y =
(
(s′ ∩ X) ∪ (s′ ∩ X)

) ∩ Y =
(
(s′ ∩ X ∩ Y) ∪ (s′ ∩ X ∩ Y)

)
=

(
(s∩ X ∩ Y) ∪ (s′ ∩ X ∩ Y)

)
=

(
(s∩ X) ∪ (s′ ∩ X)

) ∩ Y.

Accordingly also(s∗, s′) ∈ εY and finally also(s, s′) ∈ εX ◦ εY.
For the⊇-direction, assume(s, s′) ∈ εX ◦ εY. So, for somes′′ ∈ 2A both(s, s′′) ∈

εX and(s′′, s′) ∈ εY. I.e., boths∩ X = s′′ ∩ X ands′′ ∩ Y = s′ ∩ Y. Consider the
following equalities:

s∩ X ∩ Y = s′′ ∩ X ∩ Y = s′′ ∩ Y∩ X = s′ ∩ Y∩ X = s′ ∩ X ∩ Y.

Hence,(s, s′) ∈ εX∩Y.
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For the second claim, first assume for arbitrarys, s′ ∈ 2A that(s, s′) ∈ εX∪Y. Then,
s∩ (X ∪ Y) = s′ ∩ (X ∪ Y). Since,X,Y ⊆ X ∪ Y then also boths∩ X = s′ ∩ X and
s∩ Y = s′ ∩ Y. We may conclude that(s, s′) ∈ εX ∩ εY. For the opposite direction,
assume(s, s′) ∈ εX ∩ εY, i.e., boths∩ X = s′ ∩ X ands∩ Y = s′ ∩ Y. Now reason as
follows:

s∩ (X ∪ Y) = (s∩ X) ∪ (s∩ Y) = (s′ ∩ X) ∪ (s′ ∩ Y) = s′ ∩ (X ∪ Y) .

We may conclude that(s, s′) ∈ εX∪Y. a
The partition of 2A as determined byεX, we denote byπX. The notation[x]εX for

the equivalence class underεX containingx we usually abbreviate to[x]X. Obviously,
πA is the finest andπø the coarsest partition of 2A. More in general we have that the
larger the setX, the finer the partitionπX.

Fact 2.2.6 Let X and Y be subsets of some set A. Then:

X ⊆ Y iff πY 6 πX.

Proof: First assumeX ⊆ Y and consider an arbitraryX ∈ πX. We without loss of
generality we may assume thatX = [Z]X, for someZ ⊆ A. Now consider[Z]Y as well
as an arbitraryZ′ ∈ [Z]Y. Then,Z′ ∩Y = Z∩Y. With the assumption thatX ⊆ Y, then
alsoZ′ ∩ X = Z ∩ X. Hence,Z′ ∈ [Z]X. We may conclude thatπY 6 πX.

For the opposite direction, assume thatX * Y, i.e., that there be anx ∈ X with
x /∈ Y. Consider thisx along with the block[{x}]Y of πY. Observe that both{y} ∈
[{x}]Y andø ∈ [{x}]Y. It suffices to show that for allX ∈ πX if {x} ∈ X thenø /∈ X.
So consider an arbitraryX ∈ πX with {x} ∈ X as well as an arbitraryX′ ∈ X. Then
{x} ∼X X′, and withx ∈ {x} andx ∈ X we may conclude thatx ∈ X′. Hence,X′ 6= ø.

a
For X a subset of a setA we denote the approximation operatorsapr

πX
andaprπX

,

as defined for subsets of 2A, by apr
X

andaprX, respectively. As an immediate result of
the facts 2.2.4 and 2.2.6 we have the following corollary.

Corollary 2.2.7 Let X and Y be subsets of some set A. Then:

X ⊆ Y iff for all X ⊆ 2A : apr
X
(X) ⊆ apr

Y
(X) ,

X ⊆ Y iff for all X ⊆ 2A : aprY(X) ⊆ aprX(X) .

Proof: Immediate from Fact 2.2.4 and Fact 2.2.6. a
With respect to the behavior of lower and upper approximations of a set given

partitionsπX andπY, we have the following two facts.
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Fact 2.2.8 Let A be some set, of which X and Y are subsets. Let, moreover,X be a
subset of2A. Then:

apr
X∩Y

(X) = apr
X

(
apr

Y
(X)

)
,

aprX∩Y(X) = aprX
(

aprY(X)
)
,

apr
X∪Y

(X) ⊇ apr
X
(X) ∩ apr

Y
(X) ,

aprX∪Y(X) ⊆ aprX(X) ∩ aprY(X) .

Proof: The proofs of the first two claims are analogous; here we only give that of the
latter.

s∈ aprX∩Y(X) iff s∼X∩Y s′ ands′ ∈ X, for somes′ ∈ 2A

iff Fact 2.2.5 s∼X s′′ ∼Y s′ ands′ ∈ X, for somes′, s′′ ∈ 2A

iff s∼X s′′ ands∈ aprY(X) , for somes′′ ∈ 2A

iff s∈ aprX
(

aprY(X)
)
.

For the latter two claims merely observe that, in virtue of Coroll 2.2.7, bothapr
X
(X) ⊆

apr
X∪Y

(X) andapr
Y
(X) ⊆ apr

X∪Y
(X), as well as bothaprX∪Y(X) ⊆ aprX(X) and

aprX∪Y(X) ⊆ aprY(X). a

Fact 2.2.9 Let A a set and let I be a set of indices. Let further{Xi}i∈I and{Xi}i∈I be
indexed families of subsets of A and of subsets of2A, respectively. Then:

⋂
i∈I

apr
Xi

(Xi) ⊆ aprS
i∈I Xi

(⋂
i∈I Xi

)
,

⋂
i∈I

aprXi
(Xi) ⊇ aprS

i∈I Xi

(⋂
i∈I Xi

)
.

Proof: First consider an arbitraryY ⊆ A and assumeY ∈ ⋂
i∈I apr

Xi
(Xi), i.e., for

all i ∈ I , it is the case thatY ∈ apr
Xi

(Xi). Since, obviously,Xi ⊆
⋃

i∈I Xi , by Corol-

lary 2.2.7 for alli ∈ I , alsoY ∈ aprS
i∈I Xi

(Xi). Therefore,Y ∈ ⋂
i∈I aprS

i∈I Xi
(Xi).

Finally, by distribution of
⋂

overapr, we may conclude thatY ∈ aprS
i∈I Xi

(⋂
i∈I Xi

)
.

For the second claim, assume for an arbitraryY ⊆ A, thatY ∈ aprS
i∈I Xi

(⋂
i∈I Xi

)
.

Then there is someZ ⊆ A such thatY ∼S

i∈I Xi
Z andZ ∈ ⋂

i∈I Xi . It follows that
for eachi ∈ I , bothY ∼Xi Z andZ ∈ Xi , i.e., Y ∈ aprYi

(Xi). We may conclude that
Y ∈ ⋂

i∈I aprXi
(Xi). a

For the special partitionsπA andπø, moreover the following equalities hold:



ROUGH SETS 43

Figure 2.5. The figure on the left shows the partitionπX of a space 2A, for some subsetX of A.
The figure in on the right shows the partitionπX on the same space. The elements of each block
of πX will be distributed over the blocks of the partitionπX.

Fact 2.2.10 Let A be a set and letX ⊆ 2A. Then:

apr
A
(X) = aprA(X) = X

apr
ø
(X) =

{
X if X = 2A

ø otherwise

aprø(X) =

{
X if X = ø

2A otherwise.

Proof: Observe thatπA =
{ {a} : a ∈ A

}
and thatπø =

{
2A

}
. Then the claims

follow almost immediately from the definitions of upper and lower approximation.a
For a subsetX of A, the partitionsπX andπX are closely related. Let thegeneralized

sumor the set of choice setsover a family of setsX = {Xi}i∈I be defined as:

∑
i∈I

Xi =df.
{{f (i) : i ∈ I} : f : I → ⋃

i∈I Xi and∀i ∈ I : f (i) ∈ Xi
}
.

Omitting explicit reference to the index set,
∑

i∈I Xi is also denoted by
∑

X. Then, the
following proposition establishes thatπX is a set of choice sets ofπX.

Proposition 2.2.11 Let A be a set and let X⊆ A. Consider the partitionsπX andπX
of 2A. Then,πX is a set ofchoice setsof πX, i.e.,πX ⊆ ∑

πX.

Proof: First observe that 2A is not empty. It suffices to define for eachπi ∈ πX a
function fπi : πX → 2A such that (a) fπi (πj) ∈ πj , for eachπj ∈ πX and (b) πi ={

fπi (πj) : πj ∈ πX

}
. So consider an arbitraryπi ∈ πX. Assuming the axiom of choice,

there are choice functionsg: πX → 2A andg′ : πX → 2A such that for eachπk ∈ πX
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Figure 2.6. The left and right figure represent the partitionsπX andπX as in Figure 2.5, above.
The oval in the left figure and the lighter shaded areas in the right figure represent the subsetX
of 2A. The darker areas areapr

X
(X) andaprX(X) in the left and right figure, respectively. Be-

cause of the distribution of the elements of each block inπX contained inX over the blocks ofπX,
it can now be recognized thatapr

X
(X) being non-empty impliesapr

X
(X) = 2A.

andπj ∈ πX bothg(πk) ∈ πk andg′ (πj) ∈ πj . Now define the functionfπi : πX → 2A

such that for allπj ∈ πX:

fπi (πj) =df.
(
g(πi) ∩ X

) ∪ (
g′ (πj) ∩ X

)
.

We show thatπi =
{

fπi (πj) : πj ∈ πX

}
.

The ⊇-direction is almost immediate as from the definition almost immediately
follows thatfπi (πj) ∼X g(πi), for eachπj ∈ πX. Sinceg is a choice function,g(πi) ∈
πi . Hence,fπi (πj) ∈ πi , for eachπj ∈ πX. For the⊆-direction, consider an arbitrary
s ∈ πi . With 2A non-empty, we may also assume the existence ofs as well as that of
the block[s]X in πX. It suffices to show thatfπi ([s]X) = s. Observe thatπi = [s]X. Since
g andg′ are choice functions, bothg([s]X) ∈ [s]X andg′([s]X) ∈ [s]X. Hence, both
s∼X g([s]X) ands∼X g′([s]X), i.e., s∩ X = g([s]X)∩ X ands∩ X = g′([s]X)∩ X. We
can now reason as follows:

s = (s∩ X) ∪ (
s∩ X

)
= (g([s]X) ∩ X) ∪ (

g′([s]X) ∩ X
)

= f[s]X([s]X) = fπi ([s]X).

This concludes the proof. a
This proposition has the following corollary, which is also illustrated in Figure 2.6.

Corollary 2.2.12 Let A be a set,X ⊆ 2A and X ⊆ A. Then, apr
X
(X) = ø or

aprX(X) = 2A.

Proof: Assumeapr
X
(X) 6= ø; it suffices to show thataprX(X) = 2A. By the as-

sumption, there is someπi ∈ πX such thatπi ⊆ X. Moreover, since 2A is not
empty, neither isπi . Now consider an arbitraryπj ∈ πX. By Proposition 2.2.11, then,
πj = {f (πk) : πk ∈ πX}, for some choice functionf mappingπX on 2A. Therefore,
f (πi) ∈ πj . Moreover,πj ∩ X 6= ø and so,πj ⊆ aprX(X). With πj having been chosen
arbitrarily and the blocks ofπX exhausting 2A, we may conclude thataprX(X) = 2A. a
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2.3 Propositional Logics

A propositional language L(A) consists of a set of formulasΦ(A) over some set of
propositional variablesA. Unless stated otherwise, we assumeA to be countable. A
proper logicfor a propositional languageL(A) is a set of pairs of theories inL(A), i.e.,
a subset ofΦ(A) × Φ(A).5 For any logicΛ for L(A) and any pair of theoriesΓ and
Θ we say thatΘ logically follows fromΓ in Λ if (Γ,Θ) ∈ Λ. In the sequel we will
usually denote(Γ,Θ) ∈ Λ by Γ `Λ Θ and(Γ,Θ) /∈ Λ by Γ 0Λ Θ, also omitting the
superscript whenever possible. At an intuitive level, it can be a help to readΓ ` Θ
as signifying that some formulas inΘ hold whenever all formulas inΓ hold. Two
formulasϕ andψ arelogically equivalent, ϕ ≡Λ ψ if both ϕ `Λ ψ andψ `Λ ϕ. The
sets ofconsequencesandanti-consequencesof a theoryΓ is then defined as:

CnΛ (Γ ) =df.
{
ϕ : Γ `Λ ϕ}

AnΛ (Γ ) =df.
{
ϕ : ϕ `Λ Γ}

We say that a theoryΓ is Λ-closed(or simplyclosed) if Γ = CnΛ (Γ ). A theory∆ is
said to be aset of axioms fora theoryΓ iff Γ and∆ have the same consequences. A
theory is calledfinitely axiomatizableiff it has a finite set of axioms.

We take a very liberal attitude towards what to consider a logic and impose no
further restrictions. Then the logics for a propositional languageL(A) can be partially
orderedvia set inclusion. DefineΛ 6 Λ′ if and only if Λ ⊆ Λ′, for Λ andΛ′ logics
for L(A). The set of logics for a propositional languageL(A) thus constitutes a field of
sets6 and as such a complete lattice and even a Boolean algebra.

We give a brief overview of the most common conditions usually imposed on log-
ics.7 A logic Λ is reflexiveif Γ ` Γ , for all non-empty theoriesΓ . Very similar
conditions are those ofdiagonalityandoverlap, which are satisfied ifϕ ` ϕ, for all
formulasϕ, and, respectively, ifΓ ` Θ, for all theoriesΓ andΘ such thatΓ ∩Θ 6= ø.
If ϕ `Λ ϕ, for some formulaϕ, we say thatΛ is diagonal forϕ. A logic is monotonic
if for Γ ⊆ Γ ′ andΘ ⊆ Θ′, Γ ` Θ impliesΓ ′ ` Θ′. For monotonic logics the con-
ditions of reflexivity, diagonality and overlap coincide. We say a logic satisfiescut if
Γ ` Θ ∪ {ϕ} andΓ ′ ∪ {ϕ} ` Θ′ imply Γ ∪ Γ ′ ` Θ ∪Θ′. Observe that this definition
of cut is equivalent to any of the following two conditions forΞ finite:8

Γ ` Θ ∪Ξ and Γ ′ ∪ {ξ} ` Θ′ for all ξ ∈ Ξ imply Γ ∪ Γ ′ ` Θ ∪Θ′(∗)

Γ ∪Ξ ` Θ and Γ ′ ` Θ′ ∪ {ξ} for all ξ ∈ Ξ imply Γ ∪ Γ ′ ` Θ ∪Θ′.(∗∗)

Also consider the following cut-like condition:

(∗∗∗) ϕ `Λ ψ, Γ `Λ Θ ∪ {ϕ} andΓ ′ ∪ {ψ} `Λ Θ′ imply Γ ∪ Γ ′ `Λ Θ ∪Θ′.
5We follow Segerberg[1982] in this definition and the following remarks on logics.
6A field of sets Sis a collection of subsets of a nonempty setX such that both the empty setø and the set

X are inSandS is closed under∩, ∪ and with respect toX (Chang and Keisler, 1973, p.39).
7Again we closely follow the exposition of Segerberg[1982], pp.34–39.
8Segerberg proposes a stronger and more general notion of cut defined as the conjunction of these two

conditions with the restriction thatΞ be finite lifted (cf., ibid., p.37).
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Fact 2.3.1 Any logicΛ for L(A) that satisfies cut also satisfies (∗∗∗). Moreover, (∗∗∗)
implies cut, providedΛ satisfies diagonality.

Proof: First assumeϕ `Λ ψ, Γ `Λ Θ ∪ {ϕ} andΓ ′ ∪ {ψ} `Λ Θ′. From the former
two assumptions and cut thenΓ `Λ Θ ∪ {ψ}. Together with the third assumption and
another application of cut, this yieldsΓ ∪Γ ′ `Λ Θ ∪Θ. For the second claim, assume
Γ `Λ Θ ∪ {ϕ} andΓ ′ ∪ {ϕ} `Λ Θ′. With diagonality ofΛ, we haveϕ `Λ ϕ. Hence,
(∗∗∗) entailsΓ ∪ Γ ′ `Λ Θ ∪Θ′ follows, which we had set out to prove. a

Finally, a logic isfinite (or compact) if Γ ` Θ if and only if there are finiteΓ ′ ⊆ Γ
andΘ′ ⊆ Θ such thatΓ ′ ` Θ′. This notion is not to be confused with the notion of a
finite semantics, to be introduced presently. We have the following fact:

Fact 2.3.2 LetΛ be a reflexive, monotonic and finite cut logic for L(A). Then for all
theoriesΓ andΘ in L(A):

Γ `Λ Θ iff Cn(Γ ) `Λ An(Θ) .

Proof: For the left-to-right direction, observe that sinceΛ is reflexive,Γ ⊆ Cn(Γ ) as
well asΘ ⊆ An(Θ). Hence with monotonicity,Γ `Λ Θ impliesCn(Γ ) `Λ An(Θ).
For the opposite direction assumeCn(Γ ) `Λ An(Θ). By finiteness, there are finite
theoriesΓ ′ ⊆ Cn(Γ ) andΘ′ ⊆ An(Θ) such thatΓ ′ `Λ Θ′. By monotony ofΛ then
alsoΓ ∪ Γ ′ `Λ Θ ∪ Θ′. For eachγ ∈ Γ ′ − Γ , we haveγ ∈ Cn(Γ ), i.e., Γ `Λ γ.
Hence, by cut and its equivalence with (∗∗), Γ `Λ Θ ∪ Θ′. Similarly,ϑ ∈ An(Θ) —
i.e., it is the case thatϑ `Λ Θ — for all ϑ ∈ Θ′. Therefore, by cut and its equivalence
with (∗), eventually,Γ `Λ Θ. a
A logic Λ is consistentif Λ 6= 2Φ×2Φ. Obviously, there is only oneinconsistentlogic.
For monotonic logics, this condition for consistency is equivalent with the pair(ø,ø)
not being an element of the logic,i.e., ø 0 ø.

A valuation-based semantics(or just ‘semantics’) for a languageL(A) associates
with each formulaϕ of the language a subset of 2A which we call theextension ofϕ
and denote by[[ϕ]]. Here, 2A is taken as the set ofvaluations, which will in the sequel
frequently be referred to byS. Let s ° ϕ if s ∈ [[ϕ]] ands 1 ϕ if s /∈ [[ϕ]]. The set of
extensions of the formulas in aΓ we denote byE (Γ ), i.e., E (Γ ) =df.

{
[[γ]] : γ ∈ Γ

}
.

The set of all formula extensions of a languageL(A), E (Φ(A)) we usually denote by
simply E (A) or even justE , if A is clear from the context. Let, furthermore,[[Γ ]] =df.⋂
γ∈Γ [[γ]] and 〈〈Γ 〉〉 =df.

⋃
γ∈Γ [[γ]]. Semantical consequenceis then defined as:

Γ ² Θ iff [[Γ ]] ⊆ 〈〈Θ 〉〉 .

In a similar vein, a theory is said to besatisfiableif [[Γ ]] 6= ø andvalid if [[Γ ]] = 2A. A
formulaϕ is satisfiableor valid if {ϕ} is, respectively, satisfiable or valid. Any binary
relation on the theories of a languageL(A) is said to besoundwith respect to a logicΛ
if it is a subset ofΛ andcompletewhenever it is a superset ofΛ.
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We call a valuation-based semantics for a languageL(A) finite if for each formulaϕ
of L(A) there is a finite subsetX ⊆ω A such that:

s∈ [[ϕ]] ands∼X s′ implies s′ ∈ [[ϕ]]

In terms of rough sets this means that for all formulasϕ of L(A) there is a finite setX ⊆
A such that:

[[ϕ]] = aprX([[ϕ]]) .

It now happens that if a semantics is finite, then for each formulaϕ in L(A) there is
a smallestfinite set such that[[ϕ]] = aprX([[ϕ]]) . This proposition is a corollary of the
following lemma in rough set theory:

Lemma 2.3.3 Let A be a countable set andZ ⊆ 2A. Assume further that there exists
some finite Z0 ⊆ω 2A in Z. LetX ⊆ 2A. Then:

aprZ0
(X) = aprZ(X) for all Z ∈ Z implies aprZ0

(X) = aprT Z(X) .

Proof: Assume for allZ ∈ Z : aprZ0
(X) = aprZ(X). Since

⋂
Z ⊆ Z0, also

aprZ0
(X) ⊆ aprT Z(X), in virtue of Fact 2.2.7. So consider an arbitrarys∈ aprT Z(X).

We prove thats ∈ aprZ0
(X). Then, for somes0 ∈ X, s0 ∼T

Z s. SinceZ0 is fi-
nite, so are

⋂
Z andZ0 −

⋂
Z. Let Z0 −

⋂
Z = {z0, . . . , zn}. Observe that for each

z∈ {z0, . . . , zn}, there is someZ ∈ Z such thatz /∈ Z. Assuming the axiom of choice,
let {Z′

0, . . . ,Z
′
n} ⊆ Z be such thatzi /∈ Z′

i , for eachi 6 n. For each 06 i 6 n + 1,
defines∗i as follows:

s∗0 =df. s0

s∗i+1 =df.
(
s∗i − {zi}

) ∪ (
s∩ {zi}

)
Since by definitionzi /∈ Z′

i , and withs∗i and s∗i+1 differing at most atzi , it follows
that for each 06 i 6 n + 1, s∗i ∼Z′

i
s∗i+1. As a consequences∗i+1 ∈ aprZ0

(X), for each
i 6 n + 1. To appreciate this, observe that by assumptions∗0 ∈ X and hence alsos∗0 ∈
aprZ0

(X). Now assumes∗i ∈ aprZ0
(X). By the initial assumptionaprZ0

(X) = aprZ′
i
(X),

sos∗i ∈ aprZ′
i
(X). Since, moreover,s∗i ∼Z′

i
s∗i+1, s∗i+1 ∈ aprZ′

i

(
aprZ′

i
(X)

)
. Then also

s∗i+1 ∈ aprZ′
i
(X) and eventuallys∗i+1 ∈ aprZ0

(X).
We now prove by induction oni that for all i 6 n + 1 (letting{zk, . . . , zn} = ø if

k > n):
s∗i ∼Z0−{zi ,...,zn} s.

For i = 0, recall that by assumptions∗0 ∼T

Z s, which is exactly what we have to prove
considering that{z0, . . . , zn} = Z0 −

⋂
Z. For the induction step, we may assume that

s∗i ∼Z0−{zi ,...,zn} s. Now considersi+1 as well as an arbitraryz∈ Z0 − {zi+1, . . . , zn}.
If z ∈ Z0 − {zi, . . . , zn}, just observe thats∗i+1 ∼Z0−{zi ,...,zn} s∗i ∼Z0−{zi ,...,zn} s. If,
however, the only remaining possibility obtains andz = zi, then alsos∗i+1 ∼{zi} s.
Hence, we may conclude thats∗i+1 ∼Z0−{zi+1,...,zn} s.
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In particular it holds thats∗n+1 ∈ aprZ0
(X) and that s∗n+1 ∼Z0 s. Hence,

s∈ aprZ0

(
aprZ0

(X)
)
, which is so much as to say thats∈ aprZ0

(X). Wrapping things
up, we recall thats had been chosen arbitrarily such thats0 ∼T

Z s. So, we may
conclude thataprT Z(X) ⊆ aprZ0

(X). a
Observe that Lemma 2.3.3does nothold in general ifZ does not contain at least

one finite element. For a counterexample, consider a countably infinite setA and let
X be the set of infinite subsets ofA. HenceX 6= 2A. Let furthera0, . . . ,an, . . . be an
enumeration ofA and setZ =df.

{
A− {a0, . . . ,an} : n ∈ ω

}
. Clearly,

⋂
Z = ø

and soaprT Z(X) = 2A. However, since everyX ∈ X has an infinite intersection with
any Z ∈ Z, we also haveaprZ(X) = aprZ′(X) for all Z,Z′ ∈ Z. However, ifZ is
itself finite, the restriction of it containing a finite element can be dropped. Just recall
that aprZ(aprZ′(X)) = aprZ∩Z′(X). We are now in a position to prove the following
proposition.

Proposition 2.3.4 For every finite semantics for L(A) and each formulaϕ of L(A)
there is a (unique) smallest X⊆ A such that[[ϕ]] = aprX([[ϕ]]).

Proof: Consider a finite semantics forL(A) along with an arbitrary formulaϕ. Now
consider the setZ =df.

{
Z ⊆ A : aprZ([[ϕ]]) = [[ϕ]]

}
. By finiteness, there is also

a finite Z0 ∈ Z. Hence for allZ ∈ Z, aprZ([[ϕ]]) = aprZ0
([[ϕ]]). By Lemma 2.3.3,

aprT Z([[ϕ]]) = aprZ0
([[ϕ]]) = [[ϕ]]. Hence, by definition ofZ, also

⋂
Z ∈ Z, which

proves the proposition. a
This result warrants the definition ofA(ϕ) as thesmallestsubset of propositional

variables inA for which [[ϕ]] = aprX([[ϕ]]). More in general we setA(Γ ) =df.⋃
γ∈Γ A(γ). Moreover we employ the notationϕ (a0, . . . ,an) to indicate that[[ϕ]] =

apr{a0,...,an}([[ϕ]]). Observe thatA(Γ ) does not in general denote the smallest subsetX
of propositional variables such that[[Γ ]] = aprX([[Γ ]]). We have the following two
facts.

Fact 2.3.5 Letϕ be a formula of a propositional language L(A). Then for all subsets
∆ of A such thatA(ϕ) ⊆ ∆:

apr∆([[ϕ]]) = apr
∆

([[ϕ]]) = [[ϕ]].

Proof: Merely consider the following equalities:

apr∆([[ϕ]]) = apr∆
(

aprA(ϕ)([[ϕ]])
)

=Fact 2.2.8

apr∆∩A(ϕ)([[ϕ]]) =A(ϕ) ⊆ ∆ aprA(ϕ)([[ϕ]]) = [[ϕ]].

That then alsoapr
∆

([[ϕ]]) = [[ϕ]], follows immediately from Fact 2.2.1. a
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Fact 2.3.6 LetΓ be a theory in L(A) and∆ a subset of A such thatA(Γ ) ⊆ ∆. Then:

apr
∆

([[Γ ]]) = apr∆([[Γ ]]) = [[Γ ]].

apr
∆

( 〈〈Γ 〉〉 ) = apr∆( 〈〈Γ 〉〉 ) = 〈〈Γ 〉〉 .

Proof: Consider the following equalities:

apr
∆

([[Γ ]]) =
⋂
γ∈Γ apr

∆
([[γ]]) =Fact 2.3.5

⋂
γ∈Γ [[γ]] = [[Γ ]],

apr∆([[Γ ]]) =
⋃
γ∈Γ apr∆([[γ]]) =Fact 2.3.5

⋃
γ∈Γ [[γ]] = [[Γ ]].

That alsoapr∆([[Γ ]]) = [[Γ ]] andapr
∆

([[Γ ]]) = [[Γ ]] then follows by Fact 2.2.1. a
A classical propositional language L(A) over a set of propositional variablesA is a

minimal set containingA as well as⊥ and for each formulaϕ contains another formula
denoted by(¬ϕ) as well as for each pair of formulasϕ andψ a formula denoted by
(ϕ ∨ ψ) and allows for a classical semantics. Aclassical semanticsfor a classical
languageL(A) is such that for each propositional variablea ∈ A and all formulasϕ
andψ:

[[a]] = {s∈ S : a ∈ s}
[[⊥]] = ø

[[(¬ϕ)]] = S− [[ϕ]]
[[(ϕ ∨ ψ)]] = [[ϕ]] ∪ [[ψ]].

The resulting logic we will refer to asclassical propositional logic(CPC). Where pos-
sible we omit parentheses. We also have the usual abbreviations>, ϕ ∧ ψ, ϕ → ψ,∧
Θ and

∨
Θ, whereϕ andψ are formulas ofL(A) andΘ a finite and possibly empty

sequences of formulas inL(A). For each formulaϕ, the set of propositional vari-
ables occurring inϕ is defined as usual and depicted byA(ϕ). We useA(Γ ) to de-
note

⋃
γ∈Γ A(γ). The set algebra over the set of extension of a classical propositional

languageL(A), i.e.,
(
E ;ø,2A, ,∪,∩)

, we denote byEA. For a classical proposi-
tional languageL(A), for each formulaϕ, define[ϕ]≡ =df. {ψ : ϕ ≡Λ ψ}. Then( {[[ϕ]]≡ : ϕ ∈ Φ} ; [⊥]≡, [>]≡,¬,∨,∧

)
is theLindenbaum algebra of L(A), also de-

noted byL. Here¬, ∨ and∧ are the operations¬, ∨ and∧ raised as to apply to
equivalence classes of formulas.9 Classical propositional logic is compact.

Fact 2.3.7 (Compactness ofCPC) Let L(A) be a classical propositional language and
Γ a theory in L(A). Then:

Γ is satisfiable iff every finite subtheoryΓ ′ of Γ is satisfiable.

9I.e., ¬[ϕ] =df. [¬ϕ], [ϕ] ∨ [ψ] =df. [ϕ ∨ ψ] and [ϕ] ∧ [ψ] =df. [ϕ ∧ ψ]. These definitions are
representative independent.
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Proof: Cf., Barwise (1977), pages 26–28. a
We state without proof that Fact 2.3.7 has the finiteness of CPC as a corollary.

Fact 2.3.8 CPC is finite. I.e., forΓ andΘ theories in a classical propositional lan-
guage L(A):

Γ ²CPCΘ implies there are finite subsetsΓ ′ ⊆ Γ andΘ′ ⊆ Θ such thatΓ ′ ²CPCΘ′.

Classical semantics is also finite in the sense that for each formulaϕ there is a finite
set∆ such that[[ϕ]] = apr∆([[ϕ]]).

Fact 2.3.9 Classical semantics is finite.

Proof: Consider an arbitrary classical propositional languageL(A) along with an
equally arbitrary formulaϕ of L(A). The proof is then by induction onϕ.

First assumeϕ = a. Obviously [[a]] ⊆ apr{a}([[a]]); so, it suffices to show that
apr{a}([[a]]) ⊆ [[a]]. Observe that for anys ∈ apr{a}([[a]]), there is somes′ ∈ [[a]] such
thats∼{a} s′. Since by definitiona ∈ s′, alsoa ∈ s. Hence,s∈ [[a]].

Let ϕ = ¬ψ. In virtue of the induction hypothesis we may assume there to be a
finite∆ ⊆ω A such that[[ψ]] = apr∆([[ψ]]). Now consider the following equalities:

[[¬ψ]] = [[ψ]] =i.h. apr∆([[ψ]]) = apr
∆

(
[[ψ]]

)
=i.h. apr

∆
([[¬ψ]]) .

With Fact 2.2.1, we may conclude that[[¬ψ]] = apr∆(¬ψ).
In caseϕ = ψ∨ψ, the induction hypothesis grants us there to be finite∆,∆′ ⊆ω A

such that[[ψ]] = apr∆([[ψ]]) and [[χ]] = apr∆′([[χ]]). Now consider the following
equalities:

apr∆∪∆′([[ψ ∨ χ]]) = apr∆∪∆′([[ϕ]] ∪ [[ψ]])

= apr∆∪∆′([[ψ]]) ∪ apr∆∪∆′([[χ]])

=i.h. apr∆∪∆′(apr∆([[ψ]])) ∪ apr∆∪∆′(apr∆′([[χ]]))

= apr(∆∪∆′)∩∆([[ψ]]) ∪ apr(∆∪∆′)∩∆′([[χ]])

= apr∆([[ψ]]) ∪ apr∆′([[χ]])

=i.h. [[ψ]] ∪ [[χ]]

= [[ψ ∨ χ]].

This concludes the proof. a
For classical propositional logic we have in generalA(ϕ) ⊆ A(ϕ). Hence the

following fact.
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Fact 2.3.10 Let L(A) be a classical propositional language,∆ ⊆ A andϕ a formula
of L(A). Then:

apr
∆

([[ϕ]]) = apr
∆∩A(ϕ)

([[ϕ]]) = apr
∆∩A(ϕ)

([[ϕ]])

apr∆([[ϕ]]) = apr∆∩A(ϕ)([[ϕ]]) = apr∆∩A(ϕ)([[ϕ]])

Proof: Immediately from the Facts 2.2.8 and Fact 2.3.5 and the fact that for classical
propositional in generalA(ϕ) ⊆ A(ϕ). a
In CPC also the following version of cut holds.

Fact 2.3.11 LetΓ andΘ be theories in L(A) and let∆ ⊆ A. Then:

if Γ ∪∆′ ²CPCΘ ∪ (∆−∆′) , for all ∆′ ⊆ ∆ then Γ ²CPCΘ.

Proof: By contraposition. Assume thatΓ 2CPC Θ. Then, there exists some valua-
tion s such thats ° γ for all γ ∈ Γ ands 1 ϑ for all ϑ ∈ Θ. Consider this valuations
along with the subsets ofA given by∆ ∩ s and∆ ∩ s. Clearly,∆− (∆ ∩ s) = ∆ ∩ s.
Then,s ° γ for all γ ∈ Γ ∪ (∆ ∩ s) ands 1 ϑ for all ϑ ∈ Θ ∪ (∆ ∩ s). Consequently,
there is some∆′ ⊆ ∆ — viz.,∆ ∩ s— such thatΓ ∪∆′ 2CPCΘ ∪ (∆−∆′). a

We now introduce some terminology relating to formal systems, derivations and
Gentzen-style sequent systems. Aformal systemfor a formal languageL is a number
of axiomstogether with a number ofrules. The axioms are sequences of formulas
of L and the rules are relations between a finite number of sequencesΣ0, . . . , Σn and a
finite sequence of formulasT0, . . . , Tm, allowing one to derive from all ofσ0, . . . , σn,
any one ofT0, . . . , Tm. I.e., forΣ0, . . . , Σn andT0, . . . , Tm sequences, a rule is denoted
by:

Σ0, . . . , Σn

T0, . . . , Tm
.

A derivation is then a finite sequence of sequencesΣ0, . . . , Σk of formulas such that

eachΣi (0 6 i 6 k), is either an axiom or there is a rule
T0, . . . , Tn

Υ0, . . . , Υm
such thatΣi = Υj

for some0 6 j 6 m and eachTi (0 6 i 6 n) is identical to someΣij with 0 6 ij < i.
ForΣ andT finite sequences of formulas inL(A), Σ⇒T is called asequent. A

Gentzen-type system is a formal system containing a number of sequents as axioms
and rules enabling one to derive a sequent,the succedents of the rule, from a finite
number of other sequents, theantecedents of the rule. We usè Σ⇒T to denote the
existence of a derivation of the sequentΣ⇒T . ForΓ andΘ possibly infinite theories
in L(A), defineΓ ` Θ if and only if ` Σ⇒T , for someΣ ∈ Γ ∗ andT ∈ Θ∗. The
Gentzen-style systems GPC and GP, which are sound and complete with respect to
CPC, are given in Table 2.4.
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Axioms:

(0) ⊥⇒ ε (1) ε⇒> (2) a⇒ a

Logical Rules:

¬L :
Σ⇒T, ϕ

Σ,¬ϕ⇒T
¬R :

Σ,ϕ⇒T

Σ⇒T,¬ϕ

∧L :
Σ,ϕ, ψ⇒T

Σ,ϕ ∧ ψ⇒T
∧R :

Σ⇒T, ϕ Σ⇒T, ψ

Σ⇒T, ϕ ∧ ψ

∨L :
Σ,ϕ⇒T Σ,ψ⇒T

Σ,ϕ ∨ ψ⇒T
∨R :

Σ⇒T, ϕ, ψ

Σ⇒T, ϕ ∨ ψ

Structural Rules:

contrL :
Σ,ϕ, ϕ⇒T

Σ,ϕ⇒T
contrR :

Σ⇒T, ϕ, ϕ

Σ⇒T, ϕ

permL :
Σ,ϕ, ψ, P ⇒T

Σ,ψ, ϕ, P ⇒T
permR :

Σ⇒T, ϕ, ψ, Υ

Σ⇒T, ψ, ϕ, Υ

thinL :
Σ⇒T
Σ,ϕ⇒T thinR :

Σ⇒T
Σ⇒T, ϕ

cut :
Σ⇒T, ϕ Σ,ϕ⇒T

Σ⇒T

Table 2.4. The System GPC. GP is like GPC except that GP lackscut.

Fact 2.3.12 (Soundness and completeness ofGPC) The systemsGPCandGPis com-
plete with respect toCPC, i.e., for all theoriesΓ andΘ of a classical propositional
language L(A):

Γ ²CPCΘ iff Γ `GP Θ iff Γ `GPCΘ.

Sketch of proof: Soundness is by a straightforward induction on the length of the
derivation in GP. Completeness is as in Barwise (1977), page 38–39. a
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2.4 Cylindrification in Propositional Logic

In the previous section we argued thataprπ can be construed as a cylindrification op-
eration andapr

π
as its dual. In first-order logic the quantifiers can be thought of in

a similar manner. Quantification increases the expressive power of first-order logic
tremendously and is responsible for Church’s famous undecidability result. These
phenomena connected with cylindrification, however, do not occur at all in classical
propositional logic. As a matter of fact, the set of extensionsE in classical proposi-
tional logic is closed under taking lower and upper approximations. Hence for each
subsetX of propositional variables we may assume the existence of formulas〈X〉ϕ
and [X]ϕ with the respective extensionsaprX([[ϕ]]) and apr

X
([[ϕ]]). This we prove.

Moreover we characterize the set of extensions of a classical propositional language as
the set of fixed points of all operationsaprX andapr

X
with X finite. Recall thatE (A)

denotes the set
{
[[ϕ]] : ϕ ∈ Φ(A)

}
.

Theorem 2.4.1 Let L(A) be a classical propositional language with a classical se-
mantics and let Fix(aprB) =df.

{
X ⊆ S : X = aprB(X)

}
. Then:

E =
⋃

B⊆ωA

Fix (aprB) .

Proof: The left-to-right direction is immediate by finiteness of classical semantics.
For the opposite direction consider an arbitraryX ⊆ Ssuch thatX = aprB(X), for

some finiteB ⊆ A. Now define for eachs⊆ B:

βs =df.

∧{
b,¬b′ : b,b′ ∈ B and b ∈ s and b′ 6∈ s

}
.

Obviously,s ° βs, for eachs⊆ B. Now set:

β =df.

∨ {
βs : s⊆ B ands∈ X

}
.

We prove thatX = [[β]]. First assume, for an arbitrarys∈ S, thats∈ [[β]]. Thens ° βs′ ,
for somes′ ∈ X with s′ ⊆ B. Some reflection reveals thats ∼B s′ and subsequently
s ∈ aprA(X). With the assumption thatX = aprB(X), the latter is equivalent with
s∈ X.

Conversely, assumes ∈ X. Defines∗ =df. s∩ B; thens∗ ° βs∗ . Since, moreover,
s ∼B s∗ andβs∗ only depends onB we also have thats ° βs∗ . It is equally clear that
s∗ ⊆ B. Sinces∗ ∼B s, alsos∗ ∈ aprB(X), i.e., s∗ ∈ X by the assumption.A fortiori,
alsos ° β, and we may conclude thats∈ [[β]]. a
This result is very close to the more syntactically flavored fact of classical propositional
logic that each formula is equivalent to a complete disjunctive normal form. Observe
that if ∆ comprises precisely the propositional variables occurring in a formulaϕ,
then each disjunct of its complete disjunctive normal form characterizes a block in the
partitionπ∆.
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Corollary 2.4.2 Let L(A) be a classical propositional language. Then:

E =
{

aprB(X) : B ⊆ω A and X⊆ 2A
}
.

Proof: The inclusion ofE in
{

aprB(X) : B ⊆ω A and X ⊆ 2A
}

is an immedi-
ate consequence of Theorem 2.4.1. For the opposite inclusion just observe that
apr(apr(X)) = apr(X) is a law of rough set theory and again Theorem 2.4.1. a

This corollary establishes classical propositional logic as the most expressive one with
a finite semantics, in the sense that the extensions of its formulas exhaust the set of
valuations that can be finitely approximated.

So, the set of extensionsE (A) of formulas of a propositional languageL(A) is given
by the fixed points of the approximation operationsaprB on sets of valuations withB
finite. Obviously,E (A) does not exhaust in general the powerset of valuations 2A. If
A is countably infinite, so is the set of formulas ofL(A). The set of valuations, not to
mention the set of sets of valuations, however, is uncountably infinite and so there can
impossibly be a formula for each subset of valuations, or even for each valuation.

The set of theories of a propositional languageL(A) will be uncountable ifA is
countably infinite. Nevertheless, there will still be subsets of valuations that are not
the extension of some theory. For an example consider 2A − {ø}. For areductio ad
absurdumassume that[[Γ ]] = 2A − {ø}. Then there is at least oneγ in Γ such that[[γ]]
does not contain the empty setø. In virtue of Corollary 2.4.2, there is a finite subsetB
of propositional variables and some subset of valuationsX such that[[γ]] = aprB(X).
Now consider thevaluationB. Observe that withB finite andA infinite, B is not empty.
Hence,B ∈ [[Γ ]] anda fortiori alsoB ∈ [[γ]]. Therefore,B ∈ aprB(X). Evidently,
B ∼B ø and soø ∈ aprB(aprB(X)) = aprB∩B(X) = aprB(X) = [[γ]], which is at
variance with the assumption thatø /∈ [[γ]].

More important for our purposes, however, is that Theorem 2.4.1 and Corollary 2.4.2
pave the way for the following fact, which warrants the introduction of the ‘rough-set’
quantifiers to the propositional language.

Fact 2.4.3 Let L(A) be a classical propositional language with a classical semantics.
Then for all B⊆ A:

X ∈ E implies aprB(X) ∈ E

Proof: At page 41 it was stated as a law of rough set theory that for anyB,C ⊆ A,
aprB(aprC(X)) = aprB∩C(X). Now consider an arbitraryX ∈ E . By Theorem 2.4.1
there is a finiteC ⊆ A such thatX = aprC(X). Now consider an arbitraryB ⊆ A and
reason as follows:

aprB(X) = aprB(aprC(X)) = aprB∩C(X) .
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Since obviouslyB ∩ C is finite, with Corollary 2.4.2,aprB∩C(X) ∈ E and we may
conclude thataprB(X) ∈ E . a
From this fact follows that for each formulaϕ in L(A) and∆ ⊆ A there are formulas
ξ, ξ′ in the language such that:

apr∆([[ϕ]]) = [[ξ]]
apr

∆
([[ϕ]]) = [[ξ′]]

We denote these formulas by, respectively,〈∆〉ϕ and[∆]ϕ. The following two clauses
rephrase their semantics:

s ° 〈∆〉ϕ iff for somes′ ∈ S : s∼∆ s′ and s′ ° ϕ,

s ° [∆]ϕ iff for all s′ ∈ S : s∼∆ s′ implies s′ ° ϕ.

Observe that〈∆〉 is not a truth functional connective, witness the fact thatø ° a ↔ b
andø ° 〈{b}〉a but ø 1 〈{b}〉b. Still, from Theorem 2.4.1 follows that formulas
of the form〈∆〉ϕ and [∆]ϕ are equivalent to formulas expressible by means of the
Boolean connectives only. The following reflections show how such formulas equiva-
lent to〈∆〉ϕ and[∆]ϕ can be obtained fromϕ.

For L(A) a classical propositional language and∆ ⊆ A, letΣ∆ be the set of func-
tions given by{>,⊥}∆. We extend eachσ ∈ Σ∆ to a functionσ̂ : Φ(A) → Φ(A)
which is defined inductively as follows:

σ̂ (a) =df.

{
σ (a) if a ∈ ∆,

a otherwise

σ̂ (⊥) =df. ⊥
σ̂ (>) =df. >
σ̂ (¬ϕ) =df. ¬σ̂ (ϕ)

σ̂ (ϕ ∧ ψ) =df. σ̂ (ϕ) ∧ σ̂ (ψ)
σ̂ (ϕ ∨ ψ) =df. σ̂ (ϕ) ∨ σ̂ (ψ) .

Each σ̂ ∈ Σ∆ replaces all occurrences of propositional variables∆ in a formula
by either> or ⊥. In the remainder we will confusêσ andσ. We will also write
ϕ (a0, . . . ,an/ξ0, . . . , ξn) for σ̂ (ϕ), if σ ∈ Σ{a0,...,an} andσ (ai) = ξi , for each0 6 i 6
n. We have the following pair of lemmas.

Lemma 2.4.4 Let s be a valuation for a propositional language L(A) and let∆ be
a subset of A. Then, for eachσ ∈ Σ∆ there is a valuation s′ such that s∼∆ s′ and
s ° σ (ϕ) if and only if s′ ° ϕ, for all formulasϕ.

Proof: Consider an arbitraryσ ∈ Σ∆ and defines∗, such that for alla ∈ A:

s∗ (a) =df.




1 if a /∈ ∆ andσ (a) = >,
0 if a /∈ ∆ andσ (a) = ⊥,
s(a) otherwise.
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It can readily be established thats∼∆ s∗. A straightforward inductive argument on an
arbitrary formulaϕ then shows thats ° σ (ϕ) if and only if s∗ ° ϕ.

Forϕ = a, eithera ∈ ∆ or a /∈ ∆. If the latter, merely observe thatσ (a) = a and
s(a) = s∗(a). If the former, first assume thatσ (a) = ⊥. Then boths 1 σ (a) and also
s∗(a), becauses∗(a) = 0. Finally, assumeσ (a) = >. Then,s 1 σ (a) ands∗ ° a.
The latter because in this cases∗(a) = 1.

The case forϕ = ⊥ is trivial and that forϕ = ψ ∨ χ is immediate by the induction
hypothesis. a

Lemma 2.4.5 Let s be a valuation for a propositional language L(A) and let∆ be a
subset of A. Then, for each valuation s′ such that s∼∆ s′, there is aσ ∈ Σ∆ such that
s ° σ (ϕ) if and only if s′ ° ϕ, for all formulasϕ.

Proof: Consider an arbitrary valuations′ such thats ∼∆ s′. Defineσ∗ ∈ Σ∆ such
that for alla ∈ ∆:

σ∗ (a) =df.

{> if a ∈ s′,

⊥ otherwise.

A straightforward inductive argument then shows thatσ∗ complies with the require-
ments as stated in the lemma. So consider an arbitrary formulaϕ. For the basis assume
ϕ = a for somea ∈ A. If a ∈ ∆, thenσ∗ (a) = a and:

s′ ° a iff a ∈ s′ iff s ∼∆ s′ a ∈ s iff σ∗ (a) = a s ° σ∗ (a) .

If, however,a /∈ ∆, first assumes′ ° a. Then,σ∗ (a) = > and immediatelys ° >.
Now assumes′ 1 a, thena /∈ s′ andσ∗ (a) = ⊥. Observe that alsos 1 ⊥.

The inductive cases are either trivial or immediate by the induction hypothesis.a
These lemmas prepare the ground for the following proposition.

Proposition 2.4.6 Letϕ be a formula in a classical propositional language L(A) and
∆ a subset of A. Then both:

apr
∆

([[ϕ]]) =
⋂

σ∈Σ∆

[[σ (ϕ)]] and apr∆([[ϕ]]) =
⋃

σ∈Σ∆

[[σ (ϕ)]].

Proof: As to the first claim, consider an arbitrarys∈ 2A. For the⊆-direction, assume
that s /∈ ⋂

σ∈Σ∆
[[σ (ϕ)]]. Then, there is someσ ∈ Σ∆ such thats /∈ [[σ (ϕ)]]. By

Lemma 2.4.4, there is some valuations′ such thats∼∆ s′ ands ° σ (ϕ) if and only if
s′ ° ϕ. Consider thiss′, thens′ /∈ [[ϕ]] and hences /∈ apr

∆
([[ϕ]]).

For the⊇-direction, assume thats /∈ apr
∆

([[ϕ]]). Then, there is some valuations′

such thats∼∆ s′ ands′ /∈ [[ϕ]]. By Lemma 2.4.5, there is aσ ∈ Σ∆ such thats ° σ (ϕ)
if and only if s′ ° ϕ. Hence,s /∈ [[σ (ϕ)]] anda fortiori, s /∈ ⋂

σ∈Σ∆
[[σ (ϕ)]].
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For the second claim consider the following equalities:

apr∆([[ϕ]]) = apr
∆

([[¬ϕ]]) =
⋂

σ∈Σ∆

[[σ (¬ϕ)]] =
⋃

σ∈Σ∆

[[¬σ (ϕ)]] =
⋃

σ∈Σ∆

[[σ (ϕ)]].

This concludes the proof. a
This result has the following corollary.

Corollary 2.4.7 Letϕ be a formula in a propositional language L(A), let∆ ⊆ A and
a a propositional variable not in∆. Then:

apr
∆

(
[[ϕ (a/⊥)]] ∩ [[ϕ (a/>)]]

)
= apr

∆
([[ϕ]]) and

apr∆
(
[[ϕ (a/⊥)]] ∪ [[ϕ (a/>)]]

)
= apr∆([[ϕ]]) .

Proof: First consider the following equalities:

apr
∆

([[ϕ]]) =a /∈ ∆ apr
∆∩{a}([[ϕ]]) =Fact 2.2.8 apr

∆

(
apr{a}([[ϕ]])

)
.

Then observe thatapr{a}([[ϕ]]) = [[ϕ (a/⊥)]] ∩ [[ϕ (a/>)]], by Proposition 2.4.6. The

proof of the second claim is analogous. a
Observe that for each formulaϕ and each∆ ⊆ A, the set

{
σ (ϕ) : σ ∈ Σ∆

}
is finite, becauseϕ only contains a finite number of propositional variables. Hence,
we may assume

∧
σ∈Σ∆

σ (ϕ) and
∨
σ∈Σ∆

σ (ϕ) to be, respectively, a well-formed
finite conjunction and a well-formed finite disjunction, even if∆ is infinite. On ba-
sis of Proposition 2.4.6 we may therefore assume[∆]ϕ and〈∆〉ϕ to abbreviate the
formulas

∧
σ∈Σ∆

σ (ϕ) and
∨
σ∈Σ∆

σ (ϕ), respectively.
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Chapter 3

A Modal Characterization of Nash

Equilibrium

3.1 Introduction

With the advance of distributed and multi-agent systems there has been an increased
interest in the relation between logic and game theory within the field of Artificial
Intelligence (cf., e.g., van Benthem (2001b), Boutilier, Shoham, and Wellman (1997)
and Pauly (2001)). In multi-agent environments, various decision making agents with
various degrees of autonomy interact. The individual agents making up a multi-agent
system may be designed for widely divergent and even conflicting tasks. Still, which
actions are most conducive to an agent’s ends in such situations, may well depend
on the decisions of the other agents. The specification and verification of multi-agent
systems calls for mathematically precise concepts that facilitate reasoning about such
interactive strategic situations. Game theory is relevant to the field ofArtificial Intelli-
gencein that it provides an apposite conceptual framework in this respect.

The theory of games originated in the middle of the 20th Century with the recog-
nition that, to that date, no theory in classical mathematics had dealt with social situ-
ations in which each individual tries to maximize a function according to an idiosyn-
cratic principle without having control over all of the variables on which this function
depends (cf., von Neumann and Morgenstern (1944), p.11). Thus, game theory was
developed as the mathematical study of game-like situations in which the eventual out-
come depends on the individual choices of various agents, each of which has different
preferences over the possible outcomes. In any such situation the traditional notions of
optimality were thought no longer to suffice for a proper analysis and game-theoretical
solution concepts were developed to take over their role. In this respect, the celebrated
Nash equilibriumand itssubgame perfectvariety are archetypical in non-cooperative
settings. Recall that, informally, a collective course of action, or a strategy profile, is
said to be aNash equilibriumif none of the participants has an incentive to deviate
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unilaterally from that course of action (cf., page 28). Whether an agent has such an
incentive depends on his individual preferences.

One of the guiding ideas of game theory is that situations of social interaction
can fruitfully be compared with and analyzed as games by distinguishing players,
their strategies and their interests. Games have proved to be an especially rewarding
metaphor for social environments in which interacting agents are conceived of as play-
ers with individual preferences and powers of manipulation. This leaves the question
how far the game metaphor goes and how far it should be carried. In order to arrive
at a general theory of social interaction, specific and idiosyncratic aspects of games
should be abstracted from, in favor of other, more generic features, which should duly
be emphasized. Where the dividing line between the general and the specific should be
drawn is not an objective matter and may very well depend on one’s purposes. Still, it
should always be borne in mind that:

A model structure that is too simple may force us to ignore vital aspects of the real
games we want to study. A model structure that is too complicated may hinder our
analysis by obscuring fundamental issues. (Myerson (1991), p.37)

The order in which the players perform their actions in strategic situations has reason-
ably been argued to be a vital, rather than an obscuring, aspect in this sense. The mod-
els of strategic situations providedby games in their extensive form— or justextensive
games— are especially designed to account for this type of sequential structure.

The extensive form of a game makes explicit the order in which the players are
to choose among a number of alternative courses of action and how the alternatives
available to a player are dependent on previous decisions. This makes that the extensive
form of a game can be represented as a labelled tree, each subtree of which can be
considered as an extensive game in its own right,i.e., as a subgame of the game as a
whole. An important solution concept that comes along with extensive games is that
of subgame perfect Nash equilibrium. This ramification of the original concept selects
among the Nash equilibria of the a game those strategy profiles that also qualify as a
Nash equilibrium in each of its subgames.

In this chapter, we will give a logical analysis of extensive games and their (sub-
game perfect) equilibria. With an extensive game being introduced as a specific kind
of relational structure, we employ multi-modal languages to this end. First we come to
consider a multi-modal language which set of labels is assumed to possess relatively
little structure. The last section of this chapter shows how this framework can be refined
by deploying the language of Propositional Dynamic Logic (PDL).

Our approach is congenial to Bonanno’s in Bonanno (1998), who used Computa-
tional Tree Logic (CTL) extended with a prediction relation to formalize the concept
of backward induction, which is closely related to subgame perfect Nash equilibrium.
Also the work of Baltag (Baltag (1999)) should be mentioned in this context.

Extensive games define a proper subclass of Kripke-frames for the special kind of
multi-modal language we consider. Each strategy profile of an extensive game then
corresponds to a subrelation in the frame and as such can be taken as the accessibility
relation of a modal operator. Some strategy profiles qualify as a (subgame perfect)
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Nash equilibrium and others do not. A strategy profile being a (subgame perfect) Nash
equilibrium reflects in certain specific structural properties of the subrelation it defines
on the corresponding frame. The result we are after is to characterize these structural
properties by means of a multi-modal formula schema. So, forE an extensive game,
FE its corresponding frame ands one if its strategy profiles, our quest is for a formula
schemaϑ (s) such that:

FE ° ϑ (s) iff s is a subgame perfect Nash equilibrium inE.

Any such result would show that subgame perfect Nash equilibrium is a definable
property of frames in appropriate multi-modal languages. Here it be emphasized that
the frames in question belong to a special class of frames corresponding to extensive
games.

In the next chapter, we propose a sound and complete axiomatization of a multi-
modal logic which semantics is restricted to models based on this class of frames ex-
tensive games define. Remarkably, we will find that the axioms are nothing much out
of the ordinary and can also be bestowed rather intuitive readings. The very austerity
of the whole analysis we take as something speaking in its favor, as it shows how lit-
tle is required of a modal language to be able to characterize (subgame perfect) Nash
equilibrium.

3.2 Extensive Games with Perfect Information

Generally speaking, putting the egg in the pan first and then the butter does not work
quite as well as putting in the butter first and then the egg. The order in which the
actions are performed does matter in some cases. In strategic environments this is no
different. What is more, the order in which agents can make their choices and moves
often makes astrategic differenceand as such is something the game-theorist had better
not ignore entirely.

For an example, consider the strategic situation depicted in Figure 3.1. Here two
players,RowandCol, choose between rows (topor bottom) and between columns (left
or right), respectively. The matrix merely summarizes the payoffs to the players for the
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different possible choices of action. The figure bottom left in each quarter indicates the
payoff toRow, the figure top right the one awarded toCol. The matrix is thought of as
specifying no temporal structure whatsoever; as it is the players are not even assumed
to move simultaneously.

In this situationRowmay be tempted to playbottom, the idea being that this would
leaveCol the relatively unfavorable choice between an outcome of1 and an outcome
of zero. Anticipating thatCol chooses the former,Rowmay expect a payoff of10. In
order to deterRow from taking this course of action,Col may threaten to playleft if
Rowwere to playbottom, resulting in the worst outcome for both players. This would
forceRowto playtop, which guarantees a better outcome forCol. However, if the game
structure were such thatRow is (able) to move first,Col’s threats would be rendered
void, provided he is not otherwise committed to choose the left column. If, in defiance
of Col’s threats,Rowwere to play bottom anyway,Col would be presented with afait
accompliandCol had better make the best of a bad job and opt for the right colomn
after all. Similarly, ifCol were to move first a threat on his part does not make sense
either. In that case, however, he can secure a more favorable outcome by choosing the
left column. That would leaveRow the easy choice between a payoff of6 or one of
zero.Rowmaking the obvious decision would guaranteeCol a payoff of3, instead of
the probable and miserly1 he would have gotten had his initial choice beenright with
Rowquite likely seizing the opportunity and playingbottom. This time, however,Row
can try to achieve a better outcome for both by promising — and committing herself to
fulfill this promise — to playtop if Col decides on the right column.

Figure 3.1 as such leaves unspecified the sequential structure of how the game is
played. Above we gave two possible interpretations, an obvious third would be to
conceive Figure 3.1 as a fully-fledged game in strategic form,e.g., by assuming the
player to make their choices simultaneously or in ignorance of one another’s. Be that
as it may, the point of these reflections is that the order in which the players make
moves does make a strategic difference. For one thing, the feasibility of making a
threat or a promise may depend on it and in our example even the outcome of the game
may as well. As such, the sequential structure of game has sensibly been made subject
of game-theoretic study.

The sequential structure of a game is made mathematically precise in itsextensive
form, which represents the game as a labelled multi-player decision tree. Play com-
mences at the root and each edge indicates a possible course of action for a player. At
each node a player is to strike a decision how to act. The two temporal interpretations
of Figure 3.1 can thus be represented as in Figure 3.2, below. The vectors at the leaves
indicate the payoffs to the players, in both cases the first entry being the payoffRow,
the second toCol. Observe that in both cases, there are four strategies for the second
player that is to move. In the left picture, each ofCol’s strategies has to specify whether
to playright or left both if the first player playstopand if she playsbottom.

Similar concerns may drive the game-theorist to consider models of game-like sit-
uations with even more structure. Strategic reasoning may thus be argued to depend
on epistemic features such as the players’ knowledge of the situation they are in or
the beliefs they entertain about it or about one another’s beliefs, preferences and ra-
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Figure 3.2.

tionality. Likewise, one may wish to consider players that randomize over their (pure)
strategies. In an effort at keeping our logical analysis as perspicuous as possible, how-
ever, we will abstract from these issues and confine our attention to extensive games in
pure strategies with perfect information,i.e., the players are assumed to play a (pure)
strategy with probability one or zero and they are assumed to be fully informed about
the game’s structure and the other players’ preferences and powers. Moreover, we will
assume that only one player can move at a time and that the games will eventually come
to an end after a finite number of moves. With respect to the preferences of the players,
we take into account the ordinal structure they determine over the possible outcomes
only, as this suffices for our purposes. Concerns as to the intensity of preference as
expressible by a specific rational or real number, do not enter the picture. Disregarding
uncertainty on the part of the players as well as mixed (or randomized) strategies, our
analyses are of a strictly qualitative nature. The following definition mathematically
precise the notion of agame in extensive form, or just anextensive game.

Definition 3.2.1 (Games in extensive form of perfect information)A game in exten-
sive form Eis a tuple

(
V,R,N,P, {ρi}i∈N

)
, whereV is a set of vertices (or nodes) and

R a relation onV such that(V,R) is a, possibly infinite, directed and irreflexive tree
with a finite horizon,i.e., (V,R) contains no infinite branches. The root node of(V,R)
is usually denoted byvε. Furthermore,N is a non-empty butfinite set of players. The
function P assigns to each internal node inV the player inN that has to move atv.
Finally, for eachi in N, ρi is a total pre-order (a reflexive, transitive and connected rela-
tion) over the vertices inV, specifyingi’s preferences. Intuitively,(v, v′) ∈ ρi signifies
that i valuesv′ at least as high asv. A player i is calledindifferent if ρi = V × V and
interested, otherwise. LetZ denote the set of leaves of(V,R) and, for each playeri, let
Vi betoken the subset of vertices in whichi is to move,i.e., the set{v ∈ V : P(v) = i}.

This definition differs from more conventional ones in that the players’ preferences are
defined over all vertices rather than over the leaves only. Although for the relevant
game-theoretical concepts the preferences over the leaf nodes suffice, we found that
defining preferences over all vertices is more convenient for our logical analyses. Note
further that the players’ preferences over the internal nodes are independent of their
preferences over the leaf nodes. In particular, they are not assumed to coincide with
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the preferences over the internal nodes that backwards induction would give rise to.
An extensive game is a labelled tree, the vertices of which represent the possi-

ble game positions and the edges(v, v′) are possible actions for the player assigned
to v. After a player has decided to play along a certain edge and acted accordingly,
the game reaches a new game state. The position then reached is either a leaf, in
which case the game terminates, or an internal node. In the latter case, the node
reached can also be taken as the the root node of an extensive game, with the play-
ing of which the game proceeds. This idea gives rise to the notion of asubgame.
Let E be an extensive game given by the tuple

(
V,R,N,P, {ρi}i∈N

)
. For each subtree

(V′,R′) of (V,R) generated by some vertexv, another extensive game is obtained by
appropriately restricting the assignment functionP and eachρi to the vertices inV′.
For each vertexv in V we define the subgameEv as the tuple

(
V′,R′,N,P′, {ρ′i}i∈N

)
,

whereV′ = {v′ ∈ V : (v, v′) ∈ R∗}, R′ =
{
(v′, v′′) ∈ V′ × V′ : (v′, v′′) ∈ R

}
,

P′ = P¹ V′ and for eachi ∈ N, ρ′i = ρi ∩ (V′ × V′). Here,R∗ denotes the reflexive
transitive closure ofR.

A (pure) strategyfor a player in an extensive form is a complete plan for that player
to play the respective game. As such a strategy has to account for a player’s choices
at all stages of the game in which that player is in control. A strategy even has to
prescribe a player’s actions in stages of the game it itself precludes from being reached.
Intuitively, a strategy profileis then a combination of strategies, for each player one.
The set of strategy profiles in an extensive gameE is denoted bySE, omitting the
subscript where no ambiguity can arise. For our concerns the notion of a strategy
profile is more fundamental than that of a strategy. We define a strategy profiles of an
extensive game formally as a function mapping eachinternal vertex onto a vertex that
succeeds it,i.e., for eachv in V, (v, s(v)) ∈ R. For any pair of strategy profilessands′

and for each subset of playersI we havesI
s′ denote the strategy profile that is likes

except on the vertices assigned to one of the players inI where it takes values froms′.
I.e., for all internal verticesv we have:

sI
s′ (v) =df.

{
s′ (v) if P(v) ∈ I ,

s(v) otherwise.

We also havesi
s′ abbreviates{i}

s′ . A strategy for a player iis then the restriction of a
strategy profile to the vertices in whichi is in control. Accordingly the set of strategies
for a playeri is defined by{s¹ Vi : s∈ S}.

From each vertexv onwards a strategy profilesgenerates a path through the game-
tree until a leaf node is reached. This path is given by the sequencev0, . . . , vn such that
v0 = v, vn is a leaf andvi+1 = s(vi), for all 0 6 i < n, i.e., by the sequence:

v, s(v) , . . . , sn (v) ,

wheresn (v) denotes then-fold application ofs to v. E.g., s3 (v) = s(s(s(v))). In
this manner each strategy profile determines for each vertex a unique leaf node as out-
come. With each strategy profiles we accordingly associate anoutcome function,̂s,
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which maps each vertex on the leaf it has as an outcome if the strategy profiles is fol-
lowed iteratively. Formally we define for each strategy profiles the outcome function̂s
inductively such that for each vertexv in V:

ŝ(v) =df.

{
v if v is a leaf,

ŝ(s(v)) otherwise.

On this basis, each extensive gameE can be correlated with a strategic gameGE.
The unique outcomes the strategy profiles determine for the root node can be rep-
resented in a matrix. Thus the various strategy profiles of extensive games can be
compared with respect to the solution concepts available for strategic games, in par-
ticular that of Nash equilibrium. Exploiting the outcome function, the preference rela-
tion ρi for each playeri can straightforwardly be raised as to apply to strategy profiles.
Let E be the extensive game

(
V,R,N,P, {ρi}i∈N

)
. The preferences of playeri over the

strategy profiles are made dependent oni’s preferences over the outcomes these strat-
egy profiles induce in the root node of the game-tree. Define the preference relationρ̂i

over the strategy profiles ofE for each playeri such that for all strategy profilessands′

for E:
(s, s′) ∈ ρ̂i iff

(
ŝ(vε) , ŝ′ (vε)

) ∈ ρi .

Let the tuple
(
N, {Si}i∈N , {ρ̂i}i∈N

)
define the strategic gameGE. A strategy pro-

file s is then said to be aNash equilibriumin an extensive gameE if and only if s is a
Nash equilibrium in the strategic gameGE. Intuitively, a strategy profiles is a Nash-
equilibrium if none of the players benefit from unilaterally deviating froms. For s a
strategy profile in an extensive gameE given by

(
V,R,N,P, {ρi}i∈N

)
we obtain:

s is aNash equilibrium iff for all i ∈ N,and alls′ ∈ SE :
(
ŝi

s′ (vε) , ŝ(vε)
) ∈ ρi .

As an individual pendant of Nash-equilibrium we have the concept of abest response
for a player idefined for a strategy profiles and a playeri as:

s is abest response for i iff for all s′ ∈ SE :
(
ŝi

s′ (vε) , ŝ(vε)
) ∈ ρi .

Obviously, a strategy profile is a Nash-equilibrium if and only if it is a best response
for all players.

The notion of a Nash equilibrium entirely focusses on the outcomes the various
strategy profiles determine from the root. Different strategy profiles may very well
give rise to an identical path from root to leaf node — and as such determine the same
outcome — and still differ widely on vertices off this path. The path a Nash equilib-
rium determines through the game tree is such that unilateral deviation from it will not
benefit the defector. Yet, it has been argued that if the sequential structure of a game is
taken into account, the notion of Nash equilibrium fails to make some important dis-
tinctions. Although one could accept — were it only for the sake of argument — the
refusal to defect unilaterally from the equilibrium path as the very hallmark of game-
theoretical level-headedness,off the equilibrium path a Nash equilibrium may strike
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Figure 3.3. The extensive game of Example 3.2.2.

one as somewhat unsatisfactory. Consider once more the extensive game in Figure 3.2
in which Row is to move first. We have already argued thatRow need not refrain
from playing bottomeven if Col were to threaten to choose the left column in that
case. This is vindicated by all strategy profiles in whichRowchoosesbottomandCol
subsequently playingright being Nash equilibria in this game. Strategies, however,
determine choices for the players at all nodes where they are to play. The node that
would have been reached hadRowchosentop is no exception. At that node it would
be slightly incomprehensible ifCol were to choose the left column. Still the strategy
profile in whichRowplaysbottomandCol playsright if Rowwere to playbottomand
left otherwise, is nevertheless a Nash equilibrium.

As a refinement of Nash equilibrium that does do justice to the sequential struc-
ture of an extensive game, Selten (Selten (1965)) proposed the solution concept of a
subgame perfect Nash equilibrium. Roughly speaking, a strategy profile is a subgame
perfect Nash equilibrium in an extensive gameE if it is a Nash equilibrium in all sub-
games ofE. In the example above, any strategy profile that would prescribeCol to play
left whenRowhas chosen the top row, would not qualify as a subgame perfect Nash
equilibrium. Formally, forE the extensive game

(
V,R,N,P, {ρi}i∈N

)
, define for each

strategy profiles:

s is asubgame perfect Nash equilibrium

iff

for all v ∈ V, i ∈ N,ands′ ∈ SE :
(
ŝi

s′ (v) , ŝ(v)
) ∈ ρi .

As individual counterpart of this concept we also introducesubgame perfect best re-
sponses for a player idefined in a similar manner as a strategy profile that is a best
response fori in all subgames. A formal definition of this concept is obtained by omit-
ting the universal quantification over the players in thedefiniensof a subgame perfect
Nash-equilibrium.

The following example illustrates the concepts that have been introduced so far.

Example 3.2.2 Figure 3.3 gives a graphical representation of a two-player game in
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ll lm lr rl rm rr

6 6 6 4 4 4
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1 1 1 3 3 3

5 5 5 4 4 4
LR

2 2 2 3 3 3

3 2 0 3 2 0
RL

4 5 0 4 5 0

3 2 0 3 2 0
RR

4 5 0 4 5 0

Figure 3.4. The strategic game associated with the extensive game of Example 3.2.2, with
Player 1 choosing rows and Player 2 choosing columns.

extensive form. The preferences of the players over the leaves are represented by the
vectors appended to the leaf nodes. The first entry indicates the preferences of Player 1
and the second those of Player 2. The higher the value, the more the outcome is pre-
ferred by the player.E.g., the pair(z5, z3) is in the preference relationρ2, because2
is smaller than4. Player 1 has four strategies at her disposal and Player 2 six. Ac-
cordingly, there are twenty-four strategy profiles in all, each of which we indicate by a
four letter subscript corresponding to the direction the players move at the verticesvε,
v3, v1 andv2, respectively. The choices of player 1 are denoted by capitals, those of
player 2 by lower case letters.E.g., the strategy profilesRLlr is the functional relation
given by

{
(vε, v2), (v3, z1), (v1, v3), (v2, z6)

}
. Starting from the rootvε, it gives rise to

the sequencevε, v2, z4 and, accordingly, we have:

ŝRLlr (vε) = ŝRLlr (sRLlr (vε)) = ŝRLlr (v2) = ŝRLlr (sRLlr (v2)) = ŝRLlr (z6) = z6.

This strategy profile, however, fails as a Nash equilibrium. Player 2 could deviate
fromsRLlr atv2 and playl there instead. This would make thatsRLll is played, yieldingz4
as outcome and guaranteeing him a payoff of3 instead of zero. The corresponding
strategic game is given in Figure 3.4. The Nash equilibria are given by the following
relations on the vertices:

sRLll =
{
(vε, v2), (v3, z1), (v1, v3), (v2, z4)

}
,

sRLrl =
{
(vε, v2), (v3, z1), (v1, z3), (v2, z4)

}
,

sRRll =
{
(vε, v2), (v3, z2), (v1, v3), (v2, z4)

}
,

sRRrl =
{
(vε, v2), (v3, z2), (v1, z3), (v2, z4)

}
,

sLRlr =
{
(vε, v1), (v3, z2), (v1, v3), (v2, z6)

}
,
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Of these onlysRRll is a subgame perfect Nash equilibrium as well. The strategy pro-
file sLRlr, e.g., is excluded as a subgame perfect equilibrium since it is not a Nash-
equilibrium in the subgame that hasv2 as root.

Obviously, every subgame perfect Nash equilibrium is also a Nash equilibrium. An
important result known as Kuhn’s theorem (cf., Kuhn (1953)), establishes that every
finite extensive game of perfect information has a subgame perfect Nash equilibrium
in pure strategies. Closely related is the method ofbackwards induction, which is
essentially an algorithm providing subgame perfect Nash equilibria which goes back
to Zermelo (1913).

A strategy profile corresponds with a collection of paths through the tree and each
of these paths starts at a different internal node. In particular, a strategy profile deter-
mines a path connecting the root with a leaf. Strategies can similarly be construed as
subgraphs of(V,R). Another interesting subgraph results if one takes the union of a
strategy profilesand the set of edges with the vertices possessed by a (sub-)set of play-
ersI as source. Intuitively, the significance of any such graph is that it reflects which
outcomes a set of players can force to come about if they operate in coalition and the
strategies of the other players are given. For the game of Example 3.2.2, this graph for
Player 1 and the strategy profilesRLll curbing Player 2’s freedom of action is depicted
in Figure 3.5.

To capture this notion formally we define for each strategy profiles and subset of
playersI a correspondencesI on the vertices such that for all verticesv in V:

sI (v) =df.

{{
w ∈ V : (v,w) ∈ R

}
if P(v) ∈ I ,

{s(v)} otherwise.

The correspondencesI is obviously monotone inI , i.e., I ′ ⊆ I ′′ impliessI ′ ⊆ sI ′′ .
Each relationsI , in turn, induces a correspondence on the vertices of the game,

which value is a subset of the leaves of the tree. We define for each strategy profiles in
Sand each subsetI of players inN, this correspondencêsI such that for each vertexv
in V:

ŝI (v) =df.



{v} if v is a leaf,⋃ {

ŝI (w) : w ∈ sI (v)
}

otherwise.

We will write ŝi for ŝ{i}. The value the correspondenceŝI takes at the rootvε is the set
of outcomes the players inI can force to come about by cooperating if the other players
adhere to the strategy profiles. In our example,s1 (vε) =

{
z1, z2, z4

}
, wheres repre-

sentssRLll. Obviously, the more players inI the larger this set of forceable outcomes,
i.e., the monotonicity ofsI propagates tôsI :

I ⊆ I ′ implies ŝI ⊆ ŝI ′ .

The following fact relates notations and will prove to be particularly convenient. Its
proof is an easy check.



DESCRIBING AND REASONING ABOUT EXTENSIVE GAMES 71

´
´

´
´́+p2 p v1

½
½

½=p1 p v3

¡
¡¡ªp`

1
6

´pz1

Z
Z

Z~p`
2
5

´pz2

p1 p

vε
Q

Q
Q

QQs
½

½
½=p`
4
3

´pz4

p2pv2

Figure 3.5. The graph of the correspondenceŝ1 in the game of Example 3.2.2, wheres repre-
sentssRLll. Player 1 can force the game to terminate in eitherz1, z2 or z4 if Player 2 adheres to
the strategy profilesRLll.

Fact 3.2.3 Let s be a strategy profile of some extensive game E with v and v′ vertices
therein and I a subset of its players. Then:

v ∈ ŝI (v′) iff for some s′ ∈ S: ŝI
s′ (v′) = v.

Obviously as special case we have thatŝø (v) = {ŝ(v)} . The set of outcome nodes that
can be reached by a strategy profileswith no player possibly deviating clearly contains
as only the element the vertex thatsdetermines as the unique outcome.

3.3 Describing and Reasoning about Extensive Games

Extensive games are based on trees and the players’ preferences are defined as rela-
tions over the vertices in the previous section. Exploiting this relational structure, we
propose a multi-modal language to describe extensive games and reason about them.
In particular, we will argue that such a language can express whether a strategy profile
of an extensive game is a (subgame perfect) Nash equilibrium.

Syntax and Semantics

Our formal researches are conducted within propositional multi-modal logic. A propo-
sitional multi-modal languageL(A,B) contains a non-empty but countable set of propo-
sitional variablesA along with a countable set of labelsB for monadic modalities.
The formulas ofL(A,B) are thus given by the following BNF-grammar, witha ∈ A
andβ ∈ B:

ϕ ::= a
∣∣ ¬ϕ ∣∣ ϕ0 ∧ ϕ1

∣∣ [β]ϕ

We assume the set of labelsB to be the union of two disjoint sets and their Cartesian
product, i.e., B = B0 ∪ B1 ∪ (B0 × B1) with B0 ∩ B1 = ø. Moreover,B0 will be
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assumed to be non-empty and finite. Multi-modal languagesL(A,B) with B structured
thus we will refer to asmulti-modal matrix languages.

Extensive games are taken as the basis of the frames any such multi-modal language
describes. Truth-value assignments to the propositional variables at each vertex takes
care of the interpretation of the propositional variables and the Boolean connectives are
given their conventional interpretation. The labels inB0 go proxy for the players of a
game. For eachβ ∈ B0, the accessibility relationRβ runs along the preference relation
of one of the players of the game. This gives rise to the intuitive reading of[β]ϕ as“ ϕ
holds in all states at least as preferable to i as the present one,”wherei is the player
associated with the labelβ. For convenience, the labels inB0 are also calledplayer
labels. In contrast, the labels inB1 stand for strategy profiles of the gameL(A,B) aims
to describe and are therefore referred to asstrategy labels. For each labelβ ∈ B1 the
accessibility relationRβ is defined as (the graph of) the functionŝ, wheres is the strat-
egy profile associated withβ. As suchRβ relates vertices to leaves only, being reflexive
at the latter. Intuitively,[β]ϕ then reads“ if, starting in the state of evaluation, all play-
ers choose their strategies as prescribed in s, the game ends in a situation in whichϕ
holds”. Finally, let i be the player associated with the labelβ in B0 ands the strategy
profile associated with the labelβ′ in B1. Then, the accessibility relationR(β,β′) con-
nects each vertexv to the leaf nodes in̂si (v). Recall that̂si (v) collects the terminal
nodes playeri can force to come about, provided that the other players adhere to the
strategy profiles. Then[(β, β′)]ϕ obtains the informal interpretation of“ ϕ holds in all
outcome states that can be reached if at most player i deviates from s.”

The frames and models for the multi-modal languages are also of a special kind.
Rather than taking into account all relational structures, the formal semantics is defined
on frames that are structurally closely related to extensive games. The notion of a
game-modelfor L(A,B) on such agame-frameis then introduced much in the usual
fashion.

Definition 3.3.1 (Game-frames and Game-models)A framefor a multi-modal matrix
languageL(A,B) is a tuple

(
V, {Rβ}β∈B

)
, whereV is a set of vertices andRβ ⊆ V×V,

for eachβ ∈ B. A label mapfor L(A,B) a multi-modal matrix language on an extensive
gameE is a functionf mapping each label inB0 onto a player inN and each label in
B1 onto a strategy profile ofE. In the sequel we will usually tacitly assume such a
label mapf and denote the labels inB by their values underf , i.e., if f (β0) = i and
f (β1) = s, we will write i, ŝø andŝi for, respectively,β0 in B0, β1 in B1 and(β0, β1)
in B0 × B1. We say that the labelsβ0 andβ1 representthe playeri and the strategy
profile s, respectively. Agame-framefor L(A,B) on an extensive gameE is a tuple(
V, {Rβ}β∈B , f

)
, where

(
V, {Rβ}β∈B

)
is an frame frame forL(A,B) and f a label

map onE such that:

vRiv
′ iff (v, v′) ∈ ρi

vR̂søv′ iff v′ ∈ ŝø (v)
vR̂si

v′ iff v′ ∈ ŝi (v) .
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Figure 3.6. Transformation of an extensive game (left) to a game-frame (right) with respect to
two strategy profiless ands′ and their corresponding accessibility relationsR̂sø andR̂s′1. In the
righthand figure the reflexive arrows at the leaves are omitted.

We denote a game-frame onE by FM
E , tacitly assuming a label mapf and usually omit-

ting the superscript M. A frameF is a game-frame forL(A,B) simpliciter if there
is some label map rendering it a game-frame on some extensive gameE. A game-
modelM for L(A,B) is a pair(F,V), whereF is a game-frame

(
V, {Rβ}β∈B

)
for

L(A,B) andV a function assigning to each vertex inV a subset of propositional vari-
ables inA, i.e., V : V → 2A. Figure 3.6 illustrates the construction of a game-frame
from an extensive game.

On this basis, multi-modal matrix languages are furnished with a standard modal se-
mantics:

M, v ° a iff a ∈ V(v)

M, v °¬ϕ iff M, v 1 ϕ

M, v °ϕ ∧ ψ iff M, v ° ϕ and M, v ° ψ

M, v ° [β]ϕ iff for all v′ ∈ V such thatvRβv′ : M, v′ ° ϕ.

Furthermore,M ° ϕ denotes that for all verticesv in M it is the case thatM, v ° ϕ.
M, v ° Γ signifies thatM, v ° γ, for all γ in Γ . Finally, F ° ϕ andF, v ° ϕ denote
that, respectively,M ° ϕ andM, v ° ϕ, for all modelsM on F. We will use²C

to symbolizelocal semantical modal consequencewith respect to the class ofgame
framesdenoted byC . I.e., we haveΓ ²C ϕ if and only if M, v ° Γ impliesM, v ° ϕ,
for all verticesv of all modelsM on agame-framein C . In caseC is the class of all
game-frames, we writeΓ ²M ϕ.

In the next chapter we will present a sound and complete axiomatization for this
semantic modal consequence relation. The modal semantics of multi-modal matrix
languages is confined to models on game-frames. This complicates the Henkin-style
completeness proof to some degree as the model constructed should be guaranteed to
be based on a game-frame.
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Characterizing Subgame Perfect Nash Equilibria

A strategy profile being a Nash equilibrium in a particular extensive game, is a feature
of that game which, moreover, is reflected in a particular structural property of game-
frames defined on it. A condition for a game-frame to evince this feature is that the
strategy profile in question and each interested player be represented by a label in
the respective multi-modal matrix language. The aim of this section is to formulate
this structural property of game-frames and to characterize it by means of a formula
schema of the modal language. To make this idea somewhat more precise, lets be a
strategy profile in some extensive gameE. Let furtherL(A,B) be a multi-modal matrix
language andFE a game-frame onE in which s is represented by some strategy label
in B. What we are after is a formula schemaϑ (s) such that:

FE ° ϑ (s) iff s is a subgame perfect Nash equilibrium inE.

It turns out that such a formula schema can be obtained as a special case of a
familiar schema in standard modal correspondence theory. A frame

(
V, {Rβ}β∈B

)
for a multi-modal languageL(A,B) — i.e., not per sea multi-modalmatrix language
as introduced in the previous subsection — containingk, l, m and n as labels inB
for L(A,B) is said to have the(k, l,m,n)-confluence propertyif:

for all v,w, x ∈ V : vRkw andvRmx imply for somey ∈ V : wRly andxRny.

Here the labelsk, l, m andn neednot necessarily be distinct. The following fact then
holds. For a proof the reader be referred to Popkorn (1994).

Fact 3.3.2 (Confluence) Let L(A,B) be a multi-modal language containing k, l, m
and n as labels. Then the formula schema〈k〉[l]ϕ → [m]〈n〉ϕ characterizes frames
for L(A,B) satisfying the(k, l,m,n)-confluence property.

If Rn is taken to be the identity relation on the set of vertices(k, l,m,n)-confluence re-
duces to the following property, which for obvious reasons we dub(k, l,m)-Euclidicity:

for all v,w, x ∈ V : vRkw andvRmx imply wRlx.

As a special case of Fact 3.3.2 we now obtain as a corollary the following fact, of which
also the direct proof is elementary:

Corollary 3.3.3 For L(A,B) a multi-modal language containing k, l and m as la-
bels, the formula schema〈k〉[l]ϕ → [m]ϕ characterizes frames for L(A,B) satisfying
(k, l,m)-Euclidicity.

By appropriately choosingk, l andm from the labels of a multi-modal matrix lan-
guageL(A,B) a strategy profiles being a subgame perfect best response for a playeri
in a game-frameF can be characterized by the formula schema〈k〉[l]ϕ → [m]ϕ. Tak-
ing ŝi for k, i for l andŝø for m, respectively, gives the desired result. Considering that
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this schema characterizes frames satisfying(ŝi , i, ŝø)-Euclidicity this makes informally
sufficient sense:

for all v, v′, v′′ ∈ V : vR̂si
v′ andvR̂søv′′ imply v′Riv

′′.

In words this condition says that, if play commences at a vertexv, playeri values the
vertexv′′ that the strategy profiles determines as an outcome at least as highly as any
vertex v′ that i can force to come about by unilaterally deviating froms. If this is
the case, by deviating froms the playeri will not be better off than by sticking to the
strategy prescribed bys. The following proposition establishes this observation as an
appropriate basis for the characterization of the game-theoretical property of a strategy
profile being a subgame perfect response for a player in a game.

Proposition 3.3.4 Let s be a strategy profile and i a player of an extensive game E.
Let further L(A,B) be a multi-modal matrix language,FE a game-frame for L(A,B) on
E in which s and i are represented by a label in B. Then:

s is a subgame perfect best response for i in E iffFE is (ŝi , i, ŝø)-Euclidean.

Proof: For the left-to-right direction, assume the contrapositive,i.e., thatFE is not
(ŝi , i, ŝø)-Euclidean. Then, there are verticesv, v′ andv′′ such that:

(a) vR̂si
v′ (b) vR̂søv′′ (c) not: v′Riv

′′.

The frameFE being a game-frame onE and i ands being represented by labels inB,
these claims correspond to:

(a′) v′ ∈ ŝi (v) (b′) v′′ ∈ ŝø (v) (c′) (v′, v′′) /∈ ρi .

With (a′) and Fact 3.2.3 there is somes′ such that̂si
s′ (v) = v′. Moreover, sincêsø (v) =

{ŝ(v)}, alsoŝ(v) = v′′. Hence, with (c′),
(
ŝi
s′ (v) , ŝ(v)

)
/∈ ρi , i.e., s is not a subgame

perfect Nash equilibrium inE.
For the right-to-left direction, assume thats is not a subgame perfect Nash

equilibrium in E. Then for some vertexv, some playeri and some strategy pro-
file s′,

(
ŝi

s′ (v) , ŝ(v)
)
/∈ ρi . By definition of FE as a game-frame onE, however,

bothvR̂si
ŝi

s′ (v) andvR̂sø ŝ(v). It follows thatFE is not(ŝi , i, ŝø)-Euclidean. a
Putting things together we obtain the following theorem, which lays down the results
we set out to prove in this section. The reader recall that a player is calledinterestedif
he values some vertices strictly higher than other vertices.

Theorem 3.3.5 Let L(A,B) be a multi-modal matrix language, E an extensive game
andFE a game-frame for L(A,B) on E. Assume that I be a subset of the player labels
B0 and contain labels representing eachinterestedplayer in E. For i a player and s a
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strategy profile in E both represented by a label in B, then:1

FE, vε ° 〈ŝi〉[i]ϕ→ [̂sø]ϕ iff s is a best response for i in E

FE ° 〈ŝi〉[i]ϕ→ [̂sø]ϕ iff s is a s.p. best response for i in E

FE, vε °
∧

i∈I

(〈ŝi〉[i]ϕ→ [̂sø]ϕ
)

iff s is a Nash equilibrium in E

FE °
∧

i∈I

(〈ŝi〉[i]ϕ→ [̂sø]ϕ
)

iff s is a s.p. Nash equilibrium in E.

Proof: As all claims rest on much the same principles, we only present the proof
of the fourth claim here. For the right-to-left direction, first assume that the for-
mula schema

∧
i∈I

(〈ŝi〉[i]ϕ → [̂sø]ϕ
)

is not valid inFE. Hence, for some playeri
and some formulaϕ we haveFE 1 〈ŝi〉[i]ϕ → [̂sø]ϕ. Consequently, the formula
schema〈ŝi〉[i]ϕ→ [̂sø]ϕ is not valid inFE either. In virtue of Corollary 3.3.3, then,FE

does not satisfy(ŝi , i, ŝø)-Euclidicity. With Proposition 3.3.4, thens is not a subgame
perfect best response fori, and,a fortiori, neither a subgame perfect Nash equilibrium.

For the opposite direction, assume for some vertexv, some playeri and some
strategy profiles′, that

(
ŝi

s′ (v) , ŝ(v)
)
/∈ ρi . Observe that this rendersi an interested

player. An easy little inductive argument, which we will leave to the reader, establishes
that ŝi

s′ (v) ∈ ŝi (v). Hence, by definition ofFE bothvR̂si
ŝi

s′ (v) andvR̂sø ŝ(v). It follows
thatFE is not(ŝi , i, ŝø)-Euclidean. Hence, the formula schema〈ŝi〉[i]ϕ → [̂sø]ϕ is not
valid onFE anda fortiori neither is the formula schema

∧
i∈I

(〈ŝi〉[i]ϕ → [̂sø]ϕ
)
. This

concludes the proof. a
In the sequel, For each labeli ∈ B0 and each labels ∈ B1, we refer to the axiom
schema〈ŝi〉[i]ϕ→ [̂sø]ϕ by 5s,i and the axiom schema

∧
i∈I

(〈ŝi〉[i]ϕ→ [̂sø]ϕ
)

by 5I
s.

3.4 Characterizing Nash Equilibria in Dynamic Logic

In the previous section, we argued that the structural dependencies that obtain between
the players’ preferences and their strategies when a strategy profile is a (subgame per-
fect) Nash equilibrium can suitably be characterized in a multi-modal matrix language
L(A,B). Some of the labels of such a multi-modal matrix language represent a strategy
profile s and are interpreted as the graph ofŝø. These labels, however, have no further
internal structure and their accompanying accessibility relations are semantically prim-
itive. As a consequence, in order to evaluate a formula of the form[̂sø]ϕ at a vertexv,
one needs to calculate, quite independently of the semantics, the value ofŝø (v) in the
game under scrutiny in order to identify the vertices reachable fromv via R. A similar
remark applies to the evaluation of formulas of the form[̂si ]ϕ in a vertexv, which re-
quires the calculation of the value ofŝi (v). In the semantics of the multi-modal matrix

1Here 〈̂si〉[i]ϕ → [̂sø]ϕ and
V

i∈B0

`〈̂si〉[i]ϕ → [̂sø]ϕ
´

denoteformula schemas, rather than formulas.
Furthermore, ‘s.p.’ abbreviates ‘subgame perfect’.
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languages much of the burden has thus been put on the the transformation of an exten-
sive game to a game-frame, which requires reasoning of a game-theoretical rather than
a logical nature.

For an illustration of this point consider once again the game of Example 3.2.2,
above. LetL(A,B) be a feasible multi-modal matrix language containing a labels for
the strategy profilesRLll. In order to evaluate,e.g., the formula of the form[̂s2]ϕ at a
statev in a model on the corresponding frame, one should investigate whetherϕ holds
in all vertices in̂s2 (v). The relationR̂s2

, however, is taken to be semantically primitive
and to establish that,e.g., vεR̂s2

z5 but that notv3R̂s2
z2 the semantics is of no further

help. These facts have to be obtained independently at the meta-level of reasoning.
The set of labels of the dynamic language ofPropositional Dynamic Logic(PDL)

has a richer structure, giving rise to a highly expressive modal logic. Exploiting this
structure and expressive power some of the semantic burden can be shifted from the
informal meta-level of reasoning about the model to the object-level of the logic. We
will find that the relations corresponding tôsi and ŝø are the accessibility relations
associated with labels denoting complex programs, which allow for further semantical
analysis. Also the way a frame for an appropriate dynamic language is constructed
from an extensive game is more direct and preserves more of the treelike structure of an
extensive game than was the case for multi-modal matrix languages (for an illustration
of this point compare Figure 3.6, above, and Figure 3.7, below).

This section concerns a class of two-sorted multi-modal languagesL(A,B), where
B is the union of two disjoint label setsB0 andΠB1 , whereΠB1 denotes the set of
PDL-programs over a setB1 of atomic programs. The set of formulasϕ and the set
of programsπ of such a languageL(A,B) — which we will call dynamic multi-modal
languages— are given by the following BNF-grammar, witha ∈ A, β0 ∈ B0 andβ1 ∈
B1:

ϕ ::= a
∣∣ ¬ϕ ∣∣ ϕ0 ∧ ϕ1

∣∣ [π]ϕ
∣∣ [β0]ϕ

π ::= β1

∣∣ π0;π1

∣∣ π0 ∪ π1

∣∣ π∗ ∣∣ ϕ?

Extensive games are again used as the basis for the models on which such languages are
interpreted. The propositional connectives and the program operators obtain their usual
informal readings of negation (¬), conjunction (∧), sequential composition (;), non-
deterministic choice (∪), iteration (∗) and test (?). We also have the usual abbreviations,
in particular that of“ while ϕ do π od” for “ (ϕ?;π)∗ ;¬ϕ” . The labels inB0 go proxy
for the players of a game, giving rise to the informal reading of[i]ϕ as“ ϕ holds in all
states at least as preferable to i as the state of evaluation”, as before. The atomic
programs inB1 are interpreted as a subset of the edges of the game-tree. We assume
this set of atomic programsB1 to be the union of two disjoint setsB10 andB11. Each
atomic programβ ∈ B10 is associated with a playeri and runs along those edges(v, v′)
of which v is assigned to the playeri. Letting β10 be associated with playeri, then,
intuitively, [β10]ϕ reads“if i is to move, thenϕ holds at the next stage of the game no
matter which strategy i decides to act upon”.The atomic programβ10 in B10 associated
with a playeri will be denoted byπ(i). We will moreover assume that the set of players
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Figure 3.7. Transformation from the extensive game in Figure 3.6 to a dynamic game-frame
(left) with respect to two strategy profilessands′ and their corresponding atomic programsπ(s),
π(s′), π(1) andπ(2). The righthand figure shows the programsπ(s,ø) andπ(s′, 1). Note that
these can be“derived” from the lefthand figure, whereas in the multi-modal framework these
relations were primitive .

associated with the labels inB0 is identical with the set of players associated with the
labels inB10. Each atomic programβ11 in B11 is associated with a strategy profiles.
Informally, [β11]ϕ holds at a vertexv, if ϕ holds at the next stage that the game will be
in if the strategy profiles is adhered to. Fors a strategy profile,π(s) denotes the label
in B11 it is thus associated with. We now define formally:

Definition 3.4.1 (Dynamic game-frames and dynamic game-models)A frame for a
dynamic multi-modal languageL(A,B) is a tuple

(
V, {Rβ}β∈B

)
, whereV is a set of

vertices andRβ ⊆ V × V, for eachβ ∈ B. A label mapfor L(A,B) a dynamic multi-
modal language on an extensive gameE is a functionf mapping each label inB11 onto
a strategy profile ofE and each label inB0 and each label inB10 onto a player inN such
that f (B0) = f (B10). In the sequel we will usually tacitly assume such a label map
f and, if f (β0) = i, f (β10) = j andf (β11) = s, write i, π(j) andπ(s) for, β0 in B0,
β10 in B10 andβ11 in B11, respectively. Adynamic game-frameFPDL

E for L(A,B) on an
extensive gameE is a tuple

(
V, {Rβ}β∈B , f

)
, where

(
V, {Rβ}β∈B

)
is an PDL-frame

andf a label map onE such that:

vRiv
′ iff (v, v′) ∈ ρi

vRπ(i)v
′ iff P(v) = i and (v, v′) ∈ R

vRπ(s)v
′ iff s(v) = v′,

If formal rigor permits we will often omit the superscript PDL for aesthetic reasons. A
dynamic game-modelM for L(A,B) is defined as usual as a pair(F,V), whereF is a
dynamic game-frame forL(A,B) andV an interpretation function for the propositional
variables inA, i.e., V : V → 2A as before. Figure 3.7 illustrates the transformation of
an extensive game to a dynamic game frame.
The evaluation of the formulas of a dynamic multi-modal languageL(A,B) in a PDL-



NASH EQUILIBRIA IN DYNAMIC LOGIC 79

model is then as usual.

M, v ° a iff a ∈ V(v)

M, v °¬ϕ iff M, v 1 ϕ

M, v °ϕ ∧ ψ iff M, v ° ϕ and M, v ° ψ

M, v ° [β]ϕ iff for all v′ ∈ V such thatvRβv′ : M, v′ ° ϕ.

A PDL-modelM is said to beregular if program connectives “;”, “∪”, “ ∗” and “?”
have their intuitive interpretations ofsequential composition, non-deterministic choice,
iterationandtest, respectively,i.e., if the following conditions are fulfilled:

Rπ1;π2 = Rπ1 ◦Rπ2

Rπ1∪π2 = Rπ1 ∪ Rπ2

Rπ∗ = (Rπ)
∗

Rϕ? =
{
(v, v) : M, v ° ϕ

}
.

HereRπ1 ◦Rπ2 denotes the relational composition ofRπ1 andRπ2 , and(Rπ)
∗ is the

transitive reflexive closure or ancestral ofRπ. In the sequel we will assume PDL-
models to be regular.

The important thing to observe in this definition is that the accessibility relations
Ri , Rπ(i) andRπ(s) can be read off from the extensive game specification almost imme-
diately. In particular, the construction does not invoke the correspondencesŝi and ŝø
for the interpretation of the atomic progams.

Theorem 3.3.5, above, showed that subgame perfect Nash equilibria are character-
ized in multi-modal matrix languages by the axiom schema

∧
i∈N

(〈ŝi〉[i]ϕ → [̂sø]ϕ
)
.

The dynamic modal languages of this section do not possess the modalities[̂sø] and[̂si ]
explicitly. However, for each dynamic modal languageL(A,B) they can be defined
implicitly as molecular PDL-programs. Lets be a label inB11 representing a strategy
profile and let

{
i0, . . . , im

}
be a subset of labels inB0 denoted byI . Then, introduce

the following abbreviation:

π(s, I) =df. while 〈π(s)〉 → do π(s) ∪ π(i0) ∪ . . . ∪ π(im) od.

We will write π(s, i) for π(s, {i}). The idea is then that the programπ(s, i) performs the
same task in PDL as the labelŝi in the multi-modal languages, and, similarly,π(s,ø) is
the dynamic counterpart of the multi-modal labelŝø. Construed as a program,π(s, I)
performs non-deterministically one of the programsπ(i) or π(s), as long asπ(s) is
enabled. Given the informal readings of the atomic programsπ(s) andπ(i) have in the
dynamic game-models,π(s, I) also allows for a rather more game-theoretical interpre-
tation. The accessibility relationRπ(s,I) connects a vertexv with a leafz of the game
tree, wheneverz is a possible outcome state if play is commenced inv and the strategy
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profile s is adhered to by all players, with the possible exception of the players inI .
Formally, the following proposition vindicates this intuitive interpretation.

Proposition 3.4.2 Let E denote the extensive game
(
V,R,N,P, {ρi}i∈N

)
and let beFE

be a dynamic game-frame on E for a dynamic multi-modal language L(A). Let further-
more I be a subset of players in N represented by labels in B0 and s a strategy profile
of E that is represented by a label in B11. Then for all vertices v, v′ in V:

vRπ(s,I)v
′ iff v′ ∈ ŝI (v) .

Proof: Consider an arbitrary modelM on FE. Define theheight of a vertexv
in (V,R), denoted byhgt(v), inductively as:

hgt(v) =df.

{
0 if v is a leaf,

1 + max
{

hgt(v′) : (v, v′) ∈ R
}

otherwise.

The proof is then by induction onhgt(v).
For the basis assumehgt(v) = 0. Thenv is a leaf and we havêsI (v) = {v}. Sincev

is a leaf there is nov′ such thats(v) = v′ and accordingly,M, v 1 〈π(s)〉>. Hence,
the guard ofπ(s, I) is not satisfied atv andvRπ(s,I)v′ if and only if v′ = v, which proves
the case.

For the induction step lethgt(v) = n + 1. Thenv is an internal node and by
definition of a strategy profile there is somev′ such thats(v) = v′, which makes that
the guard ofπ(s, I) is satisfied atv. Hence for all verticesv′:

vRπ(s,I)v
′ iff vRπ(s)∪π(i0)∪...∪π(im);π(s,I)v

′ iff vRπ(s)∪π(i0)∪...∪π(im) ◦Rπ(s,I)v
′.

Now, eitherP(v) ∈ I or P(v) /∈ I . If the latter, for noi ∈ I there is av′′ such
thatvRπ(i)v′′. Hence, for an arbitrary vertexv′′, we havevRπ(s)∪π(i0)∪...∪π(im)v′′ if and
only if vRπ(s)v′′. Consequently also,vRπ(s,I)v′′ if and only if vRπ(s) ◦Rπ(s,I)v′′. Now
consider the following equivalences:

vRπ(s,I)v
′ iff P (v) /∈ I vRπ(s) ◦Rπ(s,I)v

′ iff for somev′′ : vRπ(s)v
′′Rπ(s,I)v

′

iff (∗) s(v) Rπ(s,I)v
′ iff i.h. v′ ∈ ŝI (s(v)) iff (∗∗) v′ ∈ ŝI (v) .

The induction hypothesis is applicable because obviouslyhgt(s(v)) < hgt(v). Ob-
serve further that in virtue of Definition 3.4.1,vRπ(s)v′′ if and only if v′′ = s(v);
whence the equivalence marked with the asterisk. The inference step indicated with
the double asterisk is valid in virtue ofsI (v) = {s(v)}, becauseP(v) /∈ I , and, there-
fore, ŝI (v) =

⋃ {
ŝI (w) : w ∈ sI (v)

}
= ŝI (s(v)).

In the former case in whichP(v) ∈ I , let i denoteP(v). BecausevRπ(s)v′′ implies
vRπ(i)v′′, then, also:

vRπ(s)∪π(i0)∪...∪π(im)v
′′ iff vRπ(s)∪π(i)v

′′ iff vRπ(i)v
′′.
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Now consider the following equivalences:

vRπ(s,I)v′ iff P (v) = i vRπ(i) ◦Rπ(s,I)v′

iff for somev′′ : vRπ(i)v′′Rπ(s,I)v′

iff (∗) for somev′′ ∈ sI (v) : v′′Rπ(s,I)v′

iff i.h. for somev′′ ∈ sI (v) : v′ ∈ ŝI (v′′)

iff v′ ∈
⋃ {

ŝI (v′′) : v′′ ∈ sI (v)
}

iff v′ ∈ ŝI (v) .

The induction hypothesis is applicable because for allv′′ ∈ sI (v), it is the case
that hgt(v′′) < hgt(v). Here, the inference step marked with the asterisk holds in
virtue of Definition 3.4.1 and the definition ofsI (v) on page 70, above. a
The construction of the framesFM

E andFPDL
E from an extensive formE guarantees that if

the one satisfies(ŝi , i, ŝø)-Euclidicity, the other satisfies(π(s, i), i, π(s,ø))-Euclidicity
andvice versa.

Corollary 3.4.3 Let E be an extensive game. Consider a frameFM
E for a multi-modal

matrix language L(A,B) that is a game-frame on E in virtue of a label map f . Let,
further, FPDL

E be a dynamic game-frame for a dynamic language L(A′,B′) on E given
by

(
V, {Bβ}B′

)
. Assume that B0 = B′

0 and that B1 = B′
11 and thatf (B0) = f (B′

0) =
f (B′

10) andf (B1) = f (B11). Then, for each player i and each strategy profile s of E
that are represented by labels in the respective languages, we have:

FM
E satisfies(ŝi , i, ŝø)-Euclidicity iff FPDL

E satisfies(π(s, i), i, π(s))-Euclidicity.

Proof: Consider arbitrary verticesv andv′ in the extensive gameE. First observe
that vRiv′ in FM

E if and only if vRiv′ in FPDL
E becauseFM

E andFPDL
E are a game-frame

and a dynamic game-frame onE, respectively. Also forX ⊆ {i}:

vR̂sX
v′ in FM

E iff Def. 3.3.1 v′ ∈ ŝX (v) iff Prop. 3.4.2 vRπ(s,X)s in FPDL
E .

Hence, in particular,R̂sø = Rπ(s,ø) andR̂si
= Rπ(s,i). The claim then follows immedi-

ately. a
In virtue of this observation we now have the following result, which states that sub-

game perfect Nash equilibria can be characterized in dynamic multi-modal languages
in much the same manner as that was the case for multi-modal matrix languages.

Corollary 3.4.4 Let L(A,B). Let FPDL
E be a dynamic game frame on an extensive

game E for L(A,B) given by
(
V, {Rβ}β∈B , f

)
. Assume that I be a subset of the player

labels B0 containing labels representing eachinterestedplayer in E. For i a player
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and s a strategy profile in E both represented by a label in, respectively, B0 and B11,
then the following four equivalences hold:

FPDL
E , vε ° 〈π(s, i)〉[i]ϕ→ [π(s,ø)]ϕ iff s is a best response for i in E

FPDL
E ° 〈π(s, i)〉[i]ϕ→ [π(s,ø)]ϕ iff s is a s.p. best response for i in E

FPDL
E , vε °

∧
i∈I

(〈π(s, i)〉[i]ϕ→ [π(s,ø)]ϕ
)

iff s is a Nash equilibrium in E

FPDL
E °

∧
i∈I

(〈π(s, i)〉[i]ϕ→ [π(s,ø)]ϕ
)

iff s is a s.p. Nash equilibrium in E.

Proof: Almost immediate from Theorem 3.3.5, Proposition 3.4.2 and the semantics
of multi-modal matrix languages on game-frames. All cases run along analogous lines
and the proof is confined to that of the fourth case. Consider the multi-modal matrix
languageL(A,B′) with B′ =df. B0 ∪ B11 ∪ B0 × B11. Then,

(
V, {Rβ}β∈B , f ¹ B′) is a

game-frame onE for L(A,B′) and let this game-frame be denoted byFM
E . Now consider

the following equivalences:

s is a subgame perfect Nash equilibrium inE

iff Th. 3.3.5 FM
E °

∧
i∈I

(〈ŝi〉[i]ϕ→ [̂sø]ϕ
)

iff for all i ∈ I : FM
E ° 〈ŝi〉[i]ϕ→ [̂sø]ϕ

iff for all i ∈ I , FM
E satisfies(ŝi , i, ŝø)-Euclidicity

iff Coroll. 3.4.3 for all i ∈ I , FPDL
E satisfies(π(s, i), i, π(s))-Euclidicity

iff FPDL
E °

∧
i∈I

(〈π(s, i)〉[i]ϕ→ [π(s,ø)]ϕ
)
.

This concludes the proof. a
A dynamic game-frame of Definition 3.4.1 reflects the structure of the underlying

extensive game in considerably finer detail than the game-frame of Definition 3.3.1
does for the same game. This feature, however, comes with a vengeance in that it
imposes heavier requirements on the models to be constructed in a Henkin-style com-
pleteness proof. The issue as to a complete axiomatization of the dynamic framework
with respect to dynamic game-frames we leave as an open question.

3.5 Conclusions and Other Topics

In this chapter we proposed the use of multi-modal matrix languages for the formal
description of a class of extensive games. The games in this particular class all had a
finite horizon and assumed perfect information on the part of the players. By focussing
on such a limited class of games, the correspondences between the games and the logic
could be kept relatively simple. Independent issues were left out of the picture, so as to
emphasize the fundamental idea of how modal languages can be used to describe exten-
sive games. Thus, the analysis passed over fundamental game-theoretical topics such
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as coalition formation, randomization of strategies and other issues involving probabil-
ities as well as over repeated games and games of infinite depth. Incorporation of these
issues in the present framework warrants further investigation. Still, a proper treat-
ment would quite likely demand considerable extensions of the languages presented
in this chapter. Special mention should be made of imperfect information and related
epistemic issues, as modal logics have prominent applications in the formal analysis
of knowledge and belief (cf., e.g., Hintikka (1962), Fagin, Halpern, Moses, and Vardi
(1995), Meyer and van der Hoek (1995) and Gerbrandy (1999)) and has been firmly
established within the field of Artificial Intelligence. Moreover, such modal logics have
been deployed in the analysis of the epistemic aspects of games (cf., e.g., Baltag (2002),
Battigalli and Bonanno (1999) and van Ditmarsch (2000)). Incorporating features of
these logics in the present framework may lead to a more comprehensive modal logical
analysis. The concomitant complications should not be shunned.

The multi-modal matrix languages were especially designed to deal with (subgame
perfect) Nash equilibrium in pure strategies. Its expressive power is limited to prefer-
ences andindividual divergences from a strategy profile. The characterization of other
game-theoretical notions — such asPareto efficiency, dominanceas well as the vari-
ous refinements of Nash equilibrium as they have been suggested in the literature —
may require more sophisticated concepts. More structure of the extensive games is
preserved in the dynamic game-frames. Accordingly, we may expect more from the
dynamic language of PDL as to expressiveness with respect to other game-theoretical
concepts than Nash equilibrium alone.

These considerations put in perspective the multi-modal matrix languages as we
proposed to use them in the description of extensive games. They should by no means
be taken as a proposal for a comprehensive and ultimate logical language for the de-
scription of extensive games. Rather, we meant to expose some of the structural prop-
erties of extensive games which render some strategy profiles to be (subgame perfect)
Nash equilibria. The fact that these properties are characterizable in quite an inelabo-
rate formal language, says something fundamental about the elementary nature of Nash
equilibria and the expressive requirements for a modal language to characterize them.





Chapter 4

Axiomatization of Extensive Game

Logics

4.1 Introduction

In the previous chapter, multi-modal matrix languages were introduced in order to rea-
son about particular features of extensive games with a finite horizon and in which
all players have perfect information as to the structure of the game. Accordingly, the
frames and models on which these multi-modal matrix languages were interpreted con-
stitute special class of Kripke structures. The notion of modal consequence has been
parameterized by a class of game-frames,i.e., Γ ²C ϕ was defined to hold if and only
if for all verticesv of all modelsM on agame-framein C , M, v ° Γ impliesM, v ° ϕ
(cf., page 73). Each of these modal consequence relations defines a logic in the respec-
tive multi-modal matrix language. This chapter concerns the axiomatization of three of
such logics: the one characterized by the class ofall game-frames and those character-
ized by the class of game-frames in which a particular strategy profile is, respectively,
a player’s subgame perfect best response and a subgame perfect Nash equilibrium.

In the upcoming section we formulate a number of axiom schemas for multi-modal
matrix languages, which are valid on all game-frames. We find that the minimal normal
modal logic containing these axioms, denoted by M, is also complete with respect to the
class of all game-frames. Furthermore, M5s,i and M5N

s are introduced as the extensive
game logics that result if M augmented with, respectively, the axioms5s,i and5N

s , for a
player labeli and a strategy labels of L(A,B) (cf., page 76). The logic M5s,i is proved
to be complete with respect to the class of game-frames in which the strategy profile
represented by the strategy labels is a subgame perfect best response for the player
represented by the player labeli. Similarly, M5s,i coincides with the logic characterized
by the class of frames based on extensive games in which the strategy labels represents
a subgame perfect Nash-equilibrium (and in which there is a label for each interested
player).
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A Henkin-style construction method is employed to obtain these completeness re-
sults.

4.2 The Axioms

For a multi-modal matrix languageL(A,B) we have the following axioms. We as-
sumeβ, β′, β′′, andβ′′′ to range over the whole ofB, β0 andβ′

0 over the player labels
in B0, andβ1 andβ′

1 over the strategy labels inB1.

Taut.: any classical tautology.

K : [β]
(
ϕ→ ψ

) → (
[β]ϕ→ [β]ψ

)
Tβ0 : [β0]ϕ→ ϕ

4β0 : [β0]ϕ→ [β0][β0]ϕ

D!β1 : [β1]ϕ↔ 〈β1〉ϕ
E1(β0,β1),β1

: [(β0, β1)]ϕ→ [β1]ϕ

E2(β0,β1),(β′
0,β

′
1)

: [(β0, β1)]
(
[(β′

0, β
′
1)]ϕ↔ ϕ

)
E3β,β′,β′′,β′′′,β0 : [β][β′]

(
[β0]ϕ→ ψ

) ∨ [β′′][β′′′]
(
[β0]ψ → ϕ

)
.

The logic M is closed under the rules ofmodus ponens(MP) andnecessitation(Nec.):

MP :
ϕ→ ψ ϕ

ψ
Nec.:

ϕ

[β]ϕ
.

The Hilbert-style axiom system given by these axioms and rules we will refer to as the
normal modal logic M. Any multi-modal logic containing M we will refer to as an
extensive game logic. Accordingly, M is the smallest extensive game logic, in a similar
manner as K is the smallest normal modal logic.

Definition 4.2.1 (Extensive game logics)An extensive game logicΛ for a multi-modal
matrix languageL(A,B) is any set of formulas ofL(A,B) closed underMPandNec.and
containing all instances of the axiom schemes ofTaut., K, 4β0, Tβ0, D!β1, E1(β0,β1),β1

,
E2(β0,β1),(β′

0,β
′
1)

andE3β,β′,β′′,β′′′,β0. We will write Γ `Λ ϕ if there exists a derivation
of ϕ from the theoryΓ in an extensive game logicΛ, as usual. The smallest extensive
game logic we will refer to by M.

At the conclusion of this chapter we will come to review also the stronger extensive
game logics than M,viz., the logics M5s,i and M5I

s. The former has5s,i , for fixedsand
i, as an additional axiom and the latter5I

s for a particular subsetI of B0.
Within the setting of extensive games and the intended interpretation of the multi-

modal matrix languages, the axiomsK throughE3β,β′,β′′,β′′′,β0 have quite intuitive
readings. The axiomsTaut. andK along with the two rules formodus ponens(MP)
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and necessitation (Nec.) guarantee extensive game logics to be normal logics. With the
accessibility relations for the modal operators with labels inB0 running over the prefer-
ences of players in an extensive game,Tβ0 and4β0 warrant the players’ preferences to
be reflexive and transitive. The axiomE3β,β′,β′′,β′′′,β0 reflects the players’ preference
relations being connected. Observe that in virtue ofTaut., Tβ0 andE3β,β′,β′′,β′′′,β0, we
can derive the following axiom in each extensive game logic:

E4β,β′,β0 : [β]
(
[β0]ϕ→ ψ

) ∨ [β′]
(
[β0]ψ → ϕ

)
.

The labels inB1 represent strategy profiles and in particular their outcome functions.
For each labelβ1 in B1, the accessibility relationRβ1 connects, for some strategy pro-
file s, any verticesv andv′ such that̂s(v) = v′ and as such is the graph of a function.
Hence, AxiomD!β1, which characterizes functionality of the accessibility relationRβ1

in the general setting of modal correspondence theory. AxiomE1(β0,β1),β1
character-

izes the inclusion of the accessibility relationRβ1 in R(β0,β1). The intuition behind this
lies in the observation that any outcome that is determined by a strategy profile can
also be reached if one of the players has the option to deviate from that strategy pro-
file; the player in question may choose to adhere to the strategy profile after all. The
labels inB0 × B1 represent the correspondencesŝi for strategy profiless and playersi.
The value of any such correspondence is a set of leaf nodes, from each of which only
the leaf itself can be reached. It is exactly this fact thatE2(β0,β1),(β′

0,β
′
1)

conveys. Ob-
serve that as a consequence ofE2(β0,β1),(β′

0,β
′
1)

, D!β0 andE1(β0,β1),β1
we can derive the

following more general axiom schema, in which bothβ andβ′ range over labels in
eitherB1 or B0 × B1:

E5β,β′ : [β] ([β′]ϕ↔ ϕ) .

Note that the schemeE5β,β′ does not hold in general ifβ or β′ are inB0.
The cogency of these informal remarks are vindicated in the following proposition,

which formally establishes the soundness on game-frames of the axioms in question.

Proposition 4.2.2 (Soundness) Let L(A,B) be a multi-modal matrix language. The
axioms K through E3β,β′,β′′,β′′′,β0 as well as E4β,β′,β0 and E5β,β′ are valid on all
game-frames of L(A,B). The rules MP and Nec., moreover, preserve validity on game-
frames.

Proof: For ordinary multi-modal frames the axiomsTβ and4β characterize reflexivity
and transitivity ofRβ , respectively. SimilarlyD!β characterizes functionality ofRβ and
E1β,β′ the inclusion ofRβ′ in Rβ . The axiom schemaE2β,β′ characterizes frames in
whichRβ′ is the identity at every vertexv that is reachable byRβ , i.e., frames for which:

for all v, v′ ∈ V : vRβv′ implies for allv′′ ∈ V : v′Rβ′v′′ iff v′ = v′′.

Finally, E3β,β′,β′′,β′′′,β0 — [β][β′]
(
[β0]ϕ → ψ

) ∨ [β′′][β′′′]
(
[β0]ψ → ϕ

)
— charac-

terizes frames in which any two verticesv andv′ are comparable with respect toRβ0,
whenever the one is reachable from from some third vertexv′′ via Rβ ◦Rβ′ and the
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other from the same vertexv′′ via Rβ′′ ◦Rβ′′′ . I.e., more formally,E3β,β′,β′′,β′′′,β0

characterizes frames in which for all verticesv, v′, v′′:

if for somew′,w′′ : vRβw′Rβ′v′ and vRβ′′w′′Rβ′′′v′′ then v′Rβ0v
′′ or v′′Rβ0v

′.1

All of the above are results of elementary modal correspondence theory.
Since the game-frames forL(A,B) are special cases of ordinary multi-modal frames

and the connectives obtain their usual Boolean interpretationsTaut., K, MP andNec.
hold without ado and it suffices to show that the propertiesTβ0 throughE3β,β′,β′′,β′′′,β0

characterize in ordinary frames are satisfied in the game-frames forL(A,B).
The players’ preferences were assumed to be reflexive, transitive and connected

anda fortiori so areRβ0 for eachβ0 ∈ N. This takes care of the soundness ofTβ0,
4β0 andE3β,β′,β′′,β′′′,β0. Strategy profiles determine a unique leaf node as outcome.
Formally,ŝø (v) = {ŝ(v)}, for each strategy profilesand each vertexv. I.e., for eachβ1

in B1 the accessibility relationRβ1 is functional. Hence,D!β1 is valid in game-frames as
well. In virtue of the monotonicity of̂sI (cf., page 70), we have in particular thatŝø ⊆ ŝi .
Hence, alsoRβ1 ⊆ R(β0,β1) for all β0 ∈ B0 andβ1 ∈ B1. The validity ofE1(β0,β1),β1

follows. For E2(β0,β1),(β0,β1) it suffices to show that for all strategy profiless ands′

and for all verticesv andv′ in a game-tree,v′ ∈ ŝi (v) implies ŝ′j (v
′) = {v′}. Merely

observe that in generalŝi (v) ⊆ Z and that for all leavesz∈ Z we have that̂s′j (z) = {z}
by definition (cf. page 70).

Establishing that the rulesMP andNec.preserve validity on game-frames amounts
to a routine check.

Finally, E4β,β′,β0 andE5β,β′ are valid on all game-frames ofL(A,B) because they
are derivable in any extensive game logicΛ. a

For easy reference Table 4.1 collects all axioms that have so far been dealt with; the
labels are chosen in such a way as to reflect their intended game-theoretical readings
as suggested in Definition 3.3.1, above.I.e., typical elements ofB0, B1 andB0×B1 are
represented by, respectively,i, ŝø andŝi .

4.3 Completeness

This section concerns completeness results for the extensive game logics M, M5s,i and
M5N

s in a multi-modal matrix languageL(A,B). I.e., for Λ one of these logics andC
the intended class of game-frames, we prove that:

Γ ²C ϕ implies Γ `Λ ϕ.

In order to prove completeness of an extensive game logicΛ with respect to a
certain class of game-modelsC , it suffices, to construct for eachΛ-consistent theoryΓ
a game-modelMΛ

Γ that satisfiesΓ at some vertex and prove this model to be in the

1This property is a close multi-modal relative of that ofpiecewise connectedness. A Kripke frame is said
to be piecewise connected if for all verticesv, v′ andv′′, vRv′ andvRv′′ implies eitherv′Rv′′ or v′′Rv′.
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Taut.: any classical tautology.

K : [β]
(
ϕ→ ψ

) → (
[β]ϕ→ [β]ψ

)
Ti : [i]ϕ→ ϕ

4i : [i]ϕ→ [i][i]ϕ

5s,i : 〈ŝi〉[i]ϕ→ [̂sø]ϕ

5I
s:

∧
i∈I

(〈ŝi〉[i]ϕ→ [̂sø]ϕ
)

D!ŝø : [̂sø]ϕ↔ 〈ŝø〉ϕ
E1̂si ,̂sø : [̂si ]ϕ→ [̂sø]ϕ

E2̂si ,̂s
′
j
: [̂si ]

(
[̂s′j ]ϕ↔ ϕ

)
E3β,β′,β′′,β′′′,i : [β][β′]

(
[i]ϕ→ ψ

) ∨ [β′′][β′′′]
(
[i]ψ → ϕ

)
E4β,β′,i : [β]

(
[i]ϕ→ ψ

) ∨ [β′]
(
[i]ψ → ϕ

)
E5̂sX ,̂s

′
Y
: [̂sX] ([̂s′Y]ϕ↔ ϕ) whereX,Y ∈ N ∪ {ø}

Table 4.1. List of axiom schemas for multi-modal matrix languagesL(A,B), whereB = N ∪
S∪ (N × S) andβ and its primed varieties range overB.

classC . We prove the contrapositive. Assume thatΓ 0Λ ϕ, for an arbitrary theory
Γ and an equally arbitrary formulaϕ. Then,Γ ∪ {¬ϕ} is Λ-consistent and the model
MΛ

Γ∪{¬ϕ} can be constructed. By assumption,MΛ
Γ∪{¬ϕ} 1 Γ ∪ {¬ϕ}, and with

MΛ
Γ∪{¬ϕ} in C , this establishes thatΓ 2C ϕ.
The semantics for the multi-modal matrix languages is based on the notion of a

game-frame. The hardest part in proving completeness for an extensive game logicΛ
is thus in to guarantee that this modelMΛ

Γ belongs to the appropriate class ofgame-
models.

In this section we first show how for each theory consistent in an extensive game
logicΛ a game modelMΛ

Γ in the sense of Definition 3.3.1 can be constructed.I.e., the
frame underlyingMΛ

Γ should demonstrably be based on an extensive game. To this end
we adopt a Henkin-style construction (step-by-step) method (cf., Blackburn, de Rijke,
and Venema (2001), Section 4.6, pages 223–229). Although the axioms of M, M5i,s

and M5N
s are all of a standard nature, it is not obvious, however, whether a standard

Henkin-style proof would produce a canonical model —i.e., a model satisfyingeach
Λ-consistent theory at the same time — that is based on a game-frame, or that can be
transformed into a model that is. A proof of this is likely to become complicated be-
cause the structure of a canonical model is pretty much fixed. The construction method,
in which for eachΛ-consistent theoryΓ separately a modelMΛ

Γ satisfyingΓ is de-
fined, gives far more control over the structure of the model to be built. In particular,



90 AXIOMATIZATION OF EXTENSIVE GAME LOGICS

the process of constructing the modelMΓ for a theoryΓ can go hand in hand with the
construction of an extensive gameEΓ underlyingMΓ . As such this method of proof
is more natural for our purposes.

For M, the weakest extensive game logic, the construction of a game-model for
each M-consistent theory suffices, as it is supposed to be complete with respect to the
class of all game-frames forL(A,B). For completeness of M5i,s and M5N

s , however, it
has additionally to be proved that the models this construction yields are in the appro-
priate class of models.I.e., for M5i,s it has to be shown that, for each M5i,s-consistent

theoryΓ the modelMM5i,s

Γ is based on, an extensive game in which the strategy pro-
file s contains a best response for playeri. In the case of M5Ns , similarly, one should

show that, in the extensive game underlying a modelM
M5N

s
Γ , for each interested player

for a M5N
s -consistent theoryΓ , there be a label inN, and, moreover, the strategy profile

denoted by the labels is a subgame perfect Nash equilibrium.
Before entering on the formal elaboration, we first devote some more or less infor-

mal remarks as to the structure of the proof.

The Structure of the Construction

For each extensive game logicΛ in a multi-modal matrix language and each theoryΓ
we construct a modelMΛ

Γ , omitting the superscriptΛ when clear from the context.
Let Λ be an extensive game logic andΓ be aΛ-consistent theory in a multi-modal
matrix languageL(A,B). The main burden will be on guaranteeing that the modelMΓ

be an actual game model. For eachΛ-consistent theoryΓ , therefore, we construct
a modelMΓ along with an extensive gameEΓ . A game-frameFΓ based on this
gameEΓ then underliesMΓ .

In the construction of the game-modelMΓ , we first define a labelled treeTΓ

consisting of a treeΣΓ and a labelling functionθΓ assigningΛ-consistent theories
to the vertices inΣΓ . In particular,θΓ assigns a maximalΛ-consistent extension
of Γ to the root ofΣΓ . The set of verticesΣΓ is not entirely independent of the
labelling functionθΓ since it may depend on the theory assigned to a particular vertex
whetherΣΓ should also contain another vertex. For this reason, induction is relied
upon in the definition ofTΓ . This treeTΓ contains sufficient information for the
definition of a fully-fledged extensive game denoted byEΓ as well as that for the
game modelMΓ based onEΓ . The tree on whichEΓ is based is given byΣΓ . The
number of players inEΓ turns out to be one greater than the number of player labels in
L(A,B). Also which player is to move at which node depends on the structure ofΣΓ .
Finally, the players’ preferences over the vertices ofΣΓ are derived from the theories
the labelling functionθΓ assign to the vertices ofΣΓ .

The vertices of the treeΣΓ are chosen in such a way that appropriate strategy
profiles inEΓ can easily be recovered to serve as the interpretations for the strategy
labels inB1 of L(A,B). This furnishes us with a natural label map. Thus a frameFΓ is
defined that is agame-frameon the extensive gameEΓ according to Definition 3.3.1.
A suitable valuation functionV for FΓ is found by another appeal to the labelling
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Figure 4.1. Structure of the construction of the game-modelMΓ , whereTΓ = (ΣΓ , θΓ ).

function θΓ of TΓ : let V map each vertexv of FΓ onto the set of propositional
variables contained inθΓ (v), i.e., onto the setA ∩ θΓ (v). Then defineMΓ as the
very model onFΓ with V as valuation. The vertices ofTΓ andMΓ coincide. We
prove that any formula in the theoryθΓ (v) holds atv in TΓ , i.e., thatMΓ , v ° θΓ (v).
Because inTΓ the root is decorated with a maximalΛ-consistent extension ofΓ , we
may eventually conclude thatMΓ satisfiesΓ at the root node. The dependencies of
the various elements of the construction ofMΓ— viz., TΓ , EΓ , FΓ andMΓ itself —
are as depicted in Figure 4.1.

Formal Exposition of the Construction

a In order to facilitate the proof, we first make some harmless but convenient assump-
tions. We assume to be working in a countable multi-modal matrix languageL(A,B)
with B = N ∪ S∪ (N × S). Let us further assumeN to be given by a finite initial
segment of the positive integers,i.e., N = {1, . . . ,n} ⊆ ω with n the number of
player-labels‖N‖. The gameEΓ to be constructed will comprise an additionalmys-
tery player, which will be denoted by0. We will also assume an arbitrary but fixed
enumerationϕ0, . . . , ϕn, . . . of the formulas ofL(A,B). Moreover, the concept of a
maximalΛ-consistent extension of a theories will be heavily relied upon. The Linden-
baum lemma forΛ, stating that any extensive game logicΛ-consistent theory can be
extended to a maximalΛ-consistent theory, is reproduced without the routine proof.

Fact 4.3.1 (Lindenbaum lemma) EveryΛ-consistent theory in L(A,B) can be ex-
tended to a maximalΛ-consistent theory.

Having assumed a fixed enumeration of the formulas ofL(A,B) we may for each exten-
sive game logicΛ assume aclosure operator ClΛ mapping eachΛ-consistent theoryΓ
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onto auniquemaximalΛ-consistent extension ofΓ . The subscript is usually omitted
whenever the logicΛ is understood from the context. The construction of the mod-
elsMΛ

Γ is uniform for all extensive game logicsΛ modulothe notion of consistency
involved.

The general idea of the proof is to start with an initial tree, the vertices of which
are labelled with theories. In particular, the root will be associated with a maxi-
mal Λ-consistent extension of aΛ-consistent theoryΓ . Then new vertices are intro-
duced when necessary,i.e., whenever “witness” states are required for formulas of the
form¬[̂si ]ϕ or¬[i]ϕ occurring in the theories the vertices are labelled with. (There hap-
pens to be no such need for formulas of the form¬[̂sø].) This process should preserve
the tree-like character of the structure and it should eventually culminate in the treeTΓ ,
on basis of which the game-modelMΓ can be defined. The nodes of the model coin-
cide with the nodes of the eventual tree. Moreover, any maximalΛ-consistent theory
associated with a vertex is to contain exactly those formulas that are satisfied at that
vertex in the model. This makes that the theories associated with the vertices are sub-
ject to certain consistency constraints and these constraints should be vouchsafed in the
process.

The vertices of the labelled treeTΓ are selected from the set(T ∪ S∪ ω)∗ of finite
sequences overT ∪ S∪ ω including the empty sequenceε. Henceforth we denote this
set of strings byΣ. The setsT, Sandω are assumed to be pairwise disjoint,T to be
countably infinite, andSthe set of strategy-labels ofL(A,B).2 We also assume there to
be a partition ofT in a countably infinite number of countably infinite blocks. Hence,
for each sequenceσ in Σ we may assume there to be a unique countably infinite subset
of T, denoted byTσ and enumerated astσ0 , . . . , t

σ
n , . . ..

Suppressing the implicit ordering of the strings we will deliberately confuse the tree
ΣΓ and its set of vertices. For each natural numbern ∈ ω, we letxn denote the string
of n occurrences ofx, e.g., x3 = xxxandyx2z = yxxz. Let furthermore|σ| denote the
lengthof a stringσ. We haveε stand for the empty string. In the remainder strings are
assumed to be ordered by theimmediate prefix relation≺, defined for stringsσ andσ′

over a setX in such a way thatσ ≺ σ′ if and only if there is somex in X with σx = σ′.
E.g., the stringsxyandxyzare thus related butyyandyxxare not.

Conceptually, in the gameEΓ to be constructed, the elements ofT ∪ S∪ ω could
be seen as possible actions and each sequenceσ as representing ahistory of play(cf.,
Osborne and Rubinstein (1994), pp. 89–90). A sequencets′s is then the vertex that will
be reached if subsequently the ‘actions’t, s′ ands are performed. In the gameEΓ , the
strategy profile to be represented by the strategy labels can then easily be recovered
as the function that maps each sequenceσ onto σs. The setsT andω are added in
order to ensure that there be a sufficient number of vertices inEΓ , and eventually also
a sufficient number of strategy profiles in the gameEΓ . Roughly speaking, elements
of T are used to introduce vertices falsifyingϕ as witnesses for formulas of the form
¬[i]ϕ. Similarly, the elements ofω are used to construct witness states for formulas of

2The first assumption requires one to distinguish an elementx in T ∪ S∪ ω from the sequencex of length
one inΣ. In the remainder we will generally assume a natural isomorphism betweenT ∪ S∪ ω and the set
{σ ∈ Σ : |σ| = 1} .



COMPLETENESS 93

the form¬[̂si ]ϕ.
Now the stage has been set for the definition of the labelled treeTΓ . The fun-

damental idea is that for each formula of the form¬[β]ϕ in a theory associated with
a vertexσ by θΓ , there should also be a vertexσ′ that falsifiesϕ and, moreover, is
reachable by the accessibility relationRβ in the modelMΓ . The theory associated
with vertexσ′ will thus contain¬ϕ and will also have to comply to certain consistency
constraints. In particular,σ′ should additionally satisfy

{
ψ : [β]ψ ∈ θΓ (σ)

}
. As, for

different labelsβ andβ′ the theories{ψ : [β]ψ ∈ Γ} and{ψ : [β′]ψ ∈ Γ} are not
in generalΛ-compatible, proper care should be taken that no leaf be reachable by two
different accessibility relationsRβ andRβ′ . Simultaneously, it has to be ascertained
that the tree constructed is a game-tree in accordance with the interpretation of strings
as actions and the strategy profiles as described above. Thus, for each internal nodeσ
of TΓ and each strategy label inSof L(A,B), we introduce a unique leafσsn, for some
appropriate integern ∈ ω, serving as the outcome of the strategy profile the labels
stands for when play is commenced inσ in the modelMΓ . Meanwhile, the treeTΓ

should also be guaranteed to have a finite horizon.
For eacht in {ε} ∪ T, each theoryΓ in L(A,B) and eachn ∈ ω, we first define

inductively a treeTn
Γ,t (no boldface!). The vertices ofTn

Γ,t are decorated with theories
in L(A,B). Then the treeTΓ,t is defined as the limit of this induction. This latter kind of
labelled tree will form the modules which eventually compose the treeTΓ for Γ . The
set of vertices ofTΓ,t we denote byΣΓ,t and the labelling function assigning theories
of L(A,B) to the vertices inΣΓ,t by θΓ,t. The root ofTΓ,t is taken to bet and the other
vertices and the theories assigned to them are chosen in accordance with the idea that
Γ be eventually satisfiable att.

At the basis of the induction, the treeT0
Γ,t is defined, withΣ0

Γ,t as vertices and
θ0
Γ,t as labelling function. The idea is thatT0

Γ,t contain, for each strategy labels in S,
a uniqueleaf that can be taken as the outcome of strategy profile corresponding tos
when play is commenced in the roott. The design is such that along any such path each
of the players inN is to move once. In general, playeri is assumed to move attsi . In
particular, the mystery player0 makes a decision at the roott. Hence,Σ0

Γ,t containst as
well as each sequencetsn with n 6 ‖N‖+ 1, the idea being that each playeri ∈ N is to
move attsi and thatts‖N‖+1 be the outcomes determines int. Moreover, each strategy
profile should prescribe a move at each internal node. Hence, for eachtsi with i 6 ‖N‖
and each labels′ in Sdifferent fromswe also distinguish a leaftsis′ inΣ0

Γ,t. No further
vertices are inΣ0

Γ,t.

Figure 4.2 depicts the tree forΣ0
Γ,t in a language containing two labels for players

and also two labels for (the outcome functions of) strategy profiles. The labelling
functionθ0

Γ,t assigns the maximalΛ-consistent extensionCl (Γ ) of Γ to the roott and
the empty theory to each of the internal vertices. However, arbitrary the latter may
seem, it will prove to be convenient as the proof develops. If now the theoryCl (Γ )
is supposed to be satisfied att in some game-model onΣ0

Γ,t, then each leafts‖N‖+1

should satisfy a formulaψ whenever[̂sø]ψ is in Cl (Γ ). Similarly, if Cl (Γ ) contains
a formula[̂si ]ψ, then each leaftsis′ should satisfyψ. The assignment functionθ0

Γ,t is
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Figure 4.2. The treeΣ0
Γ,t for languageL(A,B) with N = {1, 2} andS= {s, s′}.

fixed accordingly.
The role of the mystery player can now also be revealed. Supposet had been

assigned to a playeri∗ with a label inN. Assume further thati∗ be different from
1. Now consider strategy profiless ands′ with labels inS. Then, the leaftss′ would
be reachable fromt via the accessibility relation for the strategy labelŝ1, as intended.
However, the vertextss′ would also be reachable from thet by way of the accessibility
relation for̂s′i∗ ! If so, the theory associated withtss′ should then contain all formulasψ
for which [̂s1]ψ is in Γ as well as all formulasψ such that[̂s′i ]ψ is in Γ . TheΛ-
consistency of a such a theory, however, cannot in general be guaranteed. By assigning
a player without a label inN to the roott this contingency does not occur.

Formally we define:
T0
Γ,t =df.

(
Σ0
Γ,t, θ

0
Γ,t

)
,

whereΣ0
Γ,t is a subset ofΣ andθ0

Γ,t a function assigning theories inL(A,B) to the
sequencesσ in Σ0

Γ,t such that:

Σ0
Γ,t =df.

{
t
} ∪ {

tsis′ : s, s′ ∈ S and 0 6 i 6 ‖N‖}

θ0
Γ,t (σ) =df.




Cl (Γ ) if σ = t

Cl
({
ψ : [̂sø]ψ ∈ Cl (Γ )

})
if σ = ts‖N‖+1

Cl
({
ψ : [̂si ]ψ ∈ Cl (Γ )

})
if σ = tsis′ ands 6= s′

ø otherwise.

In the inductive step, definingTn+1
Γ,t from Tn

Γ,t, we check whetherϕn, i.e., the
n− 1-st formula in the enumeration, is of the form¬[̂si ]ψ. If it is andϕn moreover
occurs inCl (Γ ), the stringtsin is added to the set of vertices and assigned the maximal
Λ-extension of

{¬ψ}∪{
χ : [̂si ]χ ∈ Γ

}
. In any other caseTn+1

Γ,t andTn
Γ,t are identical.

The idea behind this construction is that, if the roott is to satisfy a formula of the
form ¬[̂si ]ψ, then a leafv′ should be reachable fromt via the accessibility relationR̂si
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and not satisfyψ. Being reachable thus, the leafv′ should, in addition, also satisfy any
formulaχ such thatt forces [̂si ]χ. Note that a similar construction is unnecessary if
ϕn is of the form¬[̂sø]ψ. In virtue of Axiom D!ŝø , the formula¬[̂sø]ψ is equivalent
to [̂sø]¬ψ and the latter is thus an element ofCl (Γ ). Hence, this case has already been
taken care of by the construction ofT0

Γ,t. A similar remark applies to the case in which
a formula of the form¬[̂sø]ψ or ¬[̂si ]ψ is contained in the theory assigned to a leafσ
in Σn

Γ,t by θn
Γ,t. Then, AxiomE5̂sX ,̂sY

makes that¬ψ is already in the theoryθn
Γ,t (σ).

The theories assigned to the internal vertices contain no formulas, let alone formulas
that require “witness” states. Formally define:

Tn+1
Γ,t =df.

(
Σn+1
Γ,t , θ

n+1
Γ,t

)
,

whereΣn+1
Γ,t is a superset of the sequences inΣn

Γ,t andθn+1
Γ,t is a function extendingθn

Γ,t

by associating with each sequence inΣn+1
Γ,t a theory inL(A,B):

Σn+1
Γ,t =df.

{
Σn
Γ,t ∪

{
tsin

}
if ϕn = ¬[̂si ]ψ and ϕn ∈ Cl (Γ )

Σn
Γ,t otherwise.

θn+1
Γ,t (σ) =df.




Cl
({¬ψ} ∪ {

χ : [̂si ]χ ∈ Cl (Γ )
})

if σ = tsin, ϕn = ¬[̂si ]ψ
andϕn ∈ Cl (Γ )

θn
Γ,t (σ) otherwise, i.e., if σ ∈ Σn

Γ,t.

Finally defineTΓ,t as:

TΓ,t =df.

( ⋃
n∈ω

Σn
Γ,t ,

⋃
n∈ω

θn
Γ,t

)
.

The theoriesθΓ,t assigns to the vertices may also contain formulas of the form¬[i]ψ.
If this is the case for a vertexσ, then the construction should also contain a vertex
associated with a maximalΛ-consistent theory containing¬ψ as well as any formulaχ
if [i]χ is in the theory associated withσ. To accommodate this type of formula, we
push the construction one step further.

We now define inductively for eachn ∈ ω a collection of decorated trees of the
form TΓ,t, from which we eventually manufacture the treeTΓ . At the basis, this col-
lection consists of the treeTΓ,ε, which hasΓ itself associated with its rootε. The
empty sequenceε, being a prefix to any sequence, will also be the root of the tree to
be constructed and, eventually, also of the game-modelMΓ . If any of the verticesσ
of TΓ,ε contains a formulaϕk of the form¬[i]ψ, a new treeTΘ,tσk is added to the col-

lection, on the understanding that the theoryΘ equals
{¬ψ} ∪ {

χ : [i]χ ∈ θ (σ)
}

.
Then this process is repeated for the new collection, and so on. Thus define:

T0
Γ =df.

{
TΓ,ε

}
Tn+1
Γ =df.

⋃
(Σ,θ)∈Tn

Γ

{
TΘ,tσk : σ ∈ Σ andϕk = ¬[i]ψ andϕk ∈ θ (σ)

}
,
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Figure 4.3. The treeTΓ for a theoryΓ in a languageL(A,B) with N = {1, 2} andS= {s, s′}.
Each subtreeTΓk,tk is introduced in virtue of a formula of the form¬[i]ψ being in the theory
assigned to a vertex in another part of the tree.

whereΘ = {¬ψ} ∪ {χ : [i]χ ∈ θ (σ)}. Then set:

Tω
Γ =df.

⋃
n∈ω

Tn
Γ .

We are now in a position to formally define the decorated treeTΓ as:

TΓ =df.
(
ΣΓ ,θΓ

)
,

where:
ΣΓ =df.

⋃{
Σ : (Σ, θ) ∈ Tω

Γ

}
θΓ =df.

⋃{
θ : (Σ, θ) ∈ Tω

Γ

}
.

The treeTΓ having been defined thus for each theoryΓ in L(A,B), we are now
almost in a position to define on its basis the gameEΓ . First, however, some prelim-
inary remarks and auxiliary results are in order. It should be checked that for each
Λ-consistent theoryΓ the treeTΓ is in fact a tree with its verticesΣΓ ordered by the
immediate prefix relation≺. Moreover,θΓ should be ascertained to be afunction. This
is established by Fact 4.3.4. Since the construction ofTΓ invokes the closure operator
Cl, the functionθΓ should be guaranteed to assign a consistent theory — either empty
or maximal consistent — to each vertexσ in θΓ . Fact 4.3.5 demonstrates thatθΓ is
properly defined in this sense.

At each stage of the inductive construction ofTω
Γ the set of vertices of each tree

added to the collection is disjoint from any other set of vertices of a tree introduced thus,
as well as from any set of vertices of a tree already present in the collection. Hence,
the domains of the various functionsθ remain separate as well. This observation is laid
down formally in Fact 4.3.3. First we prove the following lemma; Figure 4.4 supports
the underlying intuitive idea.
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Lemma 4.3.2 Let A be a countably infinite set. Letπ be a countably infinite partition
of A, i.e.,π ∈ Part(A), such that eachπi ∈ π is countably infinite as well. The elements
of each blockπi of π are enumerated as aπi

0 , . . . ,a
πi
n , . . .. Letπ0 be a block inπ and

let f be an injective function mapping A onπ, i.e., f : A → π, such thatπ0 is not in
the image of A under f , i.e.,π0 /∈ f (A). For eachσ ∈ ω∗, let πσ denote a block inπ
inductively as follows:

πε =df. π0

πσn =df. f (aπσ
n ) .

Then,πσ andπσ′ are disjoint, for all distinct stringsσ andσ′ in ω∗.

Proof: By induction on|σ|, the length ofσ. First assume|σ| = 0, i.e., σ = ε. Since
σ′ is distinct fromσ there is someσ′′ ∈ ω∗ and somek ∈ ω such thatσ′ = σ′′k.
Hence,πσ′ = f

(
aπσ′′

k

)
with aπσ′′

k ∈ πσ′′ . Then:

πσ′ = f
(
aπσ′′

k

) 6= π0 = πε = πσ.

Now let |σ| = n + 1. Thenσ = σ′′′l for someσ′′′ ∈ ω∗ and somel ∈ ω. This case is
by induction on the length|σ′| of σ′. If |σ′| = 0, the reasoning is analogous to the case
in which |σ| = 0, above. So assume|σ′| = m+ 1. Then,σ = σ′′k for someσ′′ ∈ ω∗

and somek ∈ ω. Then, bothπσ = f
(
aπσ′′′

l

)
andπσ′ = f

(
aπσ′′

k

)
.

Either σ′′ = σ′′′ or σ′′ 6= σ′′′. If σ′′ = σ′′′, thenk 6= l, sinceσ andσ′ had
been assumed to be distinct. Then,aπσ′′′

l 6= aπσ′′
k . If, on the other hand,σ′′ 6= σ′′′,

then, by the induction hypothesis,πσ′′′ andπσ′′ may be assumed to be disjoint. With
aπσ′′′

l ∈ πσ′′′ andaπσ′′
k ∈ πσ′′ , againaπσ′′′

l 6= aπσ′′
k .

By injectivity of f , it follows thatπσ = f
(
aπσ′′′

l

) 6= f
(
aπσ′′

k

)
= πσ′ . With πσ and

πσ′ being blocks in the partitionπ, they are disjoint as well. a

Fact 4.3.3 Let (Σ, θ) and (Σ′, θ′) be distinct trees inTω
Γ . Then,Σ andΣ′ are

disjoint, i.e.,Σ ∩Σ′ = ø.

Proof: Consider Cartesian productΣ × ω. Define for eachx in S∪ T ∪ ω a subset
Σx of Σ × ω as follows:

Σx =df.
{
σ : for someσ′ ∈ Σ, xσ′ = σ

} × ω.

Obviously for distinctx andx′ the setsΣx andΣx′ are disjoint. Moreover, ifΣx andΣx′

are disjoint, so are
⋃

n∈ω
{
σ ∈ Σ : (σ,n) ∈ Σx

}
and

⋃
n∈ω

{
σ ∈ Σ : (σ,n) ∈ Σx′

}
.

Let Σε be given by
⋃

t∈T Σt. Hence,{Σε} ∪ {Σx : x ∈ T} is a partition ofΣ × ω.
Observe that forx ∈ T ∪ {ε} andTΘ,x given by(Σ, θ), we haveΣ ⊆ ⋃

n∈ω
{
σ ∈ Σ :

(σ,n) ∈ Σx
}

. Let π be a partition ofΣ × ω given by
{
Σx : x ∈ T

} ∪ {
Σε

}
. Now

define the functionf mappingΣ × ω onπ, such that for all(σ,n) ∈ Σ × ω:

f (σ,n) =df. Σtσn
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Figure 4.4. The development of the blocks as in Lemma 4.3.2. Each box represents a blockπσ

of the partitionπ of A. The arrows indicate the functionf , which maps elements of the blocks
on blocks inπ. By Lemma 4.3.2 these blocks are all pairwise disjoint.

On account of the assumptions made with respect toT and the definition ofTσ on
page 92, the functionf is clearly injective. Moreover,Σε is not in the image ofΣ × ω
underf .

Assume eachΣx to be enumerated in a particular way. For stringsσ ∈ ω∗, let πσ
denote a block in the partitionπ as defined in Lemma 4.3.2via f with πε = Σε. In
virtue of Lemma 4.3.2, it then suffices to show that for alln ∈ ω and for each treeTΘ,x
in Tn

Γ , there is someτ ∈ ω∗ such thatπτ = Σx. The proof is by induction onn ∈ ω.
The basis is immediate asT0

Γ =
{
TΓ,ε

}
andΣε = πε. Now assume thatTΘ,x ∈ Tn+1

Γ .
Then,x = tσk , for someTΘ′,x′ = (Σ, θ) ∈ Tn

Γ , someσ ∈ Σ and somek ∈ ω. By
the induction hypothesis there is someτ ∈ ω∗ such thatπτ = Σx′ . Let (σ, k) be the
m + 1-st element in the enumeration ofΣx′ . ThenΣtσk = πσm, which concludes the
proof. a

Fact 4.3.4 For eachΛ-consistent theoryΓ , the setΣΓ is a tree if ordered by the
immediate prefix relation≺, andθΓ is a total function onΣΓ .

Sketch of proof: We first prove by thatΣΓ,t is a tree ordered by≺, for all t ∈ {ε}∪T
and all theoriesΓ . For observe thatΣ0

Γ,x is a tree ordered by≺ by definition. Then

observe thatΣn+1
Γ,t is obtained fromΣn

Γ,t by adding at most a fresh vertextsin. With tsi

already contained inΣ0
Γ,t, we may by the induction hypothesis conclude thatΣn+1

Γ,t is
a tree ordered by≺ as well. It follows thatΣΓ,t is a tree ordered by≺; otherwise there
would be a smallestn ∈ ω such thatΣn

Γ,t is not a tree,quod non. Now considerTω
Γ .

Observe that each treeTΘ,t hast as root and thatε is an immediate prefix oft. This
makes thatΣΓ is a tree ordered by≺. A similar argument shows thatθ is functional
for each(Σ, θ) in Tω

Γ . By Fact 4.3.3 for any two(Σ, θ) and(Σ′, θ′) in Tω
Γ , the setsΣ
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andΣ′ are disjoint. With eachθ, for each(Σ, θ) ∈ Tω
Γ , being defined precisely onΣ,

we may conclude thatθΓ , i.e.,
⋃ {

θ : (Σ, θ) ∈ Tω
Γ

}
, is functional as well. a

Figure 4.3 depicts the structure ofTΓ for a languageL(A,B) with N = {1,2} andS=
{s, s′}.

For technical convenience we distinguish particular subsets of vertices inTΓ . First,
the root nodeε and the verticestσn that are the roots of subtreesTΓ,tσn in TΓ are collected
in TΓ , i.e.,

TΓ =df. {ε} ∪ (T ∩ ΣΓ ) .

For eacht in TΓ the set of internal vertices and the set of leaves of the respective
subtreeTΘ,t of TΓ are denoted byI t

Γ andLt
Γ , respectively. Obviously,I t

Γ andLt
Γ are

disjoint and together exhaust the vertices inTΓ ′,t. Finally, Wt
Γ comprisest together

with the leavesLt
Γ . Some reflection reveals thatWt

Γ are exactly those vertices inTΓ ′,t
which are labelled with a (non-empty) maximal consistent theory. Formally, forTΓ

given by(ΣΓ ,θΓ ), define:

I t
Γ =df.

{
tsi ∈ ΣΓ : s∈ Sandi 6 ‖N‖}

,

Lt
Γ =df.

{
ts‖N‖+1, tsis′, tsin ∈ ΣΓ : n ∈ ω ands, s′ ∈ Ssuch thats 6= s′

}
,

Wt
Γ =df. {t} ∪ Lt

Γ .

On this basis also define:

IΓ =df.

⋃
t∈TΓ

I t
Γ , LΓ =df.

⋃
t∈TΓ

Lt
Γ , WΓ =df.

⋃
t∈TΓ

Wt
Γ .

The internal vertices ofTΓ are collected inIΓ . The setWΓ contains precisely those
vertices labelled with maximal consistent theories. Moreover,LΓ contains the leaves
of TΓ . Finally, as some reflection reveals, we have that:

ΣΓ = IΓ ∪ LΓ .

How the various “types” of sequence in the collectionΣΓ relate to one another is
illustrated in Figure 4.5.

Fact 4.3.5 Let Γ be aΛ-consistent theory in L(A,B). Let furtherTΓ be given by
(ΣΓ ,θΓ ) and letσ ∈ ΣΓ . Then,θΓ (σ) is a maximalΛ-consistent theory, ifσ is in
WΓ , and the empty theory, otherwise.

Sketch of proof: By definition of each treeTΘ,x given by (Σ, θ) we find thatθ
assigns the empty theory to the internal vertices other than the root (cf., pages 94–94).
Some reflection reveals that this makes thatθΓ assigns the empty theory to each vertex
in IΓ of TΓ .



100 AXIOMATIZATION OF EXTENSIVE GAME LOGICS

pε©©©©©©©©¼ps
´

´
´

´́+pss
´

´
´

´́+psss

Q
Q

Q
QQsp

ssn
?p
sss′

Q
Q

Q
QQsp

sn
?p
ss′

HHHHHHHHjpt
´

´
´

´́+pts
´

´
´

´́+ptss
´

´
´

´́+ptsss

Q
Q

Q
QQsp

tssn
?p
tsss′

Q
Q

Q
QQsp

tsn
?p
tss′

Figure 4.5. Types of vertex inTΓ . The setT containsε and (vertices of type)t. The ver-
ticesε, s andssmake upI ε, whereast, ts and tssare the sole elements inI t. Lt is given by
{tss′, tsl, tsss, tsss′, tssl} andW contains all vertices excepts, ss, ts andtss.

By definition, the rootε of TΓ is assignedCl (Γ ), the maximumΛ-consistent clo-
sure ofΓ . Assuming thatΓ isΛ-consistent, so isCl (Γ ). For the other possible cases,
it suffices the prove the following equivalences:

Γ 0 ⊥ implies {ψ : [̂si ]ψ ∈ Γ} 0 ⊥,
Γ 0 ⊥ implies {ψ : [̂sø]ψ ∈ Γ} 0 ⊥,

Γ ∪ {¬[i]χ} 0 ⊥ implies {¬χ} ∪ {ψ : [i]ψ ∈ Γ} 0 ⊥,
Γ ∪ {¬[̂si ]χ} 0 ⊥ implies {¬χ} ∪ {ψ : [̂si ]ψ ∈ Γ} 0 ⊥.

Each of these implications hold for any extensive game logicΛ. The logicΛ being
a normal logic, the latter two can be proved by a standard argument (cf., Blackburn,
de Rijke, and Venema (2001), pp.198-9). The argument for the first and the second
item is similar, although it essentially involves the axiomsD!β1 andE1(β0,β1),β1

. First
assume the contrapositive that{ψ : [̂si ]ψ ∈ Γ} ` ⊥. Then there is a finite number
of formulasψ0, . . . , ψn ∈ {ψ : [̂si ]ψ ∈ Γ} such thatψ0, . . . , ψn ` ⊥. Consider the
following implications:

ψ0, . . . , ψn ` ⊥ implies [̂si ]ψ0, . . . , [̂si ]ψn ` [̂si ]⊥ implies Γ ` [̂si ]⊥
impliesE1̂si ,̂sø

Γ ` [̂sø]⊥ impliesD!̂sø
Γ ` 〈ŝø〉⊥ implies Γ ` ⊥.

The first and last implication are in virtue ofΛ being a normal modal logic. The
argument for the second item runs along analogous lines. Fromψ0, . . . , ψn ` ⊥ obtain
[̂sø]ψ0, . . . , [̂sø]ψn ` [̂sø]⊥, which impliesΓ ` 〈ŝø〉⊥ in virtue of D!ŝø . Then, finally,
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Γ ` ⊥. This concludes the proof. a
In the sequel we also find the following convention and fact useful of great usefulness.
For eachleaf σ in LΓ andx in TΓ , we haveβx

σ denote a strategy label ofL(A,B) as
follows:

β x
σ =df.

{
ŝi σ = xsiy for i ∈ N, s∈ Sandy ∈ ω ∪ (S− {s}).
ŝø otherwise,i.e., if σ = xs‖N‖+1, for s∈ S.

We now have the following fact.

Fact 4.3.6 ConsiderTΓ for Γ a Λ-consistent theory in L(A,B). Let x∈ TΓ andσ a
leaf inLx

Γ . Then: {
ϕ : [β x

σ ]ϕ ∈ θΓ (x)
} ⊆ θΓ (σ) .

Proof: Either σ = xs‖N‖+1, σ = xsis′ or σ = xsin, for somen ∈ ω and some
s, s′ ∈ S, such thats 6= s′. In the first case,β x

σ = ŝø. Assume for an arbitrary
formulaϕ of L(A,B) that [̂s]ϕ ∈ θΓ (x). By Fact 4.3.3, then[̂sø]ϕ ∈ θΘ,x (x), where
theoryΘ such thatTΘ,x, given by(Σ, θ), is included inTω

Γ . Then, [̂sø]ϕ ∈ Cl (Θ).
Consequently,ϕ ∈ θΘ,x

(
xs‖N‖+1

)
and by Fact 4.3.3 and withθΘ,x ⊆ θΓ , eventually,

ϕ ∈ θΓ
(
xs‖N‖+1

)
. The reasoning for the other two cases runs along analogous lines.

a
We are now in a position to define for eachΛ-consistent theoryΓ an extensive

gameEΓ on basis of the labelled treeTΓ .

Definition 4.3.7 (Extensive games forΛ-consistent theories)Let Λ be an extensive
game logic in a multi-modal matrix languageL(A,B). Recall thatB is given byN ∪
S∪ (N × S) andN by {0, . . . ,n} for somen ∈ ω. Let Γ be a maximalΛ-consistent
theory. We define: the extensive gameEΛΓ as:

EΛΓ =df.
(
VΓ ,RΓ ,NΓ ,PΓ , {ρi}i∈NΓ

)
,

whereVΓ is defined as the set of sequencesΣΓ in TΓ as above andRΓ is given by
the immediate prefix relation onΣΓ , i.e., for all σ, σ′ ∈ VΓ :

σRΓσ′ iff for somex ∈ S∪ T ∪ ω : σ′ = σx.

The players of the gameEΓ are given by the player labelsN of L(A,B) together with a
mystery playerdenoted by0, i.e.,

NΓ =df. N ∪ {0} .
The player assignment functionPΓ is such that for each internal vertexσ of VΓ , i.e.,
for eachi in NΓ :

PΓ (σ) = i iff σ = xsi , for somex ∈ TΓ and some strategy labels∈ S.
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Finally, the preferences of each playeri in N are such that for all verticesσ, σ′ ∈ VΓ :

(σ, σ′) ∈ ρi iff for all formulasϕ: [i]ϕ ∈ θΓ (σ) implies ϕ ∈ θΓ (σ′) .

The mystery player0 we assume to be entirely indifferent,i.e., ρ0 =df. VΓ×VΓ . When
no confusion is likely, we will omit the subscriptΓ as well as the superscriptΛ in EΛΓ .

The following fact establishes that, for eachΛ-consistent theoryΓ , the structureEΓ is
a properly defined extensive game according to Definition 3.2.1 on page 65.

Fact 4.3.8 Let Γ be a maximalΛ-consistent theoryΓ in L(A,B). Then,EΓ is a
properly defined extensive game.

Proof: Consider an arbitrary theoryΓ in L(A,B). By construction(VΓ ,RΓ ) is a tree
and some reflection reveals that the length of a string inVΓ is no longer than‖N‖+ 2.
Hence, withN being finite,(VΓ ,RΓ ) has a finite horizon. The set of playersNΓ of EΓ
is finite as well, sinceNΓ contains just one element more thanN, viz., the mystery
player. The player assignment functionPΓ total on the internal vertices by definition.

Finally, each of the players’ preferences are reflexive, transitive and connected as
required. For the mystery player0 this is immediate, its preference relation being the
universal relation overVΓ . So, for the remainder of the proof, consider an arbitrary
playeri in NΓ other than0, i.e., i in N.

For reflexivity, consider an arbitrary vertexσ in σ ∈ VΓ . Then eitherσ in WΓ or
in IΓ . If the former, observe that, by Fact 4.3.5, the theoryθ (σ) is empty, and trivially
(σ, σ) ∈ ρi . In the latter case, also by Fact 4.3.5, the theoryθ (σ) is maximalΛ-
consistent. Assume for an arbitrary formulaϕ that [i]ϕ ∈ θ (σ). With axiomTi , then
alsoϕ ∈ θ (σ) and consequently,(σ, σ) ∈ ρi .

For transitivity a similar run-of-the-mill argument suffices. Assume that
(σ, σ′), (σ′, σ′′) ∈ ρi for arbitrary verticesσ, σ′, σ′′ ∈ VΓ . Again if θ (σ) is empty,
immediately(σ, σ′′) ∈ ρi , as well. Otherwise,θ (σ) is maximalΛ-consistent and as-
sume for an arbitrary formulaϕ that[i]ϕ ∈ θ (σ). By axiom4i , also[i][i]ϕ ∈ θ (σ). By
definition ofρi , then subsequently[i]ϕ ∈ θ (σ′) andϕ ∈ θ (σ′′). Hence,(σ, σ′′) ∈ ρi .

To prove that for eachi ∈ N the relationρi is connected, we must show that
either (σ, σ′) ∈ ρi or (σ′, σ) ∈ ρi , for all σ, σ′ ∈ VΓ . Consider arbitrary vertices
σ, σ′ ∈ VΓ . If eitherσ /∈ WΓ or σ′ /∈ WΓ , i.e., if either θ (σ) or θ (σ′) is empty, we
are done immediately. Otherwise,i.e., if both σ ∈ WΓ andσ′ ∈ WΓ , the axiomsE3
andE4are heavily relied upon.

First we introduce the auxiliary notion of aconnecting path, which we define as
a sequence of verticesτ0, υ0, . . . , τn, υn, or τ0, υ0, . . . τn−1, υn−1, τn in VΓ such that
τ0 = ε, and for each0 6 m 6 n bothυm ∈ Wτm andτm+1 ∈ Tυm. Observe that each
τi is in TΓ . The latter requirement guarantees that, given the construction ofTΓ , each
vertexτm+1 was introduced toVΓ in virtue of some formula of the form¬[k]χ being
included inθ (υm). I.e., we may assume that for each0 < m 6 n + 1, there to be
a j ∈ N such that

{
ψ : [k]ψ ∈ θ (υm)

} ⊆ θ (τm+1). Inspection of the various possible
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Figure 4.6.

cases along with an easy inductive argument reveal that for each vertexσ in W, there
is a connecting path of whichσ is the last element.

The argument proceeds with a simultaneous induction onn andm, proving that
for any two connecting pathsσ0, . . . , σn andσ′

0, . . . , σ
′
m that either(σn, σ

′
m) ∈ ρi or

(σ′
m, σn) ∈ ρi .
For n = m = 0, obviously,σn = σ′

m = ε and we are done immediately by reflexiv-
ity of ρi . For the first inductive case — assuming the claim to hold fornandmand prov-
ing it also to hold forn + 1 andm — consider two connecting pathsσ0, . . . , σn, σn+1

andσ′
0, . . . , σ

′
m. If n+1 is odd, thenσn = τn/2 andσn+1 = υn/2. By definition of a con-

necting path thenσn+1 ∈ Wσn. If in this case,σn+1 = σn, then
{
χ : [i]χ ∈ θ (σn)

} ⊆
θ (σn+1) as a consequence of axiomTi andθ (σn+1) being maximalΛ-consistent. Oth-
erwise,σn+1 ∈ Lσn and

{
χ : [βσn

σn+1
]χ ∈ θ (σn)

} ⊆ θ (σn+1), in virtue of Fact 4.3.6.
If, on the other hand,n + 1 is even, thenσn+1 = τn/2 andσn = υ(n/2)−1. In this case,
there is ak ∈ N such that(σn, σn+1) ∈ ρk, i.e.,

{
χ : [k]χ ∈ θ (σn)

} ⊆ θ (σn+1). Let
δn+1 denote a label inB as follows:

δn+1 =df.




i if n + 1 is odd andσn+1 ∈ T,

βσn
σn+1

if n + 1 is odd andσn+1 /∈ T,

k otherwise, i.e., if n + 1 is even.

Then in general, we have that
{
χ : [δn+1]χ ∈ θ (σn)

} ⊆ θ (σn+1).
By the induction hypothesis, we may assume that(σn, σ

′
m) ∈ ρi or (σ′

m, σn) ∈ ρi . In
the former case, assume that(σ′

m, σn+1) /∈ ρi , i.e., for some formulaϕ, [i]ϕ ∈ θ (σ′
m)

but ϕ /∈ θ (σn+1). We show that(σn1, σ
′
m) ∈ ρi . To this end consider an arbitrary

formula ψ such that[i]ψ ∈ θ (σn+1); we prove thatψ ∈ θ (σ′
m). By maximalΛ-

consistency ofθ (σn+1), [i]ψ → ϕ /∈ θ (σn+1). This yields[δn+1]
(
[i]ψ → ϕ

)
/∈ θ (σn).

By maximalΛ-consistency and axiomE4δn+1,i , then also that[i]
(
[i]ϕ → ψ

) ∈ θ (σn).
Having assumed that(σn, σ

′
m) ∈ ρi , with the definition ofρi , we have[i]ϕ → ψ ∈

θ (σ′
m). Subsequently, by maximalΛ-consistency and[i]ϕ ∈ θ (σm), eventually,ψ ∈

θ (σ′
m). This line of reasoning is illustrated in Figure 4.6.
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Also if the other case obtains,i.e., if (σ′
m, σn) ∈ ρi , we can prove that(σ′

m, σn+1) /∈
ρi implies (σn+1, σ

′
m) ∈ ρi . So assume(σ′

m, σn+1) /∈ ρi ; then there is a formulaϕ
such that[i]ϕ ∈ θ (σ′

m) butϕ /∈ θ (σn+1). Consider an arbitrary formulaψ such that
[i]ψ ∈ θ (σn+1); we prove thatψ ∈ θ (σm). As in the previous case,[i]ψ → ϕ /∈
θ (σn+1) and consequently[δn+1]

(
[i]ψ → ϕ

)
/∈ θ (σn). This time having assumed that

(σ′
m, σn) ∈ ρi , we obtain[i][δn+1]

(
[i]ψ → ϕ

)
/∈ θ (σ′

m). By maximalΛ-consistency
of θ (σ′

m) and axiomE3δn+1,i,i,i,i , then [i][i]
(
[i]ϕ → ψ

) ∈ θ (σ′
m). Two applications

of axiom Ti , then give[i]ϕ → ψ ∈ θ (σ′
m). With [i]ϕ having been assumed to be in

θ (σ′
m), thedesideratumψ ∈ θ (σ′

m) follows. Figure 4.7 illustrates this argument.

Since the argument for the second inductive case — assuming the claim to hold for
n andm and proving it also to hold forn andm+ 1 — runs along analogous lines, we
may conclude that each playeri’s the preference relationρi is connected. a

A strategy profile of the extensive gameEΓ is then given by function mapping each
internal vertex in(VΓ ,RΓ ) onto a succeeding vertex. Not all strategy profiles ofEΓ ,
however, are represented by a strategy label inS. We will assume the labels in S to
represent the strategy profiless that maps each internal vertexσ ontoσs. I.e., for each
internal vertexσ in VΓ and each strategy labels in Swe have:

ss (σ) =df. σs.

The following fact is an obvious consequence of this definition.

Fact 4.3.9 Let EΓ be the extensive game defined for aΛ-consistent theoryΓ in
L(A,B). Let x∈ TΓ , i ∈ N and s∈ S and haves denotess. Then:

ŝø (x) =
{

xs‖N‖+1
}
,

ŝi (x) =
{

xs‖N‖+1, xsis′, xsin ∈ ΣΓ : n ∈ ω and s′ ∈ S such that s′ 6= s
}
.
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Sketch of proof: On basis of the definition of̂sN on page 70, and inspection of the
construction ofTΓ andEΓ , the following can be established:

ŝø (xs) =
{

xs‖N‖+1
}

ŝi (xs) =
{

xs‖N‖+1, xsis′, xsin ∈ ΣΓ : n ∈ ω ands′ ∈ Ssuch thats′ 6= s
}
.

Now recall that the additional player0 had been assumed to be different from any
players inN. SinceP(x) = 0, for eachi ∈ N we haveσ ∈ si (x) if and only if
σ = s(x), i.e., if σ = xs. Then,ŝi (x) = ŝi (xs) and ŝø (x) = ŝø (xs), which give the
desired result. a

The stage has now been set for the definition of the game-frameFΓ on EΓ for
L(A,B). The set of verticesVΓ is common toTΓ , EΓ andFΓ . The functionθΓ ,
assigning theories inL(A,B) to vertices inVΓ , is invoked to define the game model
MΓ onFΓ . Then we prove that the maximal consistent theory the functionθΓ assigns
to each vertexσ in WΓ , coincides precisely with the set of formulas thatσ forces in
MΓ .

Definition 4.3.10 (Game-frame and game-model onEΓ ) LetΛ be an extensive game
logic for a multi-modal matrix languageL(A,B). Let EΓ be the extensive game for
a Λ-consistent theory inL(A,B) given by

(
VΓ ,RΓ ,NΓ ,PΓ , {ρi}i∈NΓ

)
. Define the

label mapf assigning players and strategy profiles inEΓ to player labels, respectively,
strategy labels inB:

f (β) =df.

{
i if β is the player labeli in B,

ss if β is the strategy labels in B.

Then define the game-frameFΛΓ on EΓ as the tuple
(
VΓ , {Rβ}β∈B , f

)
. The game

modelMΓ on FΛΓ is defined as the tuple
(
FΛΓ ,VΓ

)
, where the interpretation func-

tion VΓ : VΓ → 2A, is defined such that for each vertexσ in VΓ :

VΓ (σ) =df.
{

a ∈ A : a ∈ θ (σ)
}
.

Whenever no confusion is likely to arise the superscriptΛ is omitted.

For eachΛ-consistent theoryΓ , the frameFΓ and the modelMΓ are a properly de-
fined game-frame and a properly defined game-model, complying with Definition 3.3.1
on page 72. The modelMΓ can now be shown to satisfy theΛ-consistent theoryΓ
at the root node. In order to establish this, we prove something slightly stronger,viz.,
that for each vertexσ of MΓ the theoryθΓ (σ), i.e., the theory assigned tov by θΓ ,
contains exactly those formulas that are satisfied atv in MΓ , provided thatθΓ (v) is
non-empty.

Lemma 4.3.11 (Truth Lemma) LetΓ be aΛ-consistent theory in L(A,B). Consider
bothTΓ = (ΣΓ ,θΓ ) andMΓ . Then for all verticesσ ∈ WΓ and all formulasϕ:

MΓ , σ ° ϕ iff ϕ ∈ θΓ (σ)
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Proof: Consider an arbitraryx ∈ TΓ as well as an arbitraryσ ∈ Wx
Γ . The proof is

then by induction onϕ.
Forϕ a propositional variable we are done immediately by the definition ofMΓ .

Similarly, if ϕ is a Boolean combination,i.e., if ϕ = ⊥, ϕ = ¬ψ or ϕ = ψ ∧ χ,
maximalΛ-consistency ofθ (σ) takes care. Thus the modal cases remain.

Let ϕ = [i]ψ, for somei ∈ N. Assumeϕ to be then + 1-st formula in the enu-
meration,i.e., ϕ = ϕn. First assume[i]ψ ∈ θ (σ) and consider an arbitraryσ′ such
thatσRiσ

′. Observe that inMΓ , we haveσRiσ
′ if and only if [i]ϕ ∈ θ (σ) implies

ϕ ∈ θ (σ′), for all formulasϕ. Hence,ψ ∈ θ (σ′). Consequently,θ (σ′) is not empty
andσ′ ∈ WΓ . Therefore, the induction hypothesis is applicable, yieldingMΓ , σ

′ ° ψ.
Having chosenσ′ arbitrarily, MΓ , σ ° [i]ψ follows. For the opposite direction, as-
sume[i]ψ /∈ θ (σ). With maximalΛ-consistency ofθ (σ), then¬[i]ψ ∈ θ (σ). There-
fore, {¬ψ} ∪ {χ : [i]χ ∈ θ (σ)} ⊆ θ (tσn ). By definition of Ri in MΓ , we have
σRi tσn . Sincetσn ∈ WΓ , thenMΓ , tσn 1 ψ, in virtue of the induction hypothesis. Con-
sequently,MΓ , σ 1 [i]ψ.

Let ϕ = [̂si ]ψ, for somei ∈ N ands ∈ S. We distinguish the case in whichσ is
in TΓ from the one in whichσ is a leaf inLx

Γ for somex ∈ TΓ . If the latter, thenσ is
the only element of̂si (σ), i.e., ŝi (σ) = {σ}, wheresabbreviatesss. Being an instance
of axiom E2β x

σ ,̂si
, the formula[β x

σ ]
(
[̂si ]ψ ↔ ψ

)
is in θ (x). With Fact 4.3.6, then,

[̂si ]ψ ↔ ψ ∈ θ (σ). Consider the following equivalences:

[̂si ]ψ ∈ θ (σ) iff [̂si ]ψ ↔ ψ ∈ θ (σ) ψ ∈ θ (σ)

iff i.h. MΓ , σ ° ψ

iff ŝi (σ) = {σ} for all σ′ such thatσ′ ∈ ŝi (σ) : MΓ , σ
′ ° ψ

iff for all σ′ such thatσR̂si(σ)σ
′ : MΓ , σ

′ ° ψ

iff MΓ , σ ° [̂si ]ψ.

If, on the other hand,σ = x for somex ∈ TΓ , assume[̂si ]ψ ∈ θ (x). Then, by
axiom E1̂si ,̂sø , also [̂sø]ψ ∈ θ (x). Consider an arbitraryσ′ such thatσR̂si

σ′. Then,
σ′ ∈ ŝi (x) andσ′ ∈ Lx. Moreover, by Fact 4.3.9, eitherσ = xs‖N‖+1 or σ = xsiy, for
y ∈ ω ∪ (S− {s}). If the formerβ x

σ′ = ŝø and and if the latter,β x
σ′ = ŝi . In either case

[β x
σ′ ]ψ ∈ θ (x). By Fact 4.3.6, thenψ ∈ θ (σ′). By the induction hypothesis follows

thatMΓ , σ ° ψ and withσ′ having been chosen arbitrarily, eventually,MΓ , x ° [̂si ]ψ.
For the opposite direction, assume that[̂si ]ψ /∈ θ (x). Then,¬[̂si ]ψ ∈ θ (x), by

maximalΛ-consistency ofθ (x). Without loss of generality we may assume¬[̂si ]ψ
to be then + 1-st element in the enumeration. Consider the vertexxsin and let it be
denoted byσ∗. Then, by Fact 4.3.9,σ∗ ∈ ŝi (x) anda fortiori alsoxR̂si

σ∗. Moreover,
¬ψ ∈ θ (σ∗), by construction ofTΓ . By the induction hypothesis, then,MΓ , σ

∗ °
¬ψ and, consequently,MΓ , σ

∗ 1 ψ, which suffices for a proof.
Let ϕ = [̂sø]. Again we distinguish betweenσ being a leaf inLΓ andσ in TΓ ,

dealing with the latter case first.
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Let σ be denoted byx and the vertexxs‖N‖+1 by σ∗∗. Then,β x
σ∗∗ = ŝø. First

assume that[̂sø]ψ ∈ θ (x), i.e., [β x
σ∗∗ ]ψ ∈ θ (x). By Fact 4.3.6 thenψ ∈ θ (σ∗∗). The

induction hypothesis subsequently yieldsMΓ , σ
∗∗ ° ψ. From Fact 4.3.9 we learn

thatσ∗∗ is the only element in̂sø (x) and, hence,σ∗∗ is also the only element such that
xR̂søσ

∗∗. We may conclude thatMΓ , x ° [̂sø]ψ.
For the opposite direction assume[̂sø]ψ /∈ θ (x). By maximalΛ-consistency

of θ (x), both¬[̂sø]ψ ∈ θ (x) and 〈ŝø〉¬ψ ∈ θ (x). In virtue of axiomD!ŝø , then
also [̂sø]¬ψ ∈ θ (x), i.e., [β x

σ∗∗ ]¬ψ ∈ θ (x). By Fact 4.3.6 then¬ψ ∈ θ (σ∗∗) and,
with maximalΛ-consistency ofθ (σ∗∗), alsoψ /∈ θ (σ∗∗). The induction hypothesis
is applicable and soMΓ , σ

∗∗ 1 ψ. Fact 4.3.9 guarantees thatσ∗∗ ∈ ŝø (x) and so
xR̂søσ

∗∗. Hence, eventually,MΓ , x 1 [̂sø]ψ, which we had set out to prove.
Now supposeσ to be a leaf inLx for somex ∈ TΓ . Thenŝø (σ) = {σ}. In virtue

of axiomE5β x
σ ,̂sø we have that[β x

σ ]
(
[̂sø]ϕ ↔ ϕ

) ∈ θ (x). By Fact 4.3.6, also[̂sø]ϕ ↔
ϕ ∈ θ (σ). Now consider the following, familiar looking, equivalences:

[̂sø]ψ ∈ θ (σ) iff [̂sø]ψ ↔ ψ ∈ θ (σ) ψ ∈ θ (σ)

iff i.h. MΓ , σ ° ψ

iff ŝø (σ) = {σ} for all σ′ such thatσ′ ∈ ŝi (σ) : MΓ , σ
′ ° ψ

iff for all σ′ such thatσR̂sø(σ)σ
′ : MΓ , σ

′ ° ψ

iff MΓ , σ ° [̂sø]ψ.

This concludes the proof. a

Completeness

Definition 4.2.1 introduced M as the minimal extensive game logic. Proposition 4.2.2
proved its axioms to be sound with respect to the class of all game-frames. Com-
pleteness of M with respect to this comprehensive class of game-frames follows as a
corollary of the Truth Lemma 4.3.11 and the fact that, for each M-consistent theory,
the modelMΓ is in fact a game-model.

Theorem 4.3.12 (Completeness ofM) LetΓ be a theory andϕ a formula in a multi-
modal matrix language L(A,B). Then:

Γ `M ϕ iff Γ ²M ϕ.

Proof: The left-to-right direction is taken care of by Proposition 4.2.2, above. For
the right-to-left direction it suffices to prove that there is a model on a game-frame for
each M-consistent theoryΓ in L(A,B). The construction ofMM

Γ for M, as defined
above, provides such a model. For, proving the routine contrapositive,Γ 0M ϕ implies



108 AXIOMATIZATION OF EXTENSIVE GAME LOGICS

Γ ∪ {¬ϕ} 0M ⊥. ThenMM
Γ∪{¬ϕ} exists and, by Lemma 4.3.11,MM

Γ∪{¬ϕ}, ε °
Γ ∪ {¬ϕ}. Then, alsoMM

Γ∪{¬ϕ}, ε ° Γ andMM
Γ∪{¬ϕ}, ε 1 ϕ, yieldingΓ 2M ϕ. a

Completeness for the extensive game logics M5s,i and M5N
s (for particular labelss

and i andN the whole set of player-labels) is be obtained in a similar fashion. The

validity of the argument, however, depends on the modelsM
M5s,i

Γ andM
M5N

i
Γ belong-

ing to the appropriate classes of game-models.I.e., for each M5s,i-consistent theoryΓ

the modelMM5s,i

Γ be based on an extensive game in which the strategy profiless rep-
resented by the labels in L(A,B) contains a subgame perfect best response for player

represented by the labeli. Similarly, in the extensive game underlying a modelM
M5N

s
Γ

for an M5N
s -consistent theoryΓ , there be a label inN for each interested player and

the strategy profile represented by the labels be a subgame perfect Nash equilibrium.
ForΓ an M5s,i-consistent theory, respectively, an M5N

i -consistent theory, we find that

M
M5s,i

Γ andM
M5N

s
Γ do actually meet these requirements. The soundness of M5s,i and

M5N
s with respect to these classes of frames being guaranteed by Proposition 4.2.2 and

Theorem 3.3.5, we have the following results.

Theorem 4.3.13 (Completeness ofM5s,i ) The logicM5s,i is sound and complete with
respect to the class of game-models built on game-frames in which s is a subgame
perfect best response for player i.

Proof: Soundness is a consequence of Proposition 4.2.2 and Theorem 3.3.5, on
page 75 above. For completeness the proof is as that for M (Theorem 4.3.12), be it
that it should also be shown that for any M5s,i-consistent theory, the strategy profiless

is a subgame perfect best response for playeri in the extensive gameEM5s,i

Γ that is de-

fined in the course of the construction of the modelM
M5s,i

Γ . In the remainder of the
proof the subscript is omitted inss. In virtue of Proposition 3.3.4 on page 75, it suffices
to demonstrate thatFΓ is (ŝi , i, ŝø)-Euclidean. Consider an arbitrary M5s,i-consistent
theoryΓ and equally arbitrary verticesσ, σ′, σ′′ ∈ VΓ such thatσR̂si

σ′ andσR̂søσ
′′.

Then,σ′ ∈ ŝi (σ) andσ′′ ∈ ŝø (σ). We show thatσ′Riσ
′′. i.e., that(σ′, σ′′) ∈ ρi , Con-

sider an arbitrary formulaϕ and, proving the contrapositive, we assumeϕ /∈ θΓ (σ′′)
and demonstrate thatϕ /∈ θΓ (σ′). Some reflection reveals that there be somex ∈ TΓ
such thatσ′, σ′′ ∈ Lx. Then,σ′′ = xs‖N‖+1. Moreover,σ′ = xs‖N‖+1 as well, or
σ′ = xsiy, for somey ∈ ω ∪ (S− {s}). In either caseσ′ ∈ ŝi (x), by Fact 4.3.9,
and soxR̂si

σ′. In virtue of Fact 4.3.6, furthermore,[βx
σ′′ ]ϕ /∈ θΓ (x). Since in this

caseβx
σ′′ = ŝø, also [̂sø]ϕ /∈ θΓ (x). With 〈ŝi〉[i]ϕ → [̂si ]ϕ being an instance of

axiom 5s,i and by maximal M5s,i-consistency ofθΓ (x), then〈ŝi〉[i]ϕ /∈ θΓ (x). By
Lemma 4.3.11, we haveMΓ , x 1 〈ŝi〉[i]ϕ and henceMΓ , x ° [̂si ]¬[i]ϕ. Having
assumed thatxR̂si

σ′, alsoMΓ , σ 1 [i]ϕ. By another application of Lemma 4.3.11,
eventually,[i]ϕ /∈ θΓ (σ′). a

Theorem 4.3.14 The logicM5N
s in L(A,B) is sound and complete with respect to the

class of game-frames built on games in which s is a subgame perfect Nash equilibrium
and in which there is a label in N for each interested player.
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Proof: Soundness is again by Theorem 3.3.5 and Theorem 3.3.5, on page 75 above.
For completeness, it suffices to show that, for each maximal M5N

s -consistent theory, the

strategy profiless is a subgame perfect Nash equilibrium in the extensive gameEM5N
s

Γ ,

on which the modelMM5N
s

Γ is based. First observe that the mystery player0 is an indif-
ferent player, in the sense that his preference relation is universal by construction. As
a consequence, each strategy profile is a best response for0 and this holds in particular
for si . For any of the other playersi ∈ NΓ , there is a player label inB0. Hence, for
any of them, the axiom5̂si ,i ,̂sø is derivable in M5Ns . In a similar manner as in Theo-
rem 4.3.13, it can thus be shown that for eachinterestedplayer the strategy profiless is

a best response for playeri in EM5N
s

Γ . We may conclude the proof by observing thatss

is a subgame perfect Nash equilibrium inEM5N
s

Γ . a
As an immediate consequence of these completeness results and the fact that in any

derivation of a formulaϕ from a theoryΓ in an extensive game logicΛ only a finite
number of formulas can occur, we have that each of the logics M, F5s,i and F5Ns is
compact. I.e., for each theoryΓ and each formulaϕ, if Γ ²Λ ϕ then there is afinite
subtheoryΓe of Γ such thatΓe ²Λ ϕ. We state this fact here as a corollary.

Corollary 4.3.15 Let L(A,B) be a multi-modal matrix language with N the set of
player labels containing i and with s as a strategy label. Then, the extensive game
logicsM, M5s,i andM5N

s are compact.

ForΛ one of the extensive game logics M, M5s,i and M5N
s andΓ a M-consistent

theory, the extensive gameEΛΓ has some noteworthy properties. In particular, the depth
of the gameEΛΓ — i.e., the length of the longest path in the game-tree connecting the
root to a leaf — does not exceed the number of player labels inL(A,B) plus two,i.e.,
‖N‖ + 2. Moreover, the players are assumed to play in a fixed order, and on each path
in the game-tree from the root to a leaf, each player represented by a label inN moves
at most once and any other player at most twice. Also, the number of players in each
gameEΓ is always one greater than the number of labels inN.

Corollary 4.3.16 Let Γ be a theory in a multi-modal matrix language L(A,B) with
N the set of player labels and letΛ one of the extensive game logicsM, M5s,i or M5N

s .
For E an extensive game of perfect information E andME a game-model on a game-
frameFE for Λ on E. Assume thatΓ is satisfiable inME. Then there is an extensive
game of perfect information E′ such that:

1. there is game-frame forΛ on E on whichΓ is also satisfiable;

2. the game tree of E′ is of a maximal depth of‖N‖ + 2;

3. its players number‖N‖ + 1 and move in a fixed order;

4. in each play of E′, each player represented by a label in N moves at most once
and any other player at most twice.
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Sketch of proof: SinceΓ is satisfiable in a model onFE, by Theorem 4.3.12,Λ-
consistency ofΓ follows. Construct the extensive gameEΛΓ . The Truth Lemma 4.3.11
ensures thatΓ is satisfied at the root node ofEΛΓ . Moreover,EΛΓ can be seen to possess
the properties as stated in the corollary. a
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Chapter 5

Boolean Games

5.1 Introduction

In game-like situations a player has to decide in the face of epistemic uncertainty. The
structure of the game may be such that his information about the game is insufficient
to distinguish one possible state of the game from the other. This may occur,e.g., if
she knows that one of her opponents has made a move, but not exactly which move. In
such games ofimperfect information(pure) strategies that prescribe different courses
of action to a player in possible states of the game she cannot distinguish, are no longer
available to her. The idea is, that due to her epistemic limitations, she would be unable
to act upon such a strategy.

A method that is widely employed to make formally explicit this epistemic struc-
ture is by includinginformation setsin the description of an extensive game. These
information sets partition the set of internal vertices in such a way that in each block
of this partition all vertices are assigned to one player. The respective player is thought
to be unable to distinguish the different vertices in the information set. Consequently,
any of his strategies will have to prescribe a similar course of action at each node in
each information set. This similarity between different courses of action is commonly
accounted for by introducing a one-one correspondence between the alternatives open
to a player at one vertex and those of any other vertex in the same information set,
e.g., by labelling the vertices with actions. The strategies available to a player are then
restricted to those that prescribe corresponding courses of action at different vertices at
any two vertices in the same information set. Graphically, information sets consisting
of more than one vertex may be depicted as dotted lines connecting the vertices it con-
tains (cf., the extensive game on the left in Figure 5.1). Those not connected thus are
assumed to form an information set on their own.

In this chapter we consider two-person finite extensive games of imperfect infor-
mation based on binary trees. The players are, moreover, assumed to be complete
antagonists and the outcomes are of only two kinds: a win for the one player or a win

113
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Figure 5.1. The figure on the left dipicts an extensive game of imperfect information in which
figure two antagonists — player 0 and player 1. The outcomes at the leafs in which player 1
is victorious are labelled with 1; otherwise,i.e., if player 0 wins, with 0. At each vertex the
player to move has a binary choice between either going to the left or going to the right. The
information sets are indicated by the dotted lines connecting vertices. The strategies of each
player available to each player are assumed to be restricted in the sense that each of them should
either prescribe to go left at all vertices in the information set or to move to the right at all of
them. The picture on the right, is the Boolean form representing the epistemic structure of the
game on the left. We find that this boolean form is represented by (equivalence class of) the
propositional formula(a ↔ b) ∨ (¬a∧ ¬c). The corresponding Boolean game ensues ifa and
c are assigned to Player 1 andb andd to Player 0.
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for the other player, without the possibility of a tie.
We may assume that from any vertex in such a game emanate exactly two edges

of two different kinds. In accordance with the two-dimensional way we depict binary
trees, these different kinds of vertices may be calledleft movesand right moves, or
0 movesand1 moves, respectively. Without loss of generality it may also be assumed
that, whenever two vertices are in the same information set, each strategy for the re-
spective player prescribes a left move at the one vertex if and only if it prescribes a
right move in the other. An alternative way of representing information sets is then by
labelling the vertices bybinary decision variables, in such a way that the vertices in
the same information set are labelled by the same variable (cf., the extensive game to
the left in Figure 5.1). Control over the binary decision variables a vertex is labelled
with is then be assigned to the player to play at that vertex. The strategies available to
the players may then be represented as the different choices they can make with respect
to the binary decision variables in their control.I.e., a strategy for a player becomes a
function mapping the decision variables in his control to the two values these variables
may take. Represented thus, we refer to this class of games asBoolean games. With-
out the explicit assignment of the decision variables to the players, a Boolean game is
called aBoolean game formor just aBoolean form.

A strategy profile for a Boolean is now an assignment of binary values toall of its
decision variables. The same decision variables may occur different Boolean games.
Moreover, we allow a strategy profile also to prescribe a value for decision variables
that do not occur in the game and assume that the choices made for these “outside”
variables do not affect the outcome of the game. This makes that the set of strategy
profiles of distinct Boolean games may coincide and their strategic properties can be
compared and assessed on this common basis. It also suggest a natural notion of equiv-
alence of Boolean forms: two Boolean forms are said to beequivalentif each strategy
profile determines the same outcome in both of them. Defining natural operations on
Boolean game forms, we find that,modulothis notion of equivalence, Boolean forms
constitute a Boolean algebra.

The principal observation of this chapter is that binary decision variables may be
taken as the propositional variables of a propositional language. On this conception,
each strategy profile, assigning binary values to all the decision variables, coincides
with a valuation for that propositional language. We find that each Boolean form can
be associated with a propositional formula, andvice versa, such that that two Boolean
forms are equivalent if and only if the corresponding formulas are logically equivalent.
This correspondence between Boolean forms and propositional variables, moreover,
proves to determine an isomorphism between the Boolean algebra of Boolean forms
and the Lindenbaum algebra of the respective propositional language. These algebraic
considerations ensure that Boolean games can straightforwardly be related to classical
propositional logic. The Boolean algebra of (equivalence classes of) games happens to
be isomorphic to the Lindenbaum algebra of a suitable classical propositional language.

One should be careful, however, not to confuse the notion of equivalence between
Boolean forms with notions ofgame equivalenceas advanced in,e.g., Thompson
(1952) — in terms of congruence of reduced strategic form — or in Goranko (2001a),
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van Benthem (no date-b) and Pauly (2001) — based on the sets of outcomes the play-
ers can guarantee to end the game in. Equivalence of Boolean forms does not take into
account the manipulative powers of the players. The strategic properties of a Boolean
game — such as a player having a winning strategy or not — may depend on the way
control over the decision variables over the players as well as on the structure of the
underlying Boolean form.

The point is rather that the conception of Boolean forms as propositional formulas
spawns a number of logical issues concerning distributed control over the propositional
variables. Two strategic issues with respect to Boolean games present themselves.
First,given a Boolean form and a player, which distributions of the decision variables
yield a Boolean game in which that player has a winning strategy?Second,given
a distribution of the decision variables, in which Boolean games complying with this
distribution has the one player a winning strategy, in which the other and in which
neither of them?In virtue of the isomorphism between the algebra of Boolean forms
(moduloequivalence) and the Lindenbaum algebra of the corresponding propositional
language, these questions have counterparts in propositional logic. Thus, distributed
control of the propositional variables becomes a notion amenable to logical analysis.

A third issue concerns the properties of determined and indeterminate Boolean
games. A two-player game of complete competition and which has wins and losses
for the players as outcomes, such as Boolean games, is calleddeterminedif one of
the players has a winning strategy. As a corollary of Kuhn’s Theorem (cf., Selten
(1965) and page 70, above), any such game is determined, provided that it is finite and
the players enjoy perfect information. Connections between logic and games with a
pair of antagonists as participants, have frequently been pointed out. The employment
of game-theory inclassicallogic has, however, generally been restricted to games of
perfect information. Consequently, these games can generally be assumed to be de-
termined as well. The assumption of perfect information games being determined has
even been generalized to infinite games and as such it has been proposed as a rival of
theAxiom of Choice. The use of games of imperfect information has generally been re-
stricted to the semantical analysis of such abstruse phenomena as branching quantifiers
and the independence-friendly interpretation of connectives (Hintikka, 1973; Hintikka
and Sandu, 1997). Boolean games are not in general games of perfect information and
neither are they generally determined. This eventuality, however, does occur only if
none of the players has control over all propositional variables. Thus one may come to
wonder about the distinguishing properties of determined Boolean games.

After having introduced Boolean games in this chapter, we will examine these three
logical issues in the next chapter.

5.2 Boolean Games

Boolean games constitute a class of games of involving two antagonists, denoted by 0
and 1, for which there are only two outcomes: a win for the one player or a win for the
other player. In both cases the player that fails to win loses. Moreover, at each stage of
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the game, one of the players has choice between two alternatives.
Borderline cases are the two atomic Boolean games denoted by0 and1. The former

player 0 wins without either of the players making a move, and the latter which is won
by player 1 without having to act.

Furthermore,complexor molecular Boolean games are constructed recursively
from these atomic games and a countable set ofbinary decision variables. For any
two Boolean gamesg0 andg1 and any decision variablea, there is another Boolean
game which we denote bya(g0,g1). Each decision variable is assigned to the control
of one of the two players. Moreover, each decision variable can take one of two values,
represented by 0 and 1. Ina(g0,g1) it is up to the player to whom the decision vari-
ablea has been assigned, whether the game continues withg0 or with g1. Choosing
the value 0 results in the game being continued withg0. For the value 1 the game pro-
ceeds with playing the gameg1. Definition 5.2.1 formally defines the set of Boolean
forms and Boolean games on a set of decision variables. The purpose of the distinction
between Boolean games and Boolean forms is that in a later stage we will want to be
able to compare Boolean games that only differ with respect to the assignment of the
decision variables to the players.

Definition 5.2.1 (Boolean Game Forms & Boolean Games)Let A be a countable set
that is disjoint from a two-element set{0,1} the latter set representing the two players.
Define the set ofBoolean (game) forms over Aas the smallest setB(A) such that:

{0,1} ⊆ B(A)
a ∈ A and g,h ∈ B(A) imply (a,g,h) ∈ B(A) .

We usually depict(a,g,h) by a(g,h), and when they occur as atomic games we usually
write 0 and 1 in boldface,i.e., as0 and1, respectively. ABoolean game on Ais a pair
(g, π) consisting of a Boolean formg and acontrol assignment functionπ : A → {0,1}
assigning the decision variables inA to the players in{0,1}. For i ∈ {0,1}, the
preimage of{i} underπ is the set of decision variables assigned toi and will usually
be denoted byπi .1 If π is clear from the context we usually refer to(g, π) by simply
g. The set of Boolean games over a setA given an assignment functionπ is denoted
by B(A, π) and the set of all Boolean games overA by B(A). Again any of these
parameters may be omitted if no confusion is likely. Let further a Boolean formh be
called asubformof another Boolean formg if g andh are identical, org = a(h0,h1)
andh is a subform of eitherh0 or h1.

Definition 5.2.1 can be understood as defining a class ofextensivegames. The
recursion by means of which they are introduced suggests a sequential structure of
play, which can be made explicit in a game tree. A molecular Boolean gamea(g0,g1)
offers the player controlling the decision variablea the choice between two courses of
action. After having made one choice, the game continues with playingg0 and after

1Alternatively, π could be defined as a set of two disjoint subsets ofA indexed by{0, 1} and such
that

S
π = A. If π does not contain the empty set, it is then a bi-partition indexed by{0, 1}.
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having made the other the game continues with playingg1. As such, Boolean games
are based on finite binary trees, internal vertices of which are labelled with decision
variables. We will assume that choosing 0 as the value for a decision variable takes
one to the left and choosing 1 takes one to the right. Consider for instance the Boolean
form a

(
b(1, c(1,0)) ,b(0,1)

)
. Play commences with the player having control over

the decision variablea. If she chooses the value zero fora, the game continues with
the Boolean gameb(1, c(1,0)), otherwise withb(0,1), and so on until an outcome
is reached. Under these assumptions, the Boolean gamea

(
b(1, c(1,0)) ,b(0,1)

)
can

be represented as in Figure 5.2. In much the same manner, the graph on the right in
Figure 5.1 depicts the Boolean form:

a
(
b(c(1,1) , c(1,0)) ,b(d (0,0) ,d (1,1))

)
.

As pointed out in the introduction the binary decision variables are construed as
identifying the players’ information sets, requiring the players to choose strategies that
assign a unique value to each decision variable. The decision variables — which label
the nodes of the game-tree — indicate that these nodes are in the same information set.
This interpretation of Boolean games as finite extensive games of imperfect informa-
tion is enforced by an appropriate definition of a player’s strategy. Thus, in the game
of Figure 5.2, any strategy for the player with control overb should prescribe either a
move to the right in both subgamesb(1, c(1,0)) andb(0,1), or a move to the left in
both.

Accordingly, astrategyfor a player in a Boolean game(g, π) in a classB(A) is
defined formally as a function that assigns one of the binary values 0 or 1 to the de-
cision variables controlled by the player in question. Observe that this assignment is
not restricted to the decision variables that occur in the Boolean formg, but that it is
total on the whole set of decision variables assigned to a player. Because control over
the decision variables is divided over the two players, astrategy profileis a function
mapping the whole ofA onto{0,1}. As such, strategies and strategy profiles can be
seen as (characteristic functions of) subsets of decision variables; in the sequel we will
frequently exploit this equivocality. The set of strategy profiles for a Boolean game
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in B(A, π), is thus given by 2A and, as such, isindependentof π. This is expressly not
the case for strategies. The set of strategy profiles is denoted byS.

Each strategy profile determines a unique outcome for each Boolean form,i.e.,
independently of the specific way control over the decision variables is divided over
the two players. For0 and1 the outcome will invariably be 0 and 1, respectively. The
outcome of a molecular gamea(g0,g1) will depend on the value assigned toa in s. In
casea is assigned the value 1 in a strategy profiles, the outcome of the Boolean form
a(g0,g1) is identified with the outcome ofg1 givens. Otherwise, the outcome ofs in
a(g0,g1) is identical to the outcome ofg0 givens. This gives rise to the definition of
thestrategic form of a game g, denoted by

y

g

x

, as a function with the set of strategy
profiles as domain and{0,1} as its range. Two Boolean forms are said to beequivalent
if their strategic forms are identical. Observe that, with the set of strategy profiles being
defined for a class of Boolean gamesB(A), all games in this class share the same set of
strategy profiles and, as such, they can be compared on this basis. This is even the case
if the decision variables occurring in two Boolean forms do not coincide. Formally we
have the following definition.

Definition 5.2.2 (Strategic Forms and Their Equivalence)Let B(A) be the set of
Boolean forms over the setA. For eachg ∈ B(A) we define itsstrategic formas a
function

y

g

x

: S→ {0,1}, as follows:

y

0

x

(s) =df. 0y
1

x
(s) =df. 1

y

a(g0,g1)

x

(s) =df.

{ y

g1

x

(s) if a ∈ s,y

g0

x

(s) otherwise.

The strategic form of a Boolean form,c.q.Boolean game, being a function from strat-
egy profiles to a two-element set, can be taken as a characteristic function of a subset
of the strategy profiles,i.e., of

{
s∈ S :

y

g

x

(s) = 1
}

. The definition above then trans-
lates to:

y

0

x

= øy

1

x

= S

y

a(g0,g1)

x

=
( y

g0

x∩ {s∈ S : a /∈ s}) ∪ ( y

g1

x∩ {s∈ S : a ∈ s}) .
Two Boolean formsg andh are said to beequivalent— in symbols,g ≡ h — if

they have the same strategic form,i.e.:

g ≡ h iff

y

g

x

=

y

h

x

.

It is not hard to verify that the Boolean forms in Figures 5.2 and 5.1 are equivalent in
this sense. LetA be given by{a,b, c,d}. We then find that both their strategic forms
are the same set of sets of strategy profiles in 2A, viz.:{

ø, {b} , {c} , {d} , {a,b} , {b,d} , {c,d} , {a,b, c} , {a,b,d} ,A}
.
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A Boolean game is defined as a Boolean form together with a function assigning
control over the decision variables to the players. A player’s strategies are given by
the the different choices he can make with respect to the decision variables assigned to
him. A Boolean game can thus be represented as a matrix, with the columns indicating
the strategies for player 0 and the rows those of player 1. A combination of strategies
then yields a strategy profile, each of which is represented by a cell in the matrix.
The entries in the cells represents the values the strategic form takes for the respective
strategy profiles.

On this conception, Boolean games are ordinary strategic games, featuring two an-
tagonists whose strategies are given by the various choices they can make with respect
to the decision variables assigned to them. As Boolean games allow for two outcomes
only — viz., a win for the one player or win for the other — and assuming that both
players (strictly) prefer winning to losing, a strategy profile is a Nash equilibrium if
and only if it subsumes a strategy for one of the players that cannot fail to deliver vic-
tory, i.e., no matter what strategy his opponent chooses to play. Thus, we say a strategy
profile is awinning strategyfor a player if it guarantees that player a win even if his op-
ponent were to choose different values for the decision variables in her control. Define
formally for sa strategy profile andi a player of a Boolean game(g, π):

s is awinning strategyfor i iff for all s′ ∈ S: s∼πi s′ implies

y

g

x

(s′) = i.

We say that a playeri has a winning strategyif there is at least one strategy profile that
is a winning strategy fori. Obviously, at most one of the players can have a winning
strategy. Otherwise both players could play one of their respective winning strategies
against one another. Then both players would secure a win, which is absurd given the
assumption that one player’s victory means the other’s defeat. Assume for areductio
ad absurdum, thats be a winning strategy for 0 ands′ a winning strategy for player 1.
Let, furthermore,s∗ be given(s0, s′1). Then, boths∼π0 s∗ ands′ ∼π1 s∗. Hence, bothy

g

x

(s∗) = 0 and

y

g

x

(s∗) = 1, quod non.
Games are calleddeterminedif one of the players has a winning strategy andin-

determinate, otherwise. Not all Boolean games are determined; it is quite possible
for neither of the players of a Boolean game to have a winning strategy. Typical
examples of Boolean games for which this is the case area(b(0,1) ,b(1,0)) and
a(b(1,0) ,b(0,1)), if one player has control overa and the other overb. E.g., strategy
profile s grants player 1 a win ina(b(1,0) ,b(0,1)) if and only if a andb are either
both present or both absent ins. Player 1, however, has no safeguard against player 0
assigning the ‘opposite’ value tob as he did toa, resulting in a win for player 0. Simi-
larly, whatever value player 0 chooses to assign tob, player 1 might have chosen to seta
to the same value and win. These games could be taken as the Boolean counterparts
of the well-known game ofMatching Pennies, in which two players toss a penny and
the one player may keep them both if the upsides match; otherwise, the other player
obtains the two pennies (cf., Figure 5.3).

Although a player need not have a winning strategy at her disposal, she may have
a winning response, i.e., for each strategy her opponent may choose to play, she can



BOOLEAN GAMES 121

head tail

1 0
head

0 1

0 1
tail

1 0

ø {b}

ø 0 1

{a} 1 0

Figure 5.3. On the left, the gameMatching Pennies. The figures indicate victories and defeats,
but not how many pennies are won or lost. On the right its representation by the a Boolean game
(a(b(0, 1) , b(1, 0))). Player 1 plays rows, player 0 columns.

always find an appropriate strategy in response that will secure her a win. Yet, for
different strategies of the opponent the appropriate response may be a different strategy.
As such winning responses arenot strategies in the strict sense, but rather functions
mapping each strategy of the opponent onto a strategy of the player herself. Formally,
for i a player in a Boolean game(g, π):

i has awinning responsein (g, π)
iff

for all s∈ S, there is ans′ ∈ Ssuch thats∼π1−i s′ and

y

g

x

(s′) = i.

If a player has a winning strategy, he clearly has a winning response as well: against
each strategy of the opponent he can play his winning strategy.

Conceiving of the strategic form of Boolean form as a subset of strategy profiles, the
notions of a player having a winning strategy or a player having a winning response
can conveniently be expressed using the apparatus of rough sets. As an immediate
consequence of the definitions above, the set of winning strategies for Player 1 ing is
given byapr

π1

( y

g

x)
and those of Player 0 likewise byapr

π0

( y

g

x)
or, equivalently,

by aprπ0

( y

g

x)
.2 Then, it can easily be recognized that:

Player 1 has a winning strategy iff apr
π1

( y

g

x) 6= ø,

Player 0 has a winning strategy iff aprπ0

( y

g

x) 6= S,

Player 1 has a winning response iff aprπ0

( y

g

x)
= S,

Player 0 has a winning response iff apr
π1

( y

g

x)
= ø.

2Recall thatπi here denotes asetof decision variables and as such determines apartition of the strat-
egy profiles. It is with respect to this partition — which, if written out in full, would be denoted by the
cumbersomeππi — that the rough set operatorsaprπi

andapr
πi

approximate.
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Figure 5.4. Two Boolean games on the Boolean forma
`
b(1, c(1, 0)) , b(0, 1)

´
. In the game

on the left control over the propositional variablesa andb is assigned to player 1 and control
overc andd to player 0. In the game on the right player 1 has control overa andd, and player 0
over b andc. The figures in the lower right corner of each cell indicate how the entries in the
two matrices are correllated: in cells indicated by the same number the same strategy profile is
played.

From these equivalences we can immediately read off that one player has a win-
ning strategy if and only if the other has no winning response. The intuitively obvious
observation that having a winning strategy implies having a winning response, essen-
tially depends on the sets of decision variablesπ0 andπ1 being disjoint. The assump-
tion that,e.g., Player 1 has a winning strategy furnishes one with a strategy profiles
in apr

π1

( y

g

x)
that is such that for any strategy profiles′, also(s∩ π1) ∪ (s′ ∩ π0) is

in

y

g

x

. Since clearly alsos′ ∼π0 (s∩ π1) ∪ (s′ ∩ π0), we may conclude that Player 1
has a winning response as well. These remarks are summarized in the following propo-
sition.

Proposition 5.2.3 Let (g, π) be a Boolean game in B(A, π) and let i∈ {0,1}. Then,
at most one player has a winning strategy in(g, π), player i having a winning strategy
implies i having a winning response, and player i has a winning strategy if and only if
player1− i has no winning response.

Proof: The third claim is immediate from the rough set characterization of a player
having a winning strategy and a player having a winning response. The other two
claims can be seen to follow as well if, in addition, Corollary 2.2.12 (page 44, above)
is invoked. a

5.3 Operations on Boolean Forms

In Definition 5.2.1, above, Boolean forms were introduced recursively, providing a
way in which larger Boolean forms can be constructed from smaller ones. Here we
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introduce four operations on Boolean forms performing a similar task in a different
manner. We prove that,moduloequivalence, the Boolean forms constitute a Boolean
algebra with respect to these operations. Rather, this result forges a strong link between
Boolean forms on the one hand and propositional formulas on the other.

The operations on Boolean forms,complement(g), sum(g+ h), product(g · h) and
simultaneous sum-product(~ (g,h, k)), are defined formally as follows.

Definition 5.3.1 Let A be a set. Define the set of four operations( ,+, ·,~) of sim-
ilarity type (1, 2, 2, 3) on the set of Boolean formsB(A) inductively as follows, where
a ranges overA:

(1) 0 =df. 1

1 =df. 0

a(g0,g1) =df. a(g0,g1)

(2) 0 + h =df. h

1 + h =df. 1

a(g0,g1) + h =df. a(g0 + h,g0 + h)

(3) 0 · h =df. 0

1 · h =df. h

a(g0,g1) · h =df. a(g0 · h,g0 · h)

(4) ~ (0,h, k) =df. h

~ (1,h, k) =df. k

~ (a(g0,g1) ,h, k) =df. a(~ (g0,h, k) ,~ (g1,h, k)).

Let the algebra(B(A) ; 0,1, ,+, ·) be denoted byBA, suppressing the subscriptA
when clear from the context

These operations on Boolean forms have intuitive readings, which are best appre-
ciated if Boolean games are thought of as trees. Taking thecomplementof a form g
makes that all occurrences of the atomic games1 and0 are interchanged. Thesumof
two forms,g + h, is the result of replacingany occurrence of0 in g by h. Addition
yields the Boolean form in which the root ofh is attached to any leaf node ofg la-
belled with0. Theproductof two forms, (g · h), is similar to their sum, be it that now
it is every occurrence of1 that is replaced byh. The operation~ comes down to si-
multaneously adding one form and multiplying it with another simultaneously. Hence,
~(g,h, k) yields the form that is likeg except that each occurrence of1 is replaced by
an occurrence ofh, and every occurrence of0 by one ofk. Figure 5.2 illustrates the
workings of the operators.
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With respect to the algebraic properties of these operations it is worth observing
that+ and· are neither idempotent nor commutative. Neither do the absorption laws
(g + (g · h) = g andg · (g + h) = g) hold in general. Moreover,+ does not distribute
over· and neither does· over+. Also the identity lawsg+ g = 1, g · g = 0, g+ 0 = 1
andg · 1 = 0 fail to hold in general. Hence,B is obviouslynot a Boolean algebra.
However, Fact 5.3.2 summarizes, among other things, some of the Boolean properties
that do hold for Boolean forms.

Fact 5.3.2 Let g, h and k be Boolean forms in B(A). Then:

g = g

g + 0 = g g · 1 = g

g + (h + k) = (g + h) + k g · (h · k) = (g · h) · k

g + h = g · h g · h = g + h

~ (g,0,1) = g ~ (g,1,0) = g

~ (g,h,1) = g + h ~ (g,0,h) = g · h

~ (g,1,h) = g + h ~ (g,h,0) = g · h.

Proof: All proofs are straightforward, although it may strike the reader as slightly
odd that the De Morgan laws hold, whereas,e.g., commutativity and distributivity do
not. Here we prove by induction on the complexity ofg that g + h = g · h. For the
basic case,i.e., if g = 0 or g = 1, consider the following pair of equations:

0 + h = h = 1 · h = 0 · h,

1 + h = 1 = 0 = 0 · h = 1 · h.

For the inductive case,i.e., if g = a(g0,g1), consider the following equations:

a(g0,g1) + h = a(g0 + h,g1 + h) = a
(
g0 + h,g0 + h

)
= i.h. a

(
g0 · h,g0 · h

)
= a

(
g0,g1

) · h = a(g0,g1) · h.

This ends the proof. a
In addition, both of the following claims hold; the inductive proofs are elementary and
duly omitted:

g + h = 0 iff g = 0 andh = 0,

g · h = 1 iff g = 1 andh = 1.

Each Boolean form can be associated with a finite combination of forms in the
subset{a(0,1) : a ∈ A} together with 0 and1 by means of a finite number appli-
cations of the operator~. The atomic Boolean forms0 and1 are be associated with
themselves and, inductively, each molecular gamea(g0,g1) by ~ (a(0,1) ,h0,h1),
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Table 5.2. Four operations on Boolean forms: complement, sum, product and simultaneous
sum-product.

whereh0 andh1 are the combinations associated withg0 andg1, respectively. Thus the
Boolean forma

(
b(1, c(1,0)) ,b(0,1)

)
of Figure 5.2 is identical to the combination:

~
(
a(0,1),~

(
b(0,1),1,~ (c(0,1) ,1,0)

)
,b(0,1)

)
.

The following proposition lays down formally this general observation.

Proposition 5.3.3 The algebra(B(A) ; 0,1,~) is generated by{a(0,1) : a ∈ A}.

Proof: Trivial. Consider an arbitraryg in B(A). We prove by induction thatg can be
generated. For the basis, we are done immediately since0 and1 are nullary operations
in (B(A) ; 0,1,~). For the induction step, leta(h0,h1) and observe thata(h0,h1) =
~ (a(0,1) ,h0,h1). With the induction hypothesis we are done. a
A similar result cannot be obtained for the operations, + and·, not even if the set of
molecular Boolean forms is extended to

{
a(i, j) ∈ B(A) : i, j ∈ {0,1}}

together with
0 and1. E.g., the Boolean forma(a(0,1) ,a(1,0)) cannot be generated thus.
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Proposition 5.3.4 Let A be a non-empty set of binary decision variables. The alge-
bra B given by(B(A) ; 0,1, ,+, ·) is not generated by any subset of

{
a(i, j) ∈ B(A) :

i, j ∈ {0,1}}
.

Proof: BecauseA is non-empty, we may assumea ∈ A. Letg be an arbitrary Boolean
form generated from

{
a(i, j) ∈ B(A) : i, j ∈ {0,1}} by a finite number of applications

of the operations0, 1, , + and·. We show, fori andj distinct in {0,1}, that:

a(i, j) is a subform ofg implies a(j, i) is no subform ofg.

This suffices for a proof, as botha(0,1) and a(1,0) are subforms of
a(a(0,1) ,a(1,0)) anda(a(0,1) ,a(1,0)) is a Boolean form inB(A). .

The proof is by induction on the number of occurrences of the operations0, 1, ,
+ and· in g. So assumea(i, j) is a subform ofg prove by induction on the number of
operators occurring ing that for distincti andj in {0,1}.

The basis is trivial, since theng ∈ {
a(i, j) ∈ B(A) : i, j ∈ {0,1}}

. The inductive
cases in whichg is 1 or 0 are equally trivial.

Let g = h. First observe that by a simple inductive argument, here omitted, shows
that in general:

k is a subform ofh iff k is a subform ofh.

With a(i, j) a subform ofh, then,a(i, j) is a subform inh. Observe thata(i, j) = a(j, i),
sincei and j were assumed to be distinct elements of{0,1}. Moreover,h = h. By
the induction hypothesis follows thata(i, j) is no subform ofh. Hence,a(i, j) is no
subform ofh either. Since, under the present assumptionsa(i, j) = a(j, i), we are
done.

Let g = h+k. This case is by induction on the complexity ofk. First, assumek = 0.
Then,h + k = h + 0 = h, and we are done by the induction hypothesis. Second,
let k = 1. An easy inductive argument establishes that0 is no subform ofh + 1,
Consequently, neither isa(i, j), sincei and j are distinct. Now consider the inductive
case, in whichk = b(k0, k0). It suffices to show that, for distinctm andn in {0,1}, if
a(m,n) is no subform ofk, it is no subform ofh + k either. So assume thata(m,n)
be no subform ofk; we prove then by an induction on the complexity ofh thata(m,n)
is no subform ofh + k. If h = 0, thenh + k = 0 + k = k and we are done by the
assumption. Ifh = 1, thenh + k = 1 + k = 1, and the claim follows immediately.
Finally, if h = c(h0,h1), thenh + k = c(h0,h1) + k = c(h0 + k,h1 + k) . By the
induction hypothesisa(m,n) is neither a subform ofh0 + k nor ofh1 + k. Neither can
it be the case thath = a(i, j). For eitherm = 0 or n = 0 and without loss of generality
we may assume thatm = 0. Then, however,0 = h0 + k. Hence also0 = k, which is
impossible withk being a molecular game.

As the argument forg = h·k runs along analogous lines, this concludes the proof.a
The Boolean laws that fail to hold forB, however, are satisfied by thequotient

algebraB/≡, which is given by
{

B/≡ ; [0]≡, [1]≡, ,+, ·}. HereB/≡ is defined as
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{[g]≡ : g ∈ B(A)} and , + and· are the properly raised versions of complement, sum
and product for Boolean forms, respectively.I.e., we have in general that[g] =df. [g],
[g] + [h] =df. [g + h] and[g] · [h] =df. [g · h]. We first prove the following lemma as an
intermediary result, which has as a corollary that≡ is a congruence relation. Hence,
B/≡ is properly defined in the first place.

Lemma 5.3.5 For g and h Boolean forms in B(A):

y

a(0,1)

x

=
{

s∈ S : a ∈ s
}

y

g

x

=

y

g

x
y

g + h

x

=

y

g

x∪ y

h

x
y

g · h

x

=

y

g

x∩ y

h

x
y

~ (g,h, k)

x

=
( y

g

x∩ y

h

x) ∪ ( y

g

x∩ y

k

x)
.

Proof: Throughout the proof we haves range over 2A. For the first case consider the
following equations:

y

a(0,1)

x

=
( y

0

x∩ {s: a /∈ s}) ∪ ( y

1

x∩ {s: a ∈ s})
= (ø ∩ {s: a /∈ s}) ∪ (S∩ {s: a ∈ s})
= ø ∪ {s: a ∈ s}
= {s∈ S: a ∈ s} .

The remaining cases are all by induction ong and all follow a similar pattern. We give
here the proof of the third and the last case only.
For the basic cases we can reason as follows:

y

0 + h

x

=

y

h

x

= ø ∪ y

h

x

=

y

0

x∪ y

h

x

,y

1 + h

x

=

y

1

x

= S = S∪ y

h

x

=

y

1

x∪ y

h

x

.

For the inductive case, in whichg = a(g0,g1) consider the following equalities:

y

a(g0,g1) + h

x

=

y

a(g0 + h,g1 + h)

x

=
( y

g0

x

+

y

h

x∩ {s: a /∈ s} ) ∪ ( y

g1

x

+

y

h

x∩ {s: a ∈ s} )
=i.h.

(( y

g0

x∪ y

h

x) ∩ {s: a /∈ s}) ∪ (( y

g1

x∪ y

h

x) ∩ {s: a ∈ s})
=(∗)

( y

g0

x∩ {s: a /∈ s}) ∪ ( y

g1

x∩ {s: a ∈ s}) ∪( y

h

x∩ {s: a /∈ s}) ∪ ( y

h

x∩ {s: a ∈ s})
=

y

a(g0,g1)

x

∪ y

h

x

.
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The equation indicated with the asterisk is based on the Boolean laws governing the
distribution of∩ over∪ and their respective commutativity.

Finally, for the last case, the following equations take care of the basis:

y

~ (0,h, k)

x

=

y

h

x

=
(
S∩ y

h

x) ∪ ø =
( y

0

x∩ y

h

x) ∪ ( y

0

x∩ y

k

x)
,

y

~ (1,h, k)

x

=

y

k

x

= ø ∪ (
S∩ y

k

x)
=

( y

1

x∩ y

h

x) ∪ ( y

1

x∩ y

k

x)
.

For the inductive case we have the following:

y

~ (a(g0,g1) ,h, k)

x

=

y

a(~ (g0,h, k),~ (g1,h, k))

x

=
( y

~ (g0,h, k)

x

∩ {s: a /∈ s} ) ∪ ( y

~ (g1,h, k)

x

∩ {s: a ∈ s} )
=i.h.

((( y

g0

x∩ y

h

x) ∪ ( y

g0

x∩ y

k

x)) ∩ {s: a /∈ s} ) ∪((( y

g1

x∩ y

h

x) ∪ ( y

g1

x∩ y

k

x)) ∩ {s: a ∈ s} )
=distr.

( y

g0

x∩ y

h

x∩ {s: a /∈ s} ) ∪ ( y

g0

x∩ y

k

x∩ {s: a /∈ s} ) ∪( y

g1

x∩ y

h

x∩ {s: a ∈ s} ) ∪ ( y

g1

x∩ y

k

x∩ {s: a ∈ s} )
=comm.

(( y

g0

x∩ {s: a /∈ s} ∩ y

h

x) ∪ ( y

g1

x∩ {s: a ∈ s} ∩ y

h

x)) ∪(( y
g0

x∩ {s: a /∈ s} ∩ y
k

x) ∪ ( y
g1

x∩ {s: a ∈ s} ∩ y
k

x))
=distr.

((( y

g0

x∩ {s: a /∈ s} ) ∪ ( y

g1

x∩ {s: a ∈ s} )) ∩ y

h

x) ∪((( y

g0

x∩ {s: a /∈ s} ) ∪ ( y

g1

x∩ {s: a ∈ s} )) ∩ y

k

x)
=

( y

a(g0,g1)

x

∩ y

h

x) ∪ ( y

a(g0,g1)

x

∩ y

k

x)
=

( y

a(g0,g1)

x

∩ y

h

x) ∪ ( y

a(g0,g1)

x

∩ y

k

x)
.

This concludes the proof. a

Corollary 5.3.6 The equivalence relation≡ on Boolean forms is a congruence rela-
tion onB and, consequently,B/≡ is a properly defined quotient algebra.

Proof: Immediate from Lemma 5.3.5 and the fact that

y

g

x

is a set, for each Boolean
form g. a

On the basis of Lemma 5.3.5, the algebra of strategic formsmoduloequivalenceBA

is defined as follows:

BA =df.
({ y

g

x

: g ∈ B(A)
}

;ø,2A, ,∪,∩)
.
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Suppressing the subscriptA, the algebraBA is a field of sets3 and, as such, also a
Boolean algebra. Moreover,B/≡ andB are (trivially) isomorphicvia the natural iso-
morphism, which maps each[g]≡ onto

y

g

x

. Let B(A) be a set of Boolean forms on a
set of binary decision variablesA along with the classical propositional languageL(A).
An inspection of Proposition 5.3.5 reveals thatBA coincides with the extension alge-
braEA of the classical propositional languageL(A) (cf., page 49). As the latter being
isomorphic to the Lindenbaum algebraLA for L(A) (cf., page 49), so are bothB/≡ and
BA. Hence the following theorem.

Theorem 5.3.7 Let A be a set and L(A) and B(A) be the classical propositional lan-
guage over A and the set of Boolean forms on A, respectively. Then,BA coincides with
the extension algebraEA. Consequently,BA, BA/≡, EA and the Lindenbaum algebra
LA are pairwise isomorphic.

Sketch of proof: Straightforward. The first claim is by a trivial inductive argu-
ment on the complexity of Boolean forms and propositional variables. Moreover,B/≡
andB are isomorphicvia the isomorphism that maps[g]≡ onto

y

g

x

. Observe in this
respect, that this map is bijective in virtue of the definition of≡. Finally, the alge-
brasBA, BA/≡, EA and the Lindenbaum algebraLA being pairwise isomorphic then
follows immediately fromEA andLA being identical. a

In virtue of this theorem we can assume for each formulaϕ of a classical proposi-
tional languageL(A) there to be a Boolean formgϕ, and,vice versa, with each Boolean
form g a formulaϕg such that:

[[ϕ]] =

y

gϕ

x

and

y

g

x

= [[ϕg]].

As an immediate consequence of Proposition 5.3.5, the following fact is obtained.

Fact 5.3.8 Let A be a set,ϕ,ψ formulas in L(A) and g,h, k ∈ B. Then:

y

a(0,1)

x

= [[a]]

y

~ (g,h, k)

x

=
[[

(¬ϕg ∧ ϕh) ∨ (ϕg ∧ ϕk)
]]

y

0

x

= [[⊥]]

y

1

x

= [[>]]y

g

x

= [[¬ϕg]] [[¬ϕ]] =

y

gϕ

x
y

g + h

x

= [[ϕg ∨ ϕh]] [[ϕ ∨ ψ]] =

y

gϕ + gψ

x
y

g · h

x

= [[ϕg ∧ ϕh]] [[ϕ ∧ ψ]] =

y

gϕ · gψ

x

.

We say that the formulaϕg representsthe Boolean form g and that the boolean form gϕ

representsthe formulaϕ.

Proof: An immediate consequence of Proposition 5.3.5. a
On the basis of this fact and Proposition 5.3.3, for each Boolean formg a propo-

sitional formula can straightforwardly be formulated that is equivalent toϕg. On

3A field of sets Sis a collection of subsets of a nonempty setX such that both the empty setø and the set
X are inSandS is closed under∩, ∪ and with respect toX (Chang and Keisler, 1973, p.39).
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page 125 we observed that the gamea
(
b(1, c(1,0)) ,b(0,1)

)
of our example is iden-

tical to a combination of the Boolean formsa(0,1), b(0,1) andb(0,1) and the oper-
ations0, 1 and~. By Fact 5.3.8, we find in

(¬a∧ (¬b∨ (b∧ c))
)∨ (

a∧b
)

a formula
that is equivalent to its logical representant. Some Boolean manipulations, gives the
equivalent but simpler(a ↔ b) ∨ (¬a∧ ¬c) as a suitable logical representative of the
Boolean form. The Boolean formsa(b(0,1) ,b(1,0)) anda(b(1,0) ,b(0,1)) of the
typically indeterminate Boolean games can then be found to correspond to, respec-
tively, the formulasa ↔ b anda ↔ ¬b.

5.4 Evaluation Games

The considerations of the previous section give rise to the interpretation of Boolean
games as a kind of evaluation game. Each Boolean form corresponds to a proposi-
tional formula, the decision variables to propositional variables and the strategy pro-
files to valuations for the respective propositional language. Furthermore, the roles of
two players of a Boolean game can be construed as those of averifier and of a falsifier
falsifierof the formula representing the Boolean form in question. The verifier endeav-
ors to satisfy the formula by finding appropriate values for the propositional variables
assigned to her control, and the falsifier tries to make the formula false by choosing
appropriate values for the propositional variables in his control. Whether a player has
a winning strategy or a winning response given a particular formula then depends on
the set of propositional variables assigned to her.

At this point a remark is in order with respect to the logical evaluation games ad-
vanced by Hintikka and Sandu (Hintikka, 1973 and Hintikka and Sandu, 1997) and
their relation to Boolean games. They suggest a game-theoretical semantics for first-
order logic, in line with their observation that “... mathematical logicians have sponta-
neously resorted to game-theoretical conceptualization practically every time they have
had to deal wiht a kind of logic where Tarski-type truth definitions do not apply, in-
cluding branching quantifiers languages, game quantifier languages and infinitely deep
languages” (Hintikka and Sandu, 1997, p. 363).

Game-theoretical semantics(GTS) defines for each first-order formulaϕ, each
first-order modelA, and each assignment functionf , a two-player game of strict com-
petition — denoted byG(ϕ,A, f ). This definition is by recursion on the formulaϕ.
The two players of the game play the antagonistic roles of verifier and falsifier of a
formula. LetR(t0, . . . , tn), be an atomic formula. Then, the verifier wins the game
G(R(t0, . . . , tn) ,A, f ) if R(t0, . . . , tn) is satisfied inA with respect to the assignment
function f . For molecular formulas the principal logical constant involved determines
which player is to make a move. In the gameG(ϕ0 ∧ ϕ1,A, f ) the falsifier chooses a
conjunctϕi , after which the game is continued playing the gameG(ϕi ,A, f ). The game
G(ϕ0 ∨ ϕ1,A, f ) is similar to that for conjunction, except that now it is up to the veri-
fier to choose a disjunct. For games for the quantifiers follow the same pattern. LetQ a
universal or an existential quantifier. Then, in a gameG((Qx)ϕ,A, f ), one of the play-
ers selects an objecta from the domain ofA, after which the game is continued playing
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Figure 5.5. The propositional formulaa ∧ (b∨ c) represented as, repsectively, a Hintikka-
Sandu evaluation game (left) and as a Boolean game (right). WhetherVerifier has a winning
strategy in the former depends on the background model underlying the game.E.g., in the
valuation{a, b} she has, but in{a} she has not. In contrast, whether a player has a winning
strategy in the Boolean game, depends on the control over the propostional variables assigned to
him. E.g., if Player1 has control over botha andb, she has a winning strategy. Not so, if she
has control overb andc.

G(ϕ,A, f [x/a]). The verifier is to choose ifQx is the existential quantifier∃x and the
falsifier otherwise,i.e., if Qx is the universal quantifier∀x. In the gameG(¬ϕ,A, f )
the players swap roles and play is continued withG(ϕ,A, f ). The result that forms
the point of departure for the researches in GTS is then that for the classical first-order
languages there is an intimate link with the Tarskian or truth-functional interpretation.
For² the Tarskian satisfaction relation it is then the case that:

A, f ² ϕ iff the player in the role of verifier has a winning strategy inG(ϕ,A, f ).

As a consequence a formulaϕ is logically valid if the verifier has a winning strategy
for the evaluation game forϕ onall modelsA.

Like in Boolean games, in the evaluation games of GTS a verifier and a falsifier
vie for the truth-value of a formula. However, when restricted to a classical first-order
language, the GTS evaluation games are of perfect information, and, hence, they are in
general determined. The classical law of excluded middle is often seen as to reflect this
fact. In the Boolean framework, a formula of the formϕ∨¬ϕ defines a game that will
always be won by one of the players. We took, however, pains to point out that it is not
in general the case that Boolean games are determined. For propositional languages,
the GTS game determined by a formula differs structurally from the Boolean form
defined by the same formula, as Figure 5.5 illustrates. Furthermore, the ‘powers’ of the
players are determined by the logical constants in the GTS-framework. By contrast,
what a player can achieve in a Boolean game, also depends on the set of propositional
variables he has been assigned control over.

For languages other than that of classical first-order logic, however, the GTS-
framework does allow for imperfect information. Due to the linear representation of
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formulas in the classical notation, the scopes of two quantifiers are forced to be either
exclusive or nested. This restriction — which is equally arbitrary as spurious according
to Hintikka and Sandu (Hintikka and Sandu 1997, p. 366) — is lifted, if quantifiers are
allowed to “branch”, as,e.g., in:4(∀x ∃y

∀z ∃u

)
ϕ (x, y, z,u) .

Here the quantifier∃y is thought to be in the scope of∀x, but not in that of∀z. Moreover,
∀z is also thought to be independent of∃y. This interdependence and independence of
quantifiers can also be given a linear representation using the so-calledslashnotation.
The formula above then becomes:

(∀x) (∀z) (∃y/∀z) (∃u/∀x)ϕ.

This notation can be generalized in that a quantifier can be “slashed” by any quantifier
of the opposite type that occurs to the left of it in the formula in question. The eval-
uation gameG((∃x/∀y0, . . . ,∀yn)ϕ,A, f ) is then an imperfect information game, in
which the verifier has to choose a value for the variablex unbeknownstof the values
her opponent has chosen for the variablesy0, . . . , yn earlier in the game.

If branching quantifiers are also allowed in quantified propositional logic, it turns
out that for each Boolean game we can find a formulaϕ such that player 1 has a
winning strategy in the Boolean game if and only if in the evaluation gameG(ϕ, s) the
verifier has a winning strategy as well, where,s is any valuation of the propositional
language. For(g, π) a Boolean game in the decision variablesa0, . . . ,an,b0, . . . ,bm

andπ assigning control overa0, . . . ,am to player 0 and that overb0, . . . ,bm to player 1,
the corresponding formula in quantified propositional logic is obtained as:(∀a0, . . . ,∀an

∃b0, . . . ,∃bm

)
ϕg (a0, . . . ,an,b0, . . . ,bm) .

We leave this claim here without a proof. In the quantified formula above, the pre-
fix

(∀a0,...,∀an

∃b0,...,∃bm

)
plays a similar role as the control assignment function in a Boolean

game: both determine which player has control over which variables. However, for our
purposes it turns out to be more convenient to deal with the distribution of control at
the meta-level, not in the least because it facilitates the generalization of the concept of
distributed control over propositional variables to situations in which multiple players
interact. This issue will be addressed in Part III of this thesis.

In GTS the verifier having a winning strategy in the evaluation gamesG(ϕ,A, f )
for all modelsA and all assignment functionsf means thatϕ is valid. For Boolean
games, likewise, there is a relation between a propositional formulaϕ being valid and
player 1 having a winning strategy in a Boolean game on the Boolean formgϕ. This
correspondence, however, only obtains in general if player 1 has control over no propo-
sitional variables occurring inϕ. For the other distributions the propositional variables

4Branching quantifiers were proposed for the first time in Henkin (1961).



EVALUATION GAMES 133

we find that the correspondence holds only with respect to a generalized notion of log-
ical validity. In this way the notion of distributed control over propositional variables
assumes a logical significance.

The next chapter will be devoted to the issue of how distribution of control over
propositional variables relates to the logical properties of formulas. In particular the
logical counterparts of the game-theoretical issues mentioned in the introduction of this
chapter will be addressed. First,given a Boolean form and a player, which distributions
of the decision variables yield a Boolean game in which that player has a winning
strategy? Second,given a distribution of the decision variables, in which Boolean
games complying with this distribution has the one player a winning strategy, in which
the other and in which neither of them?





Chapter 6

Propositional Logic for Control

6.1 Introduction

In the previous chapter Boolean games based on a set of binary decision variablesA
were proved to entertain an intimate relation with the formulas of the propositional
language with the same setA as propositional variables. The isomorphism between
the algebra of (strategic forms of) Boolean forms inB(A) and the Lindenbaum algebra
of the corresponding propositional languageL(A) elicited the interpretation of Boolean
games as a special kind of logical evaluation game. By choosing values for the decision
variables assigned to them, the two players construct a valuation with respect to which
the formula corresponding to the Boolean game in question should be evaluated. The
one player strives for a valuation that verifies the formula, whereas her opponent aims
at a valuation that renders it false. On this basis, game-theoretical and logical concepts
can be matched.

Boolean forms correspond to propositional formulas, strategy profiles to valuations
for the propositional variables and a win for player 1 in a Boolean form to the truth of
the formula associated with that Boolean form. Furthermore, the propositional connec-
tives obtain a game-theoretical significance as operations on Boolean forms. This kind
of correspondence is not peculiar to Boolean games; congenial ones are central to the
game-theoretical analyses of logical concepts in the framework of Hintikka and Sandu
(Hintikka (1973), Hintikka and Sandu (1997)) and in that of Lorenzen’s (Lorenzen and
Lorenz (1978)). The conformity of game-theoretic and logical notions reappear at the
level of the solution concepts. In a Hintikka-Sandu evaluation game for a formulaϕ
and a background modelA, Verifier having a winning strategy corresponds toϕ being
true in the modelA. In Lorenzen’s writings, a formulaϕ is derivable in a formal sys-
tem if and only if the so-calledProponenthas a winning strategy in the corresponding
game.

The controversy between the two players of a Boolean game could be said to be
over the truth value of a propositional formula where both players exercise control

135
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over disjoint sets propositional variables. Thus, in a Boolean game are distinguished a
Boolean form and an assignment of the decision variables to the players. Generally, the
manipulative powers of the players depend on both of these components. The Boolean
form determines which player wins for each strategy profile and control over a greater
number of propositional variables will usually help a player attain his goals.

The classical logical notions of validity and satisfiability are to be reencountered in
the extreme cases where either the Boolean form assigns victory to one player for all
strategy outcomes or where control over the propositional variables is concentrated in
just one player.

In the first of these extreme cases, the Boolean form correspond to a propositional
tautology or a contradiction. Hence, the validity of a propositional formula signifies
that the corresponding game cannot otherwise but result in a victory for Player 1.

The other extreme is if one of the players has control over all propositional vari-
ables. If Player 1 disposes overall propositional variables, the problem she faces is
that of classical satisfiability. If she has a winning strategy in such a game, values for
the propositional variables that render the formula true can be found and the formula
is classically satisfiable. If she is unable to find such values for the propositional vari-
ables, the formula is unsatisfiable. Similarly, the validity of a propositional formula
signifies that in the corresponding Boolean game the player 1 has a winning strategy
even if she has control over no propositional variable whatsoever. Hence, in these two
extreme cases the game-theoretical concept of a winning strategy has logical counter-
parts in validity and satisfiability.

From a game-theoretical angle the interest of these extreme cases is only limited. If
the Boolean form is tautology or a contradiction, the game hardly need to be played, as
the outcome is fixed from the outset. On the other hand, if control over the propositional
variables is concentrated in one player, the game reduces to a one-person game without
any interaction to speak of.

Strategic and game-theoretical reasoning is rather about what a player can achieve
relative to the powers and preferences of the opponent. The correspondence between
Boolean forms and propositional formulas, as enunciated in the previous chapter, is one
way of bringing strategic themes under the heading of classical propositional logic. We
will argue that the issue of limited control over decision or propositional variables, as
exemplified by Boolean games, motivates the study a generalized notion of logical
consequence.

From this point of view, of special interest are the intermediate cases in which each
player has control over a proper subset of the variables and in which the Boolean form
corresponds to neither tautology nor contradiction. Then, however, the concept of a
player having a winning strategy is no longer guaranteed to have a well-known coun-
terpart in a traditional notion of classical logic. Taking seriously the game-theoretical
perspective on logic as provided by Boolean games, this is an unsatisfactory state of
affairs. In an effort filling up this lacuna between logical and game-theoretical con-
cepts, one could parameterize the concepts of validity and satisfiability by a subset of
propositional variables. Intuitively, a formulaϕ is valid relative to such a subset∆, if
there is a choice of values for the propositional variables in∆ such thatϕ holds in all
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valuations that comply with this choice. Dually, a formulaϕ is said to be satisfiable
relative to a subset∆ if, for each assignment of values to the variables in∆, there is a
complementary choice of values for the variables outside∆ such that the resulting val-
uation satisfiesϕ. Hence,relative to{a}, the formulaa∨b is both satisfiable and valid,
a ↔ b is satisfiable but not valid anda∧b is neither satisfiable nor valid. Analogously,
the concepts of∆-refutability and∆-unsatisfiability are introduced. In this manner,
the idea of partial control over propositional variables is accounted for. We find that
the classical notions of satisfiability, refutability and validity are all borderline cases
of bothrelativized validity and relativized satisfiability. For the intermediate,i.e., non-
borderline, cases, they correspond to the game-theoretical concepts of a player having
a winning strategy or a winning response in a Boolean game.E.g., Player 1 turns out
to have a winning strategy in a Boolean game(g, π) if and only if the formula corre-
sponding withg is valid with respect to the set of propositional variables thatπ assigns
to Player 1. Player 0 has a winning strategy in(g, π) if and only if the corresponding
formula is unsatisfiable relative to the set of propositional variablesπ assigns to him.

In the theory of two-person games of pure conflict the concept ofdeterminacyplays
a central role. A game is said to be determined if one of the players has a winning strat-
egy. One of the first game-theoretical results, due to Zermelo (1913), proved the deter-
minacy of two-person games of perfect information. In the previous chapter, we argued
that Boolean games are not determined in the above sense and had better be understood
as games of imperfect information. Hence, the question which Boolean games are de-
termined is not settled trivially by Zermelo’s theorem. Via the correspondence between
Boolean forms and propositional formulas, determinacy of Boolean games also has an
immediate logical counterpart. For∆ a subset of propositional variables assigned to
player 1 by the control assignment functionπ, we say a formulaϕ is∆-determinedif
and only if the Boolean game(gϕ, π) is determined.

Boolean forms correspond to formulas and in the remarks above (relativized) va-
lidity and satisfiability were likewise thought of as merely applying to formulas. The
central idea of distributed control over the variables of a propositional language can,
however, be extrapolated so as to apply to properties of theories as well. In particular,
logical consequence can also be relativized to a subset of propositional variables.

Rather than a binary relation between theories, relativized logical consequence is
introduced as a ternary relation obtaining between two theories and a subset of propo-
sitional variables. Classical logical consequence is a borderline case: it coincides with
the generalized notion if made relative to the empty set. Alternatively, the set of propo-
sitional variables could be seen as aparameter. Viewed thus, the relativizing of logical
consequence is afamilyof consequence relations,1 which can be ordered as a complete
lattice. Classical consequence is then a limiting case,viz., the bottom of the lattice.

The relativized concept of logical consequence is given a semantical definition in
terms of valuations and subsets of propositional variables. Two propositional theo-
riesΓ andΘ thus connected relative to a subset of propositional variables∆ will be

1Recall that we tookany relation between the theories of a propositional language as a consequence
relation.
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denoted byΓ ²∆ Θ. The demand for sound and complete formal characterizations of
this relativized consequence relation now pushes to the fore.

The issue of completeness, however, may be approached from two conceptually
different angles. On the one hand one may emphasize the consequence relation each
subset of propositional variables defines. The question is then, given a fixed subset of
propositional variables∆, between which pairs of theories the consequence relation
parameterized by∆ holds. This issue is analogous to the classical problem of formal
systems for propositional logic. As a matter of fact, any sound and complete formal
systems for classical propositional logic may also be deployed as a calculus in which
the desired results can be obtained. (cf., Proposition 6.3.5, below). In Section 6.4 a
Gentzen-style system for relativized consequence is presented.

On the other hand, one may focus on the subsets of propositional variables relative
to which a particular theory follows from another. The problem is then to produce, for
any given pair of theoriesΓ andΘ, the subsets of propositional variables∆ for which
it is the case thatΓ ²∆ Θ.

The relevance of the latter system for Boolean games is that it provides a general-
ized answer to the question which are the minimal sets of decision variables over which
one should have control in order to be able to win a Boolean game,i.e., the minimal
sets of decision variables that furnishes a player with a winning strategy. Moreover,
the system also specifies the winning strategy itself,i.e., not only does it give a set of
decision variables control over which suffices to win the game, but it also produces
actual values for those variables that win the game.

6.2 Relativized Validity and Satisfiability

A statement as to the classical validity of a formula makes a universal claim on the
set of valuations: a formula is valid if and only if it is forced inall valuations. In a
similar vein, the existential quantifier implicit in statements claiming the satisfiability
of a formula likewise ranges over all valuations.

If it were someone’s aim to construct a valuation that forces a particular a formula, it
may suffice to be able to set the values of only some propositional variables, leaving the
values of the other variables to the whims of Providence or even to the vindictiveness
of an antagonist. One may need control over even fewer propositional variables, if
in a similar situation one can make one’s choice for the values dependent on those of
one’s adversary. In either case, no control over any variables at all is required if the
formula in question is valid. By contrast, control over all variables may be needed if it
is merely satisfiable in the classical sense. Of course, similar remarks are in order if it
is someone’s ambition to falsify a formula rather than to satisfy it. Again, his success in
achieving his objective may depend on the set of propositional variables he has control
over.

These considerations suggest a refinement of the classical quadripartite classifica-
tion of formulas in terms of their being valid, refutable, satisfiable and unsatisfiable.
These logical properties of formulas can be made dependent on a set of propositional
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variables.

ϕ is∆-valid iff for somes∈ S, for all s′ ∈ S: s∼∆ s′ implies s′ ° ϕ,

ϕ is∆-unsatisfiableiff for somes∈ S, for all s′ ∈ S: s∼∆ s′ implies s′ 1 ϕ.

As dual notions we then obtain:

ϕ is∆-satisfiable iff for all s∈ S, for somes′ ∈ S: s∼∆ s′ and s′ ° ϕ,

ϕ is∆-refutable iff for all s∈ S, for somes′ ∈ S: s∼∆ s′ and s′ 1 ϕ.

If one has control over no variables whatsoever, then one is entirely at the mercy of
whetherϕ is valid or not. On the other hand, with total control over the propositional
variables one can validate any formula provided that it be satisfiable. Similar remarks
apply to the concept of refutability and unsatisfiability. The following proposition re-
capitulates these observations.

Proposition 6.2.1 Letϕ be a formula of some propositional language L(A). Then:

ϕ is ø-valid iff ϕ is A-satisfiable iffϕ is classically valid,

ϕ is ø-unsatisfiable iff ϕ is A-refutable iff ϕ is classically unsatisfiable,

ϕ is ø-satisfiable iff ϕ is A-valid iff ϕ is classically satisfiable,

ϕ is ø-refutable iff ϕ is A-unsatisfiable iffϕ is classically refutable.

Proof: Immediately from the fact thatεA is the identity relation andεø the universal
relation on 2A, the set of valuations forL(A). a
The definitions of the relativized notions of validity and unsatisfiability of a formula
evince a strong resemblance with the definitions of a player having a winning strategy
in a Boolean game. This impression is vindicated in the following proposition.

Proposition 6.2.2 Letϕ be a formula in a propositional language L(A) and letπ be
a partition of A, withπ1 the set of propositional variables assigned to player1 andπ0

those to player0. Then:

ϕ is π1-valid iff Player1 has a winning strategy in(gϕ, π),

ϕ is π0-unsatisfiable iff Player0 has a winning strategy in(gϕ, π).

Proof: Almost immediately from the fact that[[ϕ]] =

y

gϕ

x

, Definition 6.3.1, the
definition of a player having a winning strategy (cf., page 120) and that of a player
having a winning response (cf., page 121) in a Boolean game. a

As an immediate consequence of this proposition and the fact at most one player
can have a winning strategy in a Boolean game, the following implications also hold.

ϕ is∆-valid implies ϕ is∆-satisfiable,

ϕ is∆-unsatisfiable impliesϕ is∆-refutable.
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Taking a ↔ b or a ↔ ¬b for ϕ and{a} for ∆, moreover, provides a suitable
counterexample against the inverse claims.

So, a formula is∆-valid if and only if in the corresponding Boolean form player 1
has a winning strategy if assigned control over∆. Similarly, a formula is∆-unsat-
isfiable if player 0 has a winning strategy in the corresponding game, provided he
decide over the values of the variables in∆. This makes that the concept of a Boolean
game being determined can also be expressed in logical terms. A Boolean game(g, π)
is determined if one of the players has a winning strategy,i.e., if the corresponding
formula ϕg is eitherπ1-valid or π0-unsatisfiable. It seems reasonable to extend the
application of the concept of determinacy to formulas. Thus define forϕ a formula of
some propositional languageL(A):

ϕ is∆-determined iff ϕ is either∆-valid or∆-unsatisfiable.

It follows that a formulaϕ is∆ determined if and only if its being∆-satisfiable implies
its being∆-valid and, equally, if and only if its being∆-refutable implies its being∆-
unsatisfiable. A formula is called∆-indeterminateif it is not ∆-determined. This
then is a logical concept that is immediately inspired by the game-theoretical light
that Boolean games shed on propositional logic and one of which the investigation is
appropriate, if this perspective is taken seriously.

In the limiting cases in which∆ is either the whole set of propositional variables
or empty, all formulas are determined. Because of Proposition 6.2.1, however, this is
merely giving expression to the bland propositional facts that a formula is either valid
or refutable, or that a formula is either satisfiable or unsatisfiable. For the intermediate
cases, however, the set of formulas of a propositional language will never be exhausted
by the set of determined formulas.

Proposition 6.2.3 Let L(A) be a classical propositional language and let∆ ⊆ A.
Then:

the set of∆-indeterminate formulas is non-empty iffø ( ∆ ( A.

Proof: The left-to-right direction is immediate by Proposition 6.2.1; merely consider
the contrapositive. For the opposite direction, we may assume there to be propositional
variablesa andb in A such thata ∈ ∆ andb /∈ ∆. Then, consider,e.g., a ↔ b, which
is neither∆-valid nor∆-unsatisfiable and hence∆-indeterminate. a
Thus for each non-empty proper subset∆ of propositional variables, we have as arche-
typical examples of indeterminate formulasa ↔ b anda ↔ ¬b, provided thata ∈ ∆
andb /∈ ∆.

6.3 Relativized Logical Consequence

The relativized concepts of validity and satisfiability of Section 6.2 can be seen as
appropriate notions of validity and satisfiability for a common relativized notion of
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consequence. Classical consequence is defined as a relation between theoriesΓ andΘ,
which, informally, holds whenever at least one formula inΘ holds whenever all of the
formulas inΓ do. Formally, classical consequence was introduce as follows:

Γ ²CPCΘ iff for all s∈ S: if s ° γ, for all γ ∈ Γ, then s ° ϑ, for someϑ ∈ Θ.

This definition can also be given the more succinct formulation suggested on page 46:

Γ ²CPCΘ iff [[Γ ]] ⊆ 〈〈Θ 〉〉 .
We propose to make classical consequence dependent on a subset of propositional vari-
ables, writingΓ ²∆ Θ if the theoryΘ follows from the theoryΓ with respect to the
set of propositional variables∆. Intuitively, Γ ²∆ Θ holds if it is possible to assign
values to the propositional variables in∆ such that any valuation complying with this
assignment forces at least one formula inΘ whenever it forces all formulas inΓ as
well. Formally we have the following definition:

Definition 6.3.1 (Relativized consequence)For Γ andΘ theories in a propositional
languageL(A), define:

Γ ²∆ Θ

iff

∃s,∀s′ such thats∼∆ s′ : ∀γ ∈ Γ : s′ ° γ implies ∃ϑ ∈ Θ : s′ ° ϑ.

Each subset∆ of propositional variables inA determines a proper logicΛ∆ defined as
Λ∆ =df.

{
(Γ,Θ) : Γ ²∆ Θ

}
.

As an immediate consequence of this definition, a formulaϕ is∆-valid if and only if
ø ²∆ ϕ andϕ is∆-unsatisfiable if and only ifϕ ²∆ ø. Similarly,ϕ is∆-satisfiable if
and only ifϕ 2∆ ø andϕ is∆-refutable if and only ifø 2∆ ϕ.

Despite its rather tortuous formulation, relativized consequence can more intu-
itively be understood as alocalizedgeneralization of classical consequence. Rather
than requiring[[Γ ]] to be a subset of〈〈Θ 〉〉 , per se, the relativized notion merely de-
mands that this inclusion holds in one of a distinguished set of subsets of valuations.
The relevant subsets of valuations for²∆ are given by the partitionπ∆. Recall thatπ∆
is the partition of the set of valuations induced by the equivalence relationε∆, viz., the
equivalence relation that holds between all valuations that agree on their values for the
variables in∆ (cf., page 40). A theoryΓ entails another theoryΘ relative to a subset
of propositional variables∆ if there is some block ofπ∆ within which the inclusion
of [[Γ ]] in 〈〈Θ 〉〉 holds. The following is an equivalent characterization of relativized
consequence (cf., Figure 6.1).

Γ ²∆ Θ iff for someX ∈ π∆ : [[Γ ]] ∩ X ⊆ 〈〈Θ 〉〉 ∩ X.

In the extreme case that∆ is empty,π∆ is the trivial partition containing the whole set
of valuations 2A itself as the only block. Hence, the classical consequence relation can
readily be seen to coincide with theΛø.
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[[Γ ]]

〈〈Θ 〉〉

Figure 6.1. Logical space partitioned byε∆. Here,Γ ²∆ Θ, because in each of the blocksX
within the area demarcated by the thick lines[[Γ ]] ∩ X ⊂ 〈〈Θ 〉〉 ∩ X.

Fact 6.3.2 LetΓ andΘ be propositional theories in a propositional language L(A).
Then:

Γ ² Θ iff Γ ²ø Θ.

Proof: As for Proposition 6.2.1, merely observe thatεA is the identity relation andεø
the universal relation on 2A. a

If ∆ is a subset of∆′, the partitionπ∆′ refinesπ∆. As a consequence, relativized
consequence is upward monotonic in the set of propositional variables, in the sense that
∆ ⊆ ∆′ impliesΛ∆ ⊆ Λ∆′ . Also, since it is still the case that[[Γ ]] shrinks and〈〈Γ 〉〉
grows withΓ becoming larger, relativized propositional consequence is monotonic.
The following proposition recapitulates this observation.

Proposition 6.3.3 LetΓ , Γ ′,Θ andΘ be theories in L(A) such thatΓ ⊆ Γ ′ andΘ ⊆
Θ′. Let further∆′ and∆′ be subsets of A such that∆ ⊆ ∆′. Then:

Γ ²∆ Θ implies Γ ′ ²∆′ Θ′.

Proof: Straightforward. AssumeΓ ²∆ Θ. Then,X ∩ [[Γ ]] ⊆ X ∩ 〈〈Θ 〉〉 , for some
X ∈ π∆. Consider thisX. Since,∆ ⊆ ∆′, by Fact 2.2.6, alsoπ∆′ 6 π∆. Hence there
is someX′ ∈ π∆′ with X′ ⊆ X. Consequently alsoX′ ∩ [[Γ ]] ⊆ X′ ∩ 〈〈Θ 〉〉 . Because
Γ ⊆ Γ ′ andΘ ⊆ Θ′ also [[Θ′]] ⊆ [[Γ ]] and 〈〈Θ 〉〉 ⊆ 〈〈Θ′ 〉〉 . We may conclude that
X′ ∩ [[Γ ′]] ⊆ X′ ∩ 〈〈Θ′ 〉〉 and thereforeΓ ′ ²∆′ Θ′. a

Relativized consequence can alternatively be construed as afamily {Λ∆}∆⊆A of
consequence relations, indexed by subsets of propositional variables. Define the or-
dering6 on {Λ∆}∆⊆A by set-inclusion,i.e., such that for all subsets∆ and∆′ of
propositional variables:

Λ∆ 6 Λ∆′ iff Λ∆ ⊆ Λ∆′ .

We then obtain the following fact.
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Fact 6.3.4 Let L(A) a propositional language with∆,∆′ ⊆ A. Then:

Λ∆ 6 Λ∆′ iff ∆ ⊆ ∆′.

Proof: The right-to-left direction is immediate by Proposition 6.3.3. For the opposite
direction assume∆ * ∆′. Then, there exists somea ∈ ∆ such thata /∈ ∆′. We then
find thatø ²∆ a, i.e., (ø,a) ∈ Λ∆ butø 2∆′ a, i.e., (ø,a) /∈ Λ∆′ . a
As an immediate corollary, then,

({Λ∆}∆∈2A ,6
)

is a complete lattice — even a
Boolean algebra — with classical consequence as bottom element. The greatest lower
bound and the least upper bound of a set{Λ∆i}i∈I are given by, respectively,ΛT

i∈I ∆i

andΛS

i∈I ∆i
, i.e.,

∧
i∈I

Λ∆i = ΛT

i∈I ∆i

∨
i∈I

Λ∆i = ΛS

i∈I ∆i
.

Observe, however, that join and meet are not in general given by union and intersection,
respectively.I.e., it is not generally the case thatΛ∆ ∧ Λ∆′ equalsΛ∆ ∩ Λ∆′ or that
Λ∆ ∨ Λ∆′ coincides withΛ∆ ∪ Λ∆′ . For a counterexample consider leta andb be
distinct propositional variables. Then,ø ²{a} a∨ b as well asø ²{b} a∨ b. However,
ø 2ø a∨ b, although clearly{a} ∩ {b} = ø.

Each block in a partitionπ∆, where∆ is a subset of propositional variables, can be
characterized by a theory consisting of literals overA. This makes that each statement
of the formΓ ²∆ Θ correspond to a statementΓ ′ ²CPC Θ in classical propositional
logic.

Proposition 6.3.5 Let Γ andΘ be theories of a propositional language L(A) and
let∆ ⊆ A. Then:

Γ ²∆ Θ iff for some∆′ ⊆ ∆ : Γ ∪ (∆−∆′) ² Θ ∪∆′.

Proof: For the left-to-right direction assumeΓ ²∆ Θ. Then there is a valuations
such that for all valuationss′ with s ∼∆ s′, either for someγ ∈ Γ , s′ 1 γ or for
someϑ ∈ Θ, s′ ° ϑ. Consider this valuations and define∆′ =df. ∆− s. Then,
∆−∆′ = ∆ ∩ s. Now consider an arbitrary valuations∗ and assume, for areductio
ad absurdumthat boths∗ ∈ [[Γ ∪ (∆−∆′)]] ands∗ /∈ 〈〈Θ∪∆′ 〉〉 . Observe thats∗ ° d
for all d ∈ ∆−∆′, ands∗ 1 d, for all d ∈ ∆′. Hence,s ∼∆ s∗ and by the initial
assumption,s∗ 1 γ, for someγ ∈ Γ , or s∗ ° ϑ, for someϑ ∈ Θ. This, however, is at
variance with the assumption that boths∗ ∈ [[Γ ∪ (∆−∆′)]] ands∗ /∈ 〈〈Θ ∪∆′ 〉〉 .

For the opposite direction, suppose there be some∆′ ⊆ ∆ such thatΓ ∪
(∆−∆′) ² Θ∪∆′. Consider the valuations∗∗ defined bys∗∗ =df. ∆−∆′. Now con-
sider an arbitrary valuations′ such thats∗∗ ∼∆ s′. Then,s′ ° d, for all d ∈ ∆−∆′,
and s′ 1 d, for all d ∈ ∆′. Still, by the initial assumption, eithers′ 1 ϕ, for
someϕ ∈ Γ ∪ ∆−∆′, or s′ ° ϕ, for someϕ ∈ Θ ∪ ∆′. In view of what must
hold in s′ for the propositional variables in∆−∆′ and those in∆′, thisϕ should be
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sought amongΓ andΘ, i.e., eithers′ 1 γ for someγ ∈ Γ or s′ ° ϑ for someϑ ∈ Θ.
We may conclude thatΓ ²∆ Θ. a
In virtue of Proposition 6.3.5 many of the formal properties of classical propositional
consequence are inherited by each of the relativized consequence relations. Thus we
have the following corollaries.

Corollary 6.3.6 LetΓ andΘ be theories andϕ andψ be formulas in a propositional
language L(A). Also let∆ be a subset of A. Then:

Γ ∪ {ϕ} ²∆ Θ iff Γ ²∆ Θ ∪ {¬ϕ}
Γ ∪ {¬ϕ} ²∆ Θ iff Γ ²∆ Θ ∪ {ϕ}
Γ ∪ {ϕ,ψ} ²∆ Θ iff Γ ∪ {ϕ ∧ ψ} ²∆ Θ

Γ ²∆ Θ ∪ {ϕ,ψ} iff Γ ²∆ Θ ∪ {ϕ ∨ ψ}

Proof: Almost immediately from Proposition 6.3.5. Here, we only give the proof of
the first. Consider the following equivalences:

Γ ∪ {ϕ} ²∆ Θ

iff Prop. 6.3.5 for some∆′ ⊆ ∆ : Γ ∪ {ϕ} ∪∆−∆′ ² Θ ∪∆′

iff CPC for some∆′ ⊆ ∆ : Γ ∪∆−∆′ ² Θ ∪ {¬ϕ} ∪∆′

iff Prop. 6.3.5 Γ ²∆ Θ ∪ {¬ϕ} .

The other cases run along analogous lines. a

Corollary 6.3.7 Let L(A) be a propositional language containingϕ andψ as for-
mulas such[[ϕ′]] ⊆ [[ϕ]] and [[ψ]] ⊆ [[ψ′]] Let further∆ be any subset of A. Then for
theoriesΓ andΘ:

Γ ∪ {ϕ} ²∆ Θ ∪ {ψ} implies Γ ∪ {ϕ′} ²∆ Θ ∪ {ψ′} .

Proof: Immediately from Proposition 6.3.5. a
In a much similar fashion it can be argued that both of the following:

Γ ∪ {ϕ ∨ ψ} ²∆ Θ implies Γ ∪ {ϕ} ²∆ Θ andΓ ∪ {ψ} ²∆ Θ,

Γ ²∆ Θ ∪ {ϕ ∧ ψ} implies Γ ²∆ Θ ∪ {ϕ} andΓ ²∆ Θ ∪ {ψ} .

The converses of these latter two claims do not in general hold. Assume for instance
that bothΓ ²∆ Θ ∪ {ϕ} andΓ ²∆ Θ ∪ {ψ}. Then for some blocksX andY of the
partitionπ∆, we have thatX∩ [[Γ ]] ⊆ X∩ 〈〈Θ∪{ϕ} 〉〉 andY∩ [[Γ ]] ⊆ Y∩ 〈〈Θ∪{ψ} 〉〉 .
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There is, however, no guarantee that the blocksX andY are identical or, indeed, that,
for any blockZ in π∆, it is the case that bothZ∩ [[Γ ]] ⊆ Z∩ 〈〈Θ∪{ϕ} 〉〉 andZ∩ [[Γ ]] ⊆
Z∩ 〈〈Θ ∪ {ψ} 〉〉 . It is easy to find a direct counterexample. Observe that bothø ²{a} a
andø ²{a} ¬a. Nevertheless,ø 2{a} a ∧ ¬a. Using much the same example, the
cut rule can also seen not to hold in general. Again, botha ²{a} ø andø ²{a} a, but
ø 2{a} ø.

6.4 Formal Systems for Relativized Logical Consequence

The conclusion of the previous chapter held out the prospect of the resolution of three
issues relating to Boolean games. The first of these concerns the sets of decision vari-
ables control over which suffices for a player to have a winning strategy in a particular
Boolean game. The second issue concerns the Boolean games a player can win given
control over a particular set of decision variables.

Proposition 6.2.2 on page 139 establishes the correspondence between a player
having a winning strategy in a particular Boolean game and a formula being valid or
unsatisfiable with respect to a subset of propositional variables. This makes that the
issues mentioned above can be approached from a logical angle. The two issue can
also more generally be formulated in terms of relativized consequence,viz., for fixed
theoriesΓ and Θ, relative to which subsets∆ of propositional variables does the
entailmentΓ ²∆ Θ hold good?, andgiven a subset∆ of propositional variables, for
which theoriesΓ andΘ is it the case thatΓ ²∆ Θ? This section deals, in reverse
order, with these two problems.

Sequent Calculus for Relativized Consequence

With for each subset∆ of propositional variables the proper logicΛ∆ being semanti-
cally fixed, the question for which theoriesΓ andΘ it is the case thatΓ ²∆ Θ, has
already been answered trivially. This leaves, however, the matter of a sound and com-
plete syntactical characterization of the proper logicsΛ∆. This issue we take up in
this subsection, proposing for each logicΛ∆ a sound and complete sequent calculus —
denoted by GPC∆ — which is very similar to the classical system GPC (cf., page 52).

The axioms and rules for GPC∆ are those of GPC (cf., page 52, above) with, in
addition, the following two axiom schemas:

(Ld) d⇒ ε and (Rd) ε⇒ d,

whered is assumed to be in∆. Table 6.4 summarizes the system GPC∆.
For each subset of propositional variables∆ the system GPC∆ inherits from GPC

the left rule for disjunction (∨L), the right rule for conjunction (∧R) as well ascut. This
may seem odd as in the previous section we argued that the semantical counterpart
of cut does not in general hold and thatΓ ∪ {ϕ} ²∆ Θ andΓ ∪ {ψ} ²∆ Θ does
not generally entailΓ ∪ {ϕ ∨ ψ} ²∆ Θ. Neither doΓ ²∆ Θ ∪ {ϕ} andΓ ²∆
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Axioms:

(0) ⊥⇒ ε (1) ε⇒> (2) a⇒ a (Ld) d⇒ ε (Rd) ε⇒ d

Provided that d∈ ∆ in (Ld) and(Rd).

Logical Rules:

¬L :
Σ⇒T, ϕ

Σ,¬ϕ⇒T
¬R :

Σ,ϕ⇒T

Σ⇒T,¬ϕ

∧L :
Σ,ϕ, ψ⇒T

Σ,ϕ ∧ ψ⇒T
∧R :

Σ⇒T, ϕ Σ⇒T, ψ

Σ⇒T, ϕ ∧ ψ

∨L :
Σ,ϕ⇒T Σ,ψ⇒T

Σ,ϕ ∨ ψ⇒T
∨R :

Σ⇒T, ϕ, ψ

Σ⇒T, ϕ ∨ ψ

Structural Rules:

contrL :
Σ,ϕ, ϕ⇒T

Σ,ϕ⇒T
contrR :

Σ⇒T, ϕ, ϕ

Σ⇒T, ϕ

permL :
Σ,ϕ, ψ, P ⇒T

Σ,ψ, ϕ, P ⇒T
permR :

Σ⇒T, ϕ, ψ, Υ

Σ⇒T, ψ, ϕ, Υ

thinL :
Σ⇒T
Σ,ϕ⇒T thinR :

Σ⇒T
Σ⇒T, ϕ

cut :
Σ⇒T, ϕ Σ,ϕ⇒T

Σ⇒T

Table 6.4. The System GPC∆. In each derivation for eachd ∈ ∆ at most one of the ax-
ioms(Ld) and(Rd) may be used.
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Θ ∪ {ψ} imply Γ ²∆ Θ ∪ {ϕ ∧ ψ}. We find that a slight modification of the notion of
a derivation in GPC∆ keeps in check possible ill-effects of∨L, ∧R andcut.

A derivationof a sequentΣ⇒∆,∆′ T in GPC∆ is defined as usual (cf., page 51,
above), be it that for eachd in ∆ at most one of the axioms(Ld) and (Rd) may be
employed. The intuition behind the axioms(Ld) and(Rd) are that player 1 — who has
control over all propositional variables in∆ — can set its value ofd to either one or
zero. This is precisely what it means to control a propositional variable. It is, however,
impossible to set the value of∆ to both one and zero, at the same time. This is reflected
in the restriction that only one of the axioms(Ld) and(Rd) may be employed in each
derivation in GPC∆. It can now also be understood why the presence of∨L, ∧R and
cut does not jeopardize the soundness of GPC∆. The antecedents of these rules —
viz., Γ ∪ {ϕ} ²∆ Θ andΓ ∪ {ψ} ²∆ Θ, Γ ²∆ Θ ∪ {ϕ} andΓ∪ ²∆ Θ ∪ {ψ}
andΓ ²∆ Θ ∪ {ϕ} andΓ ∪ {ϕ} ²∆ Θ — may be valid and hence also derivable in
GPC∆. However, in the derivation of on of the members of any such pair an axiom
(Ld) may (will) occur for somed ∈ ∆ whereas(Rd) occurs in the derivation of the
other member. Then, these derivations cannot be combined so as to obtain a derivation
of the consequent of the rule.

In order to prove the soundness and completeness of GPC∆ with respect toΛ∆ we
first introduce some notation and obtain an auxiliary result.

For∆ and∆′ disjoint subsets of propositional variables,∆-∆′-consequenceis the
relation²∆,∆′ such that for all theoriesΓ andΘ:

Γ ²∆,∆′ Θ iff ∆′ ∪ Γ ²CPCΘ ∪∆.

Now consider the sequent system GPC∆,∆′ as the classical sequent system GPC aug-
mented with the axioms(Ld) for eachd in ∆ as well as the axioms(Rd) for eachd
in ∆′. A derivation in GPC∆,∆′ is defined as it was for GPC on page 51 —i.e., with-
out the unusual restriction on the application of the axioms(Ld) and(Rd). We write
Γ `GPC

∆,∆′ Θ for Γ `GPC∆,∆′ Θ.
The system GPC∆,∆′ is sound with respect to∆-∆′-consequence. With respect to

the rules also in GPC this is obvious. For the soundness of the two additional axiom
schemas, merely observe that classically∆′ ∪ {a} ²CPC ∆ and∆′ ²CPC {b} ∪ ∆,
if a ∈ ∆ andb ∈ ∆′. Therefore, by definition, also{a} ²∆,∆′ ø andø ²∆,∆′ b. We
now have the following lemma.

Lemma 6.4.1 Let Γ andΘ be theories in a propositional language L(A). Let fur-
ther∆ and∆′ be disjoint subsets of A. Then:

∆′ ∪ Γ `GPCΘ ∪∆ iff Γ `GPC
∆,∆′ Θ.

Sketch of proof: First assume∆′ ∪ Γ `GPC Θ ∪∆. Without loss of generality we
may assume∆, Γ , Θ and∆′ to be finite. Observe that each derivation in GPC is also
a derivation in GPC∆,∆′ . Hence,∆′ ∪ Γ `GPC

∆,∆′ Θ ∪ ∆. For anyE ∪ {d} ⊆ ∆ and
anyE′ ∪ {d′} ⊆ ∆′, we have{d} ∪ E′ ∪ Γ `GPC

∆,∆′ Θ ∪ E as well asE′ ∪ Γ `GPC
∆,∆′
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Θ ∪ E ∪ {d′}. Both these claims hold in virtue of the axioms(Ld) and(Rd′). Since,
GPC∆,∆′ containscutwe can show by a simple inductive argument, here omitted, that
alsoΓ `GPC

∆,∆′ Θ.
For the opposite direction, assumeΓ `GPC

∆,∆′ Θ. Then there is a derivationD in
GPC∆,∆′ witnessing this fact. Replacing inD all axiomsε⇒ a anda⇒ ε by a⇒ a
yields a derivationD∗ in GPC. An easy inductive argument to the length ofD∗, here
omitted, reveals thatD∗ witnesses∆′ ∪ Γ `GPCΘ ∪∆. a
The ground has now been cleared for the following soundness and completeness result.

Theorem 6.4.2 (Soundness and Completeness ofGPC∆) LetΓ andΘ be theories in
a propositional language L(A) and let∆ ⊆ A. Then,GPC∆ is sound and complete
with respect toΛ∆, i.e.:

Γ `GPC∆ Θ iff Γ ²∆ Θ.

Proof: For soundness, assume thatΓ `GPC∆ Θ and letD be a derivation witnessing
this fact. Let further∆D

0 be the set of propositional variablesd such that the axiom(Ld)
occurs inD . Similarly, let∆D

1 contain precisely those propositional variablesd such
that the axiom(Rd) is employed inD . By definition of a derivation in GPC∆ both∆D

0

and∆D
1 are subsets of∆. Moreover, by definition, for no propositional variabled the

derivationD invokes both (Ld) and (Rd). Consequently,∆D
0 and∆D

1 are disjoint.
It follows that D is a also derivation in GPC∆D

0 ,∆
D
1

witnessingΓ `GPC
∆D

0 ,∆
D
1
Θ. By

Lemma 6.4.1 then,∆D
1 ∪ Γ `GPCΘ ∪∆D

0 , and by completeness of GPC with respect
to CPC (Fact 2.3.12), also∆D

1 ∪ Γ ²CPC Θ ∪ ∆D
0 . In virtue of Proposition 6.3.5

and∆D
0 and∆D

1 being disjoint,Γ ²∆D
0 ∪∆D

1
Θ. Then by monotonicity of relativized

consequence (Proposition 6.3.3), and∆D
0 and∆D

1 both being subsets of∆, eventually,
Γ ²∆ Θ.

For completeness, assumeΓ ²∆ Θ. By Proposition 6.3.5, there exists some∆′ ⊆
∆ such that∆−∆′ ∪ Γ ²CPC Θ ∪ ∆. Hence,∆−∆′ ∪ Γ `GPC Θ ∪ ∆, because
of completeness of GPC. By Lemma 6.4.1 alsoΓ `GPC

∆′,∆−∆′ Θ. Now observe that —
with ∆′ and∆−∆′ being disjoint subsets of∆ — each derivation in GPC∆′,∆−∆′ is
also a derivation in GPC∆. Consequently,Γ `GPC∆ Θ, which concludes the proof.a

Minimal Propositional Bases

In the previous sections of this chapter the emphasis has been on the question which
theory follows from another theory relative to some given subset of propositional vari-
ables. Here, the emphasis will be shifted to the question relative which subsets of
propositional variables a given theory follows from another. Because of the mono-
tonicity of relativized consequence, this issue can naturally be rephrased as which are
the minimal subsets of propositional variables required to guarantee one theory fol-
low from another. Such concerns are reasonable in contexts in which the variables
are thought of as economic commodities, the acquisition of which might be expensive.
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Moreover, having procured the necessary resources — possibly at great cost — little
has been gained if one does not know how to deploy them.

A statement of the formΓ ²∆ Θ imparts the existence of a choice for the propo-
sitional variables in∆ that guarantees either one of the formulas inΓ to be false,
or, otherwise, at least one of the formulas inΘ to be true. Yet, it is left entirely
uncommented how this choice should be made. Similarly, the previous section was
devoted to formally characterizing those formulas that are∆-valid, ∆-unsatisfiable
and∆-determined. Game-theoretically, this could be interpreted as a singling out of
Boolean games in which the player with control over∆ has a winning strategy or in
which at least one of the players has a winning strategy. In the definition of a player
havinga winning strategy (cf., page 120) the strategy that is actually winning is quan-
tified away. Still, from the perspective of one of the players of a Boolean game, one
might be more interested in the actual strategies that win a game than in the abstract
existence of one. One could imagine a player getting a bit cranky at being told that
there is a winning strategy for him, without being told what it looks like.2

These considerations are the informal background to the remaining part of this
section. Here we will be concerned with an inductive definition that more generally
associates each pair of theories with a set ofpairsof subsets of propositional variables.
Any such pair(∆,∆′) in the set for the pair of propositional theories(Γ,Θ), is such
that in all valuations that falsify all variables in∆, verify all those in∆′ either one of
the formulas inΓ is false or one of the formulas inΘ is true,i.e., if it is classicallythe
case that (cf., Proposition 6.3.5):

∆′ ∪ Γ ² ∆ ∪Θ.

Adopting the notation of the previous section, what we are after is, for each pair of
theoriesΓ andΘ, the set

{
(∆,∆′) : Γ ²∆,∆′ Θ

}
.

As an auxiliary notion define, forΓ andΘ theories in a propositional languageL(A):

[[Γ ;Θ]] =df.

⋃
γ∈Γ

[[Γ ]] ∪
⋃
ϑ∈Θ

[[ϑ]].

Through writing out the definitions in full, we find for each valuations in 2A for L(A)
that:

s∈ [[Γ ;Θ]] iff for all γ ∈ Γ, s ° γ implies for someϑ ∈ Θ, s ° ϑ.

2There is also another reason. Let∆ (Γ,Θ) be a temporary notation for set{∆ ⊆ A : Γ ²∆ Θ}, and
with ∆ (ϕ) and

∆

(ϕ) for ∆ (ø, {ϕ}) and

∆

({ϕ} ,ø), respectively. We find that it is impossible to
provide∆ (ϕ) with a neat compositional definition inϕ. Then∆ (a∧ ¬a) coincides with the emptyset
and as such is distinct from∆ (a∧ a), which is given by{∆ ⊆ A : a ∈ A}. This difference, however,
cannot be accounted for on the basis of∆ (a), ∆ (¬a),

∆

(a) and

∆

(¬a) alone, which all are identical
to {∆ ⊆ A : a ∈ A}. A similar argument shows that no compositional definition of∆ (Γ,Θ), depend-
ing only on the sets∆ (ϕ) and

∆

(ϕ), for ϕ ∈ Γ ∪ Θ. To appreciate this consider∆ ({a} , {a}) and
∆ ({a} , {¬a}); the former is given by 2A whereas the latter coincides with the distinct{∆ ⊆ A : a ∈ A}.
It should be remarked, however, that the method we employ is not compositional either.
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Now define[[[Γ ;Θ]]] as thesmallestsubsetX of 2A × 2A, such that:

{
(s, s) : s∈ [[Γ ;Θ]]

} ⊆ X, and

if E′ ⊆ E and (∆ ∪ (E − E′) ,∆′ ∪ E′) ∈ X, for all E′ ⊆ E, then (∆,∆′) ∈ X.

We then have the following proposition.

Proposition 6.4.3 LetΓ andΘ be theories in a propositional language L(A) and∆
and∆′ disjoint subsets of A. Then:

(∆,∆′) ∈ [[[Γ ;Θ]]] iff ∆′ ∪ Γ ²CPCΘ ∪∆.

Proof: For the right-to-left direction assume∆′ ∪ Γ ²CPC Θ ∪ ∆ and consider an
arbitraryY ⊆ ∆ ∪∆′. Let s∗ =df. ∆

′ ∪ Y. Observe that∆′ ⊆ s∗ and that∆ ands∗ are
disjoint. We first prove thats∗ ∈ [[Γ ;Θ]].

Assume thats∗ ° γ, for all γ ∈ Γ . With∆′ ⊆ s∗ alsos∗ ° γ, for all γ ∈ ∆′ ∪ Γ .
By the initial assumption then alsos∗ ° ϑ for someϑ ∈ Θ ∪ ∆. Since,s∗ and∆
are disjoint,s∗ ° ϑ, for someϑ ∈ Θ. Hence,s∗ ∈ [[Γ ;Θ]] and,a fortiori,

(
s∗, s∗

) ∈
[[[Γ ;Θ]]].

Then, withY having been chosen arbitrarily,
(
∆′ ∪ Y,∆′ ∪ Y

) ∈ [[[Γ ;Θ]]], for all
Y ⊆ ∆ ∪∆′. SinceY ⊆ ∆ ∪∆, also∆ ⊆ Y and that, with∆ and∆′ disjoint,
∆ ⊆ ∆′. Hence,∆ ⊆ ∆′ ∩ Y and with some Boolean reasoning:

∆′ ∪ Y = ∆′ ∩ Y =∆ ⊆ ∆′ ∩ Y

(
∆ ∪∆′) ∩ (

∆ ∪ Y
)

= ∆ ∪ (
∆′ ∩ Y

)
=

(
∆ ∪∆)∩(

∆ ∪ (
∆′ ∩ Y

))
= ∆∪(

∆ ∩∆′ ∩ Y
)

= ∆∪((
∆ ∪∆′) − Y

)
.

Accordingly,
(
∆ ∪ ((

∆ ∪∆′) − Y
)
,∆′ ∪ Y

) ∈ [[[Γ ;Θ]]], for all Y ⊆ ∆ ∪∆′, and so,
eventually(∆,∆′) ∈ [[[Γ ;Θ]]].

The opposite direction assume(∆,∆′) ∈ [[[Γ ;Θ]]]. We prove by induction on
(∆,∆′) that then also∆′ ∪ Γ ²CPCΘ ∪∆.

So, first assume(∆,∆′) = (s, s), for some valuations ∈ [[Γ ;Θ]] and consider an
arbitrary valuationt such thatt ° γ, for all γ ∈ ∆′ ∪ s. In caset = s, we are done
immediately by definition. So assumet be distinct froms. Still, t ° γ, for all γ ∈ s∪Γ
and, hence,s ⊆ t. With t distinct froms there should be somea ∈ s such thata ∈ t.
Therefore,t ° ϑ, for someγ ∈ Θ ∪ s. With t having been chosen arbitrarily, we may
conclude thats∪ Γ ²CPCΘ ∪ s. Hence,∆′ ∪ Γ ²CPCΘ ∪∆.

For the inductive step, assume that(∆,∆′) ∈ [[[Γ ;Θ]]] in virtue of the existence of
a subsetE of A such that(∆ ∪ (E − E′) ,∆′ ∪ E′) ∈ [[[Γ ;Θ]]], for all E′ ⊆ E. By
the induction hypothesis, also∆′ ∪ E′ ∪ Γ ²CPCΘ ∪∆ ∪ (E − E′), for all E′ ⊆ E.
Fact 2.3.11 on page 51, above, then yields∆′ ∪ Γ ²CPCΘ ∪∆. a
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6.5 Conclusion

The framework of Boolean games evoke a number of logical questionvia the corre-
spondence between Boolean forms and propositional formulas. These considerations
gave rise a generalization of classical consequence to a notion of consequence rela-
tivized by a subset of propositional variables. This subset of propositional variables
was considered to be in the control of one player; the values of the remainder of the
propositional variables were left to the whims of an opponent with antagonistic pref-
erences. Thus the notion of distributed control over propositional variables has been
central to our approach.

So far, control over the propositional variables has been thought of as being di-
vided over two players. In the next part, we will consider the logical consequences of
distributing control over multiple players. This will require further modifications of
the logical framework. Moreover, it becomes natural to employ in the logical analysis
game-theoretical solution concepts better suited for dealing with multi-player environ-
ments than that of a winning strategy.
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Chapter 7

Winning Consequence

7.1 Introduction

Logical consequence is traditionally explained in terms of truth. We introduced classi-
cal consequence as a relation between theories. Intuitively, a theoryΘ follows classi-
cally from another theoryΓ if and only if the truth of all of the formulas inΓ implies
the truth of at least one of the formulas inΘ. Each theoryΓ is associated the set of
extensions of the formulas it contains. This set of extensions is denoted byE (Γ ) and
formally defined as

{
[[γ]] : γ ∈ Γ

}
, where[[γ]] denotes the set of valuations in whichγ

holds, for eachγ. In terms of the sets of extensions classical propositional consequence
a sound and complete semantics is obtained by defining:

Γ ²CPCΘ iff
⋂{

[[γ]] : γ ∈ Γ
} ⊆

⋃ {
[[ϑ]] : ϑ ∈ Θ

}
.

What this characterization comes down to is that forΓ andΘ, two sets of valuations
are singled out — by taking the intersection and union ofE (Γ ) andE (Θ), respectively
— and subsequently compared with respect to set inclusion.

This part concerns a type of consequence relation that can likewise be character-
ized as set inclusion between sets of valuations associated with the respective theories.
These consequence relations, however, differ from the classical account in that the
sets of valuations associated with the theories are essentially selected on the basis of a
game-theoretical definition. The underlying idea is that, by distributing control over the
propositional variables among a number of players, logical space assumes the structure
of the frame of a strategic game, with the valuations as strategy profiles. We then argue
that theories and formulas can be seen as providing an additional preferential structure,
enabling us to use game-theoretical solution concepts to select sets of valuations. For
different distributions of control and different theories these sets can be compared. The
role of the solution concepts is thus analogous to that of union and intersection in the
classical semantics.

In the informal interpretation that accompanies classical propositional logic, the
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variables are thought of as conveying information about the state the world is in. A
valuation for the language could then be seen as a kind of oracle — used here in the
informal sense of the word — yielding the values of the propositional variables for
some possible state of affairs. As oracles befits, it is quite beside the point how they
are possible.

Here, as in the previous part on Boolean games, we assume a different perspective.
The world can very well be thought of as something we can change and manipulate.
What is true of a certain situation then depends on the actions and decisions of the
individuals that live and act in it. The relative manipulative powers of the individuals,
however, may widely diverge. Some may be able to change the world in certain ways,
others in other. These considerations give rise to the idea of propositional variables as
binary decision variables controlled by individuals. A valuation is thus construed as
resulting from particular choices individuals may make with respect to their decision
variables, rather than as a record of some possible unalterable state of affairs. Assum-
ing, moreover, that individuals in a social context do not usually operate in isolation, the
decisions they make in this respect can be thought of as the result of an interactive pro-
cess. Our point of departure is that this notion ofcontrol over propositional variables
can be made subject to logical analysis and that the employment of game-theoretical
techniques in this comes naturally. Since there is nothing in the notion of control over
propositional variables that requires its distribution to be restricted to one or two play-
ers, our logical analyses need not be restricted to the two-person case. Eventually they
well comprise the general case in which control over the propositional variables may
be distributed over any countable number of players.

This way of viewing propositional variables as controllable by individuals has its
precursors in the field of Artificial Intelligence. A good example is Boutilier’s distinc-
tion between controllable and uncontrollable propositions (cf., Boutilier (1994) and
also Cholvy and Garion (2001)). Also in recent studies in distributed constraint sat-
isfaction problems (Yokoo, Durfee, Ishida, and Kuwabara (1998), Walsh, Yokoo, Hi-
rayama, and Wellman (2001)) the set of propositional variables is partitioned and the
control over the values of the variables in each block is assigned to an agent. Their
quest is for appropriate algorithms and protocols for groups of agents who jointly at-
tempt to satisfy a propositional formula by choosing suitable values for the variables.
If there is only one agent with control over all, these problems reduce to classical con-
straint satisfaction problems. This could be taken as an indication that in a sense the
notion of control is not entirely foreign to classical logic.

By contrast, our concern is with the definition and investigation of consequence
relations defined semantically by means of game-theoretical solution concepts. In our
analyses we make the idealizing assumption that each variable is under the control
of precisely one individual. If need be, an additional individual —e.g., Nature or
Providence— could be introduced, assigning values to variables that are normally
thought to be beyond any individual’s control. The different choices an individual
can make with respect to the variables in her control then coincide with the strategies
of some strategic game. A strategy profile then, collecting particular choices of the
individuals, determines the values of all propositional variables and as such can be
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identified with the valuations of the respective propositional language.
A set of strategy profiles alone, however, does not define a game by itself. In order

to conceive of the valuations not as mere the strategy profiles, but rather as the strategy
profilesof a specific strategic game,also the preferences over the possible outcomes of
the players should be specified. Formulas and theories provide this additional structure
on logical space. The role of formulas and theories is thus analogous to the one they
have in the classical semantics for classical propositional logic.

In a classical setting, the set of valuations constitute the logical space; it exhausts
the possible ways in which the world can be fully described by means of a proposi-
tional language. Formulas and theories single out particular possible states of affairs,
intuitively, by putting constraints on the possible ways the world looks like. Semanti-
cally, a formula demarcates those possible states of affairs in which that formula holds
from those in which it does not.

In this part, however, we consider the valuations as the possible outcomes of games
in which agents have control over the propositional variables. In this context, formu-
las and theories constrain thegame-theoreticalpossibilities. Formulas and theories
fix the preferences of the players over the possible outcomes and game-theoretical
solution concepts are then applied to single out the valuations the outcomes that are
game-theoretically likely, interesting or otherwise distinguished for particular social
purposes. Pursuing this line of thought, we will eventually come to interpret theo-
ries and formulas semantically as relations over the valuations, rather than as sets of
valuations.

In Boolean games, like in other game-theoretical approaches to logic, these ideas
have already been present, be it perhaps in a rudimentary fashion. The interests of
the two players are captured by the truth values a formula may take. The truth value
of a formula, however, is no longer thought of as something that is somehow given
independently; it is dependent on the decisions the players make. In a similar fashion,
theories can be employed to define the players’ preferences.E.g., given a theory one
could assume the one player to vie for its satisfaction, whereas the other rather saw
at least one, or perhaps even all, of them false. There are, however, numerous ways
in which theories can be used to define the preferences of the players. In the next
chapter, we define a player’s preferences on the basis of the relative logical strength of
the formulas making up a theory.

In each Boolean game the players’ preferences were assumed to be antagonistic.
This made that a single formula sufficed to define the preferences ofbothplayers,viz.,
the preferences of a verifier and those of a falsifier of that formula. In the interests
of greater generality, we will come to lift the restriction that the players’ preferences
are necessarily related by a structural principle such as,e.g., antagonism. The players’
preferences are then specified by a theory for each individual player separately.

Whatever choice is made with respect to how the preferences of the players are
extracted from theories or formulas, for each propositional language, any such choice
defines a class of strategic games. Which strategies a player at his disposal has in such
a game is determined by the propositional variables he controls. His preferences are
fixed by formulas (or theories) of the language. The strategy profiles of any game in any
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such class are identified with the valuations of the respective propositional language.
In this manner the valuations provide the basis on which different games in the same
class can be compared. Moreover, given a suitable game-theoretical solution concept
for a particular class of such games, the valuations are divided into those that comply
with the solution concept and those that do not. As such, a solution concept singles out
a set of valuations in much the same way as intersections and unions of extensions of
formulas do in a Tarskian semantics for classical propositional logic. The question that
pushes itself to the fore is then which formulas hold in the valuations thus singled out
by a solution concept and which do not.

An issue that now suggests itself concerns the formulas that hold in the valuations
that result if one of the players plays a winning strategy in a particular game. Suppose
that a player has control over the propositional variablea and overa only. Assume
further that all she wishes is the formulaa∨ b to be true. Then, setting the value ofa
to 1 is a winning strategy for her. Settinga to 0 is not, even though doing so does not
entirely eliminate her chances of a favorable outcome. If her opponent happens to set
b to 1, she still wins, but then without playing a winning strategy herself. Accordingly,
in all strategy profiles in which she does play a winning strategy, obviouslya∨b holds,
but also the stronger formulaa. At this point it be emphasized that this issue is different
from the one that was addressed in the previous section on Boolean games. There the
focus was not so much on the properties of winning strategies in a game as on the mere
existence of a winning strategy for one of the players in Boolean games.

More in general, one could not so much be interested in the formulas that hold in the
valuations singled out by a particular solution concept in a game of a particular class,
as in how these valuations relate to those singled out by the same solution concept in
anothergame in the same class. The strategy profiles a solution concept singles out for
any two games in the same class, are drawn from thesameset of valuations,i.e., they
constitute subsets of a common and more comprehensive set of strategy profiles. This
makes that the set of strategy profiles a particular solution concept selects in one game
can be compared with the set of strategy profiles thus distinguished by the same (or
another, for that matter) solution concept in another game in a direct way. In particular,
they can be compared with respect to set-theoretical properties, like set inclusion or
disjointness.

For example, one could investigate whether the Nash equilibria of one game are
disjoint from those of another. Figure 7.1 gives a graphical representation of three
games for the propositional language containingaandbas only propositional variables.
In these games each of two players is assigned control over one of the variables. Let
the preferences of a player be given by a formula that player aims to satisfy. Thus, for
the player with control overa these are given bya, ¬ (a∧ b) and¬ (b → a), for the
game on the left, the game in the middle and the game on the right, respectively. For
the other player the preferences are then given by, respectively,a∧ b, ¬a anda → b.
The Nash equilibria of the game on the left and those of the game on the right are then
disjoint. Relative to the assignment of the propositional variables to the players, this
set-theoretical relation translates to a logical one between the pair of formulasa and
a ∧ b, on the one hand, and the pair¬ (a∧ b) and¬a, on the other. Similarly, the



INTRODUCTION 159

ø {b}
0 0

ø
0 0

0 1
{a}

1 1

ø {b}
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0 1
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0 0

Figure 7.1. Three two-player games, in which the row playerRowhas control over the propo-
sitional variablea and the column playerColumnoverb. In the leftmost gameRow’s preferences
are given by the formulaa andColumn’s by a∧ b. In the game in the middleRowprefers valua-
tions in which¬ (a∧ b) holds to those in which that is not the case andColumnmerely wishes
a to be false. In the rightmost game,Row’s andColumn’s preferences are given by, respectively,
¬ (b → a) anda → b. The Nash equilibria are in boldface.

Nash equilibria of game on the right are included in those of the middle game and says
something different about the pairs of formulas¬ (b → a) anda → b, and¬ (a∧ b)
and¬a.

Having assumed the games of each class being defined in a uniform fashion, each
particular way of comparing the valuations complying with a particular solution con-
cept can be elevated to a relation between pairs consisting a (collection of) theories or
formulas and a distribution of the propositional variables. We propose to think of such
relations between theories and formulas defined by game-theoretical solution concepts
as consequence relations. In this manner the mutual dependencies between games with
respect to a particular solution concept are studied through logic. This facilitates a
purely formal treatment of the relations that hold between the games in question. The
commensurability of the games such an analysis requires is guaranteed by the the fact
that all games defined for one language share the same set of strategy profiles,viz., the
valuations of the respective propositional language.

The two fundamental ideas in the above — distributing control of the propositional
variables over volitional agents and the interpretation of theories and formulas as pref-
erence relations — do not presuppose the logical analyses to be restricted to two-person
games. Neither do they presuppose that the preferences of the players are of the binary
kind that merely distinguishes wins from losses. These considerations have repercus-
sions for the notion of logical consequence. We introduced classical consequence as
a relation between theories. If distributed control over the variables is taken seriously,
however, the relevant relations are of a more complicated nature. For one thing, the
distribution of the variables itself should be accounted for. If, moreover, one does not
assume the individual preferences of the players to be structurally interdependent, one
may come to consider relations of a syntactically more complex kind.

In the next chapter, we will argue that theories can be employed to define a wide
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range of preference relations over the valuations. As such our proposal relates to a
considerably more comprehensive class of games than that of two-player games of
complete antagonism, which allow for only two different outcomes. The investigations
of Chapter 9 below concern a relation between families of theories which is defined
on the basis of these games and the solution concept of amaximum equilibrium. We
will argue that this notion is in an important sense a conservative extension of classical
propositional logic: classical consequence reduces to the game-theoretical relation if
the control over the propositional variables is concentrated in one agent.

For the remainder of this chapter we adopt a more conventional course and inves-
tigate a logical consequence relation indexed by two subsets of propositional variables
defined on basis of the notion of awinning strategy. Moreover, the focus will as yet
be on one player only. The purpose of this exercise is to illustrate formally the general
idea of a consequence relation defined in terms of a game-theoretical solution concept.
The formal elaboration of this exercise relies on an extensive use of the machinery pro-
vided byrough setsas introduced in Section 2.2, as it will be in the formal analysis of
game-theoretical consequencein Chapter 9, below. The players’ preferences, however,
are still thought of as distinguishing victories and defeats only.

7.2 Consequence Based on Winning Strategies

Giving content to the underlying ideas put forward in the introduction, we consider
in this section a type of game in which a player is assigned control over a subset of
propositional variables and in which the preferences of that player are defined by a
theory of the respective language. The player is thought of as preferring valuations
which satisfy the theory to those that do not, and being indifferent otherwise. Formu-
lated thus, this gives only partial specification of a game, rather than a fully-fledged
description of a game, as the preferences of the other players nor their manipulative
powers are not specified. However, even so, the game-theoretical notion of the player
having awinning strategyis applicable to these partial game-like structures. Moreover,
without loss of generality a complete game description may be assumed by stipulating,
e.g., the existence of an antagonistic player who has control over all of the remaining
propositional variables.

We introduce a family of consequence relations,i.e., a family of relations between
theories, in terms of these games and the concept of a winning strategy. This family we
call winning consequenceand its formal properties are investigated in the remainder of
this chapter. Eventually, a Gentzen-style system is presented and proved to be sound
and complete with respect to winning consequence.

Suppose a player has control over a subset of propositional variables∆ and aims
at verifying a particular theoryΓ . Then either there is a clever choice for the variables
in ∆ that renders the theoryΓ true no matter what values are chosen for the proposi-
tional variables outside∆, or there is no such choice. In the former case, the player in
the possession of awinning strategyand in the latter she is not. Observe that whether
a strategy for the player is winning or not, does not depend on how the propositional
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variables outside∆ obtain their values. These may be determined byProvidence, by
malicious or benevolent demons, by other players, or by whatever.

Formally, we define for each theoryΓ and each subset of propositional variables∆,
a gameG(Γ,∆) with two players 1 and 0, of which the former has control over the
propositional variables in∆ and the latter over the remaining ones. The strategies of
player 1 are given by 2∆ and those of Player 0, likewise, by 2∆. The strategy profiles of
any such game can thus be identified with the valuations for the languageL(A), as any
strategy of Player 1 and any strategy of Player 0 taken together determine the values
of all propositional variables. The winning conditions for any gameG(Γ,∆) grant
Player 1 a win in all valuationss in the extension ofΓ , i.e., if s ∈ [[Γ ]]. In any other
valuation Player 0 wins. A valuations is saidto be a winning strategy for Player1
in G(Γ,∆) if for all valuationss′ that coincide withs on the values of all variables,
player 1 wins the game,i.e., in a gameG(Γ,∆):

s is a winning strategy for player 1 iff for alls′ ∈ S, s∼∆ s′ impliess′ ∈ [[Γ ]].

The solution concept of a winning strategy singles out a set of valuations in on the
basis of a theory and a subset of propositional variables, in an analogous fashion as set-
theoretical intersection did for each theory in the model-theoretical semantics for CPC.
In the classical setting the focus was on the valuations in[[Γ ]] for each theoryΓ . Here,
the selected valuations are the winning strategies of a gameG(Γ,∆) for each theoryΓ
and each subset of propositional variables∆. A obvious question to ask is then which
formulas hold in the winning strategies of a gameG(Γ,∆).

In the introduction to this chapter we saw thata would hold in all valuations that
result if Player 1 has control over the variablea itself and ifΓ is taken to be{a∨ b}.
In the previous sentence the phrase ‘hold in all valuations that ...’, however, hints at
a rudiment from the classical framework. Taking the game-theoretical point of view
seriously, one could wish for a firm grip on how the valuations containing a winning
strategy for Player 1 in one gameG(Γ,∆) relate to those containing a winning strategy
for Player 1 in another gameG(Θ,∆′).

There are different ways in which this can be achieved. An obvious choice would
be to compare the strategy profiles containing winning strategies for Player 1 in dif-
ferent games with respect to set-inclusion. This, however, would give rise to a rather
inconvenient and lopsided formalism. For any pair of theoriesΓ andΘ and subsets of
propositional variables∆ and∆′, we propose to compare the strategy profiles contain-
ing a winning strategy for Player 1 in the gameG(Γ,∆) with those strategy profiles
that donotcontain a winning strategy for Player 1 in the gameG

( {¬ϑ : ϑ ∈ Θ} ,∆′).
However unnatural and contrived this definition may strike the reader at first sight, it
succeeds in comparing a player’s winning strategies in various games within a neat
and symmetric formal framework. Moreover, it gives rise to a natural interpretation in
terms of rough sets (cf., Proposition 7.3.1 and Corollary 7.3.3, below). This charac-
terization of the notion of winning consequence manifests its formal resemblance with
the semantical definition of classical consequence, of which it happens to be a gener-
alization (cf., Corollaries 7.4.2 and 7.4.1, below). Accordingly, the relation ofwinning
consequenceis defined as follows:
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Definition 7.2.1 (Winning consequence)ForL(A) a propositional language define the
relation²W such that for all theoriesΓ andΘ and all subsets of propositional vari-
ables∆ and∆′:

Γ ²W
∆,∆′ Θ

iff

player 1’s winning strategies inG(Γ,∆) andG
( {¬ϑ : ϑ ∈ Θ} ,∆′) are disjoint.

Each pair of subsets∆ and∆′ of propositional variables inA determines a proper
logicΛW

∆,∆′ defined asΛW
∆,∆′ =df.

{
(Γ,Θ) : Γ ²W

∆,∆′ Θ
}

.

For an example, consider once more Figure 7.1. Let in all games Player 1 be as-
signed control overa. Then, the matrix on the left representsG({a} , {a}) and the mid-
dle one the gameG({¬ (a∧ b)} , {a}). Observe that inG({a} , {a}) playing{a} is a
winning strategy for Player 1, whereasø is a winning strategy inG({¬ (a∧ b)} , {a}).
Consequently, the sets of valuations containing a winning strategy for Player 1 in both
games are disjoint and thereforea ²W

{a},{a} a ∧ b. Now assume that Player 1 is as-
signed control overb. Then, the righthand matrix depictsG({¬ (b → a)} , {b}). Then,
the sets of valuations containing a winning strategy for Player 1 inG({a} , {a}) and
G({¬ (b → a)} , {b}) overlap. Both sets contain the valuation{a,b}, in which botha
andb are set to “true”. Hence,a 2W

{a},{b} b → a.
Some informal understanding of Definition 7.2.1 may also by gained by consider-

ing some extreme cases as to the choice of the parameters∆ and∆′. The definition
is chosen in such a way that the classical relation of consequence coincides withΛW

A,A,
whereA denotes the full set of propositional variables of the language in question (cf.,
Corollary 7.4.1, below). Hence, winning consequence could in a loose sense be said to
be a conservative extension of the classical concept of consequence. The special cases
in whichΘ is a singleton and∆′ is taken to beA, moreover, have quite natural read-
ings. It so happens thatΓ ²W

∆,A {ϕ} holds wheneverϕ is true in all strategy profiles
of G(Γ,∆) in which Player 1 plays a winning strategy.

7.3 Winning Consequence and Rough Sets

Winning consequence is defined in game-theoretical terms. An alternative character-
ization is possibly using rough set approximations of the extensions of formulas and
theories. In this fashion, the firm set-theoretical grip propositional logic is regained that
made the Tarskian account of classical logic so attractive. The formal development of
the theory of winning consequence relies on its rough-set characterization.

The set of strategy profiles of a gameG(Γ,∆) in which Player 1 plays a winning
strategy coincides with the lower approximation of the extension ofΓ with respect to
the equivalence relationπ∆.

Proposition 7.3.1 Let Γ be a theory in L(A) and let∆ be a subset of A. Then
the set of valuations containing a winning strategy for Player1 in G(Γ,∆) coincides
with apr

∆
([[Γ ]]).
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Figure 7.2. Logical space partitioned byπ∆, indicated by the continuous lines, and byπ∆,
indicated by the dotted lines. The circle on the left depicts[[Γ ]] and the one on the right〈〈Θ 〉〉 .
The boxed area then demarcatesapr

∆
([[Γ ]]) and the dashed areaapr∆′

` 〈〈Θ 〉〉 ´
. Although obvi-

ously,Γ 2CPC Θ, we find thatΓ ²W
∆,∆′ Θ, becauseapr

∆
([[Γ ]]) ⊆ apr∆′

` 〈〈Θ 〉〉 ´
(cf.. Proposi-

tion 7.3.2.)

Proof: Immediate from the definitions of a valuation containing a winning strategy
for Player 1 inG(Γ,∆) and that of the lower approximation of a set. Consider an
arbitrary valuations. Then,s contains a winning strategy for Player 1 inG(Γ,∆) if an
only if for all valuationss′ with s∼∆ s′: s′ ∈ [[Γ ]], i.e., if and only ifs∈ apr

∆
([[Γ ]]) .

This concludes the proof. a
This observation gives rise to the following characterization ofΓ ²W

∆,∆′ Θ as the inclu-
sion of the lower approximation of[[Γ ]] with respect toπ∆ in the upper approximation
of 〈〈Θ 〉〉 with respect toπ∆′ (cf.. Figure 7.2).

Proposition 7.3.2 LetΓ andΘ be theories of L(A) and let∆ and∆′ be subsets of A.
Then:

Γ ²W
∆,∆′ Θ iff apr

∆
([[Γ ]]) ⊆ apr∆′( 〈〈Θ 〉〉 ) .

Proof: Proposition 7.3.1 establishesapr
∆

([[Γ ]]) and apr
∆′([[{¬ϑ : ϑ ∈ Θ}]]) as

the set of valuations that contain a winning strategy for Player 1 inG(Γ,∆) and
in G({¬ϑ : ϑ ∈ Θ} ,∆′), respectively. Observe that

[[ {¬ϑ : ϑ ∈ Θ} ]]
=

⋂
ϑ∈Θ [[ϑ]]

and take notice of the following equalities:

apr
∆′

([[ {¬ϑ : ϑ ∈ Θ} ]])
= apr

∆′
( ⋂

ϑ∈Θ [[ϑ]]
)

=

apr∆′
(⋂

ϑ∈Θ [[ϑ]]
)

= apr∆′
(⋃

ϑ∈Θ [[ϑ]]
)

= apr∆′( 〈〈Θ 〉〉 ) .

This concludes the proof. a
Recall that in caseΓ is the empty theory,[[Γ ]] = [[ø]] =

⋂
γ∈ø [[γ]] = 2A. I.e., it is

not in general the case thatø ²W
∆,∆′ Θ, for all theoriesΘ and all subsets∆,∆′ ⊆ A.

Because of the distribution ofapr over
⋂

and that ofapr over
⋃

(cf., page 38, above),
as an immediate result of Proposition 7.3.2 we also have the following.
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Corollary 7.3.3 LetΓ andΘ be theories of L(A) and let∆ and∆′ be subsets of A.
Then:

Γ ²W
∆,∆′ Θ iff

⋂
γ∈Γ

apr
∆

([[γ]]) ⊆
⋃
ϑ∈Θ

apr∆′([[ϑ]]) .

Proof: Immediate by Proposition 7.3.1 and the distribution ofapr over
⋂

and that
of apr over

⋃
(cf., page 38. a

7.4 Formal Development of Winning Consequence

The remainder of this chapter is devoted to the development of a Gentzen-style formal
system for winning consequence in a propositional languageL(A). The system sum-
marized in Table 7.5 on page 173 below, is proved sound and complete with respect
to winning consequence. First, however, we review some of the formal properties of
winning consequence, which form the basis of the soundness-direction of the above
claim.

Properties of Winning Consequence

Proposition 7.3.2 and Corollary 7.3.3, above, have a number of other useful corollaries,
the proofs of which almost invariably depend on the interaction between the laws of the
theory of rough sets and the classical notion of the extension of a propositional formula.
First and foremost, the claim that the relation of classical consequence coincides with
ΛW
∆,∆′ if ∆ and∆′ both equalA, as it was tentatively put forward in the previous

section.

Corollary 7.4.1 LetΓ andΘ be theories of L(A). Then:

Γ ²W
A,A Θ iff Γ ²W

A(Γ ),A(Θ) Θ iff Γ ²CPCΘ.

Proof: Consider the following equivalences:

Γ ²W
A,A Θ iff Prop. 7.3.2 apr

A
([[Γ ]]) ⊆ aprA([[Θ]])

iff Fact 2.3.6 apr
A(Γ )

([[Γ ]]) ⊆ aprA(Θ)([[Θ]])

iff Prop. 7.3.2 Γ ²W
A(Γ ),A(Θ) Θ.

Similarly, also the following equivalences hold:

Γ ²W
A,A Θ iff Prop. 7.3.2 apr

A
([[Γ ]]) ⊆ aprA( 〈〈Θ 〉〉 )

iff Fact 2.3.6 [[Γ ]] ⊆ 〈〈Θ 〉〉
iff Γ ²CPCΘ.
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This concludes the proof. a
Conversely, also each validity statement involving winning consequence of the

form Γ ²W
∆,∆′ Θ has its counterpart in the classical notion of consequence. This

phenomenon is due to the fact that in generalapr
∆

([[ϕ]]) is expressible in classical
propositional logic (cf., page 55).

Corollary 7.4.2 LetΓ andΘ be theories in L(A) and let∆ and∆′ be subsets of A.
Then:

Γ ²W
∆,∆′ Θ iff

{
[∆] γ : γ ∈ Γ

}
²CPC

{ 〈∆′〉ϑ : ϑ ∈ Θ
}
.

Proof: Consider the following equivalences:

Γ ²W
∆,∆′ Θ iff Coroll. 7.3.3

⋂
γ∈Γ

apr
∆

([[γ]]) ⊆
⋃
ϑ∈Θ

apr∆([[ϑ]])

iff page 55

⋂
γ∈Γ

[[
[∆] γ

]] ⊆ ⋃
ϑ∈Θ

[[ 〈∆′〉ϑ]]
iff

{
[∆] γ : γ ∈ Γ

}
²CPC

{ 〈∆′〉ϑ : ϑ ∈ Θ
}
.

This concludes the proof. a
Recall that[∆]ϕ and〈∆〉ϕ abbreviate the formulas

∧
σ∈Σ∆

σ (ϕ) and
∨
σ∈Σ∆

σ (ϕ),
respectively (cf., page 57). Hence, we also have:

Γ ²W
∆,∆′ Θ iff

⋃
γ∈Γ

{
σ (γ) : σ ∈ Σ∆

}
²CPC

⋃
ϑ∈Θ

{
σ (ϑ) : σ ∈ Σ∆′

}
.

In virtue of Corollary 7.4.2, some important structural properties of classical conse-
quence are inherited by winning consequence. Here we merely mention in this respect
compactnessandconsistency— i.e., in general,Γ ²W

∆,∆′ Θ implies there befinite
Γ ′ ⊆ Γ andΘ′ ⊆ Θ such thatΓ ′ ²W

∆,∆′ Θ′ and, respectively,ø 2W
∆,∆′ ø.

Another property of classical consequence that also holds more in general for win-
ning consequence is that ofoverlap, anda fortiori, also that ofreflexivityanddiago-
nality.

Proposition 7.4.3 (Overlap) LetΓ andΘ be theories of L(A) such thatΓ andΘ are
not disjoint, i.e.,Γ ∩Θ 6= ø. Let further∆ and∆′ be subsets of A. Then:

Γ ²W
∆,∆′ Θ.

Proof: SinceΓ andΘ are not disjoint, there is some formulaϕ in Γ ∩ Θ; con-
sider thisϕ. Then observe that in generalapr

∆
([[ϕ]]) ⊆ [[ϕ]] ⊆ apr∆′([[ϕ]]). Hence,

apr
∆

([[Γ ]]) ∩ apr
∆

([[ϕ]]) ⊆ apr∆′( 〈〈Θ 〉〉 ) ∪ apr∆′([[ϕ]]). Corollary 7.3.3 clinches the
proof. a

The concept of consequence as based on winning strategies is further upward mono-
tonic in the sense that ifΓ ²W

∆,∆′ Θ then alsoΓ ′ ²W
∆,∆′ Θ′ for any theoriesΓ ′ andΘ′

that includeΓ andΘ, respectively.
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Corollary 7.4.4 (Monotonicity) LetΓ , Γ ′, Θ andΘ′ be theories of L(A) such that
Γ ⊆ Γ ′ andΘ ⊆ Θ′. Let further∆ and∆′ be subsets of A. Then:

Γ ²W
∆,∆′ Θ implies Γ ′ ²W

∆,∆′ Θ′.

Proof: Straightforward. BecauseΓ ⊆ Γ ′ andΘ ⊆ Θ′, we have[[Γ ′]] ⊆ [[Γ ]]
and 〈〈Θ 〉〉 ⊆ 〈〈Θ′ 〉〉 . Hence alsoapr

∆
([[Γ ′]]) ⊆ apr

∆
([[Γ ]]) and apr∆′( 〈〈Θ 〉〉 ) ⊆

apr∆′( 〈〈Θ′ 〉〉 ). Now the claim follows immediately from Proposition 7.3.2. Alterna-
tively, the claim can be considered an immediate consequence of Corollary 7.4.2 and
monotonicity of CPC. a
By contrast,ΛW

∆,∆′ is downwardmonotonic in∆ and∆′. Informally, this is because
the more propositional variables Player 1 has control over, the more likely she is to
have a winning strategy available and the less likely it is that the set of strategy profiles
containing one of her winning strategies to be included in another set.

Corollary 7.4.5 Let∆′′ and∆′′′ be subsets of A such that∆′′ ⊆ ∆ and∆′′′ ⊆ ∆′.
Then:

Γ ²W
∆,∆′ Θ implies Γ ²W

∆′′,∆′′′ Θ.

Proof: Observe thatapr
∆′′([[Γ ]]) ⊆ apr

∆
([[Γ ]]) and that apr∆′( 〈〈Θ 〉〉 ) ⊆

apr∆′′′( 〈〈Θ 〉〉 ), are a special instances of Fact 2.2.4 on page 39, above. The proof is
then immediate by Proposition 7.3.2. a
Although upward monotonicity in∆ and∆′ fails for winning consequence in general,
the validity of a statementΓ ²W

∆,∆′ Θ is not affected if∆ and∆′ are extended with
propositional variables that do not occur inΓ andΘ, respectively. Hence, the following
proposition.

Proposition 7.4.6 LetΓ andΘ be theories of L(∆) and let∆ and∆′ be subsets of A
such that∆′′ ⊆ ∆,∆′′′ ⊆ ∆′. Let further∆′′ ∩A(Γ ) = ∆∩A(Γ ) and∆′′′ ∩A(Θ) =
∆′ ∩ A(Θ). Then:

Γ ²W
∆′′,∆′′′ Θ iff Γ ²W

∆,∆′ Θ.

Proof: Consider the following equivalences:

Γ ²W
∆,∆′ Θ iff Prop. 7.3.1 apr

∆
([[Γ ]]) ⊆ apr∆′( 〈〈Θ 〉〉 )

iff Fact 2.3.6 apr
∆

(
apr

A(Γ )
([[Γ ]])

) ⊆ apr∆′
(

aprA(Θ)( 〈〈Θ 〉〉 )
)

iff Prop. 2.2.8 apr
∆∩A(Γ )

([[Γ ]]) ⊆ apr∆′∩A(Θ)( 〈〈Θ 〉〉 )

iff (∗) apr
∆′′∩A(Γ )

([[Γ ]]) ⊆ apr∆′′′∩A(Θ)( 〈〈Θ 〉〉 )

iff Prop. 2.2.8 apr
∆′′

(
apr

A(Γ )
([[Γ ]])

) ⊆ apr∆′′′
(

aprA(Θ)( 〈〈Θ 〉〉 )
)

iff Fact 2.3.6 apr
∆′′([[Γ ]]) ⊆ apr∆′′′( 〈〈Θ 〉〉 )

iff Prop. 7.3.1 Γ ²W
∆′′,∆′′′ Θ.
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The equation marked with the asterisk holds, of course, in virtue of the assumptions
that∆′′ ∩ A(Γ ) = ∆ ∩ A(Γ ) and that∆′′′ ∩ A(Θ) = ∆′ ∩ A(Θ). a

On basis of the Corollaries 7.4.4 and 7.4.5, we find that the proper logicsΛW
∆,∆′ , for

all subsets of propositional variables∆ and∆′, constitute a complete lattice ordered
by the relation6 as defined on logics in general on page 45.

Fact 7.4.7 Let L(A) a propositional language and letΛW denote the subset of proper
logics defined by

{
ΛW
∆,∆′ : ∆,∆′ ⊆ A

}
. Then,

(
ΛW,6

)
is a complete lattice.

Proof: It suffices for a proof to show that for all subsets∆,∆′,∆′′ and∆′′′ of A:

ΛW
∆,∆′ ⊆ ΛW

∆′′,∆′′′ iff ∆′′ ⊆ ∆ and∆′′′ ⊆ ∆′.

Corollary 7.4.5 already takes care of the right-to-left direction. The opposite di-
rection is proved by contraposition. Without loss of generality we may assume
there to be some propositional variablea in A with a ∈ ∆′′ but a /∈ ∆. Ob-
serve thatapr

∆
([[a]]) =Fact 2.3.10 apr

ø
([[a]]) =Fact 2.2.10 ø. By Corollary 7.3.3, then

a ²W
∆,∆′′ ø. However,a 2W

∆′′,∆′′′ ø. To appreciate this last claim first observe that
apr

∆
([[a]]) =Fact 2.3.10apr{a}([[a]]) =Fact 2.3.5apr

A
([[a]]) =Fact 2.2.10[[a]]. Also, evidently

apr∆′′′( 〈〈ø 〉〉 ) = ø. Hence, we are done by Corollary 7.3.3. a
Corollary 7.4.1 establishes CPC as the bottom of the lattice

(
ΛW,6

)
. The topΛø,ø

of this lattice is not the inconsistent logic. Rather, it is characterized by the consequence
relation that holds between any two theoriesΓ andΘ if and only if Γ containing
tautologies only implies thatΘ contains at least one satisfiable formula. Rephrased to
some extent, this gives rise to the following fact.

Fact 7.4.8 LetΓ andΘ be theories in a propositional language L(A). Then:

Γ ²W
ø,ø Θ iff [[Γ ]] 6= 2A or 〈〈Θ 〉〉 6= ø.

Proof: Consider the following implications:

[[Γ ]] 6= 2A or 〈〈Θ 〉〉 6= ø impliesFact 2.2.10 apr
ø
([[Γ ]]) = ø or aprø( 〈〈Θ 〉〉 ) = 2A

implies apr
ø
([[Γ ]]) ⊆ aprø( 〈〈Θ 〉〉 )

impliesProp. 7.3.2 Γ ²W
ø,ø Θ.

For the opposite direction:

Γ ²W
ø,ø Θ impliesProp. 7.3.2 apr

ø
([[Γ ]]) ⊆ aprø( 〈〈Θ 〉〉 )

implies apr
ø
([[Γ ]]) 6= 2A or aprø( 〈〈Θ 〉〉 ) 6= ø

impliesFact 2.2.10 [[Γ ]] 6= 2A or 〈〈Θ 〉〉 6= ø.
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This concludes the proof. a
An important property of classical consequence that nevertheless fails to hold in

general for winning consequence is that ofcut. For a simple counterexample, observe
that botha ²W

ø,{a} ø andø ²W
ø,{a} a. The former holds becauseapr

ø
([[a]]) = ø. By con-

sistency of winning consequence, however,ø 2W
ø,{a} ø. Here, the reader be reminded

that for the empty theoryø, it is the caseapr
ø
([[ø]]) = apr

ø
(
⋂

ø) = apr
ø

(
2A

)
= 2A

and thatapr{a}( 〈〈ø 〉〉 ) = apr{a}(
⋃

ø) = apr{a}(ø) = ø.
Some form of transitivity, however, still holds for winning consequence. For any

validity statement of the formΓ ²W
∆,∆′ Θ, any formula inΓ may be replaced by a

classically stronger one. Similarly, any formula inΘ may be replaced by a classically
weaker one. As a special case, formulas that are logically equivalent in the classical
sense may be substituted for one another in bothΓ andΘ.

Corollary 7.4.9 LetΓ andΘ be theories in L(A) and let∆ and∆′ be subsets of A.
Let furtherϕ andψ be formulas in L(A) such that[[ϕ]] ⊆ [[ψ]]. Then:

Γ, ψ ²W
∆,∆′ Θ implies Γ, ϕ ²W

∆,∆′ Θ,

Γ ²W
∆,∆′ Θ,ϕ implies Γ ²W

∆,∆′ Θ,ψ.

Proof: Observe that[[ϕ]] ⊆ [[ψ]] implies both apr
∆

([[ϕ]]) ⊆ apr
∆

([[ψ]]) and
apr∆′([[ϕ]]) ⊆ apr∆′([[ψ]]). Then,apr

∆
([[Γ ]]) ∩ apr

∆
([[ψ]]) ⊆ apr∆′( 〈〈Θ 〉〉 ) implies

apr
∆

([[Γ ]]) ∩ apr
∆

([[ϕ]]) ⊆ apr∆′( 〈〈Θ 〉〉 ). Similarly, apr
∆

([[Γ ]]) ⊆ apr∆′( 〈〈Θ 〉〉 ) ∪
apr∆′([[ϕ]]) impliesapr

∆
([[Γ ]]) ⊆ apr∆′( 〈〈Θ 〉〉 ) ∪ apr∆([[ψ]]). The result then follows

almost immediately from Proposition 7.3.2 and Corollary 7.3.3. a
As to the interaction between the theories flanking the²W

∆,∆′-sign and∆ and∆′

we have the following proposition. It captures the informal idea that a player cannot
guarantee a propositional variable to hold if she fails to have control over it. Inspec-
tion of the proof will reveal that this holds in general for anyclassically satisfiable
formulaϕ containing no variables in the player’s control.

Proposition 7.4.10 Let ∆ and∆′ be subsets of propositional variables in A. Let
further a be a propositional variable in A such that a/∈ ∆. Then both:

a ²W
∆,∆′ ø and ø ²W

∆′,∆ a.

Proof: First observe thatA(a) = {a}. This makes that under the conditions spec-
ified ∆ ∩ A(a) = ø. Also, [[a]] 6= ø and [[a]] 6= 2A. Hence,apr

∆
([[a]]) =Prop. 2.3.10

apr
ø
([[a]]) =Prop. 2.2.10 ø. Similarly, apr∆( 〈〈 {a} 〉〉 ) = apr∆([[a]]) =Prop. 2.3.10

aprø([[a]]) =Fact 2.2.102A. a
The next number of propositions reflect the behavior of winning consequence with

respect to the propositional connectives. These propositions are quite reminiscent of
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analogous ones holding for classical propositional logic. The latter cannot in general be
extrapolated as to hold for winning consequence as well, unless certain conditions be
observed. Yet, the first two of the following results are inherited without qualification.
The first establishes that for winning consequence from absurdity anything follows and
that anything entails triviality. The second concerns the introduction of conjunction in
the antecedent and that of disjunction in the consequent. For the subsequent results for
the remaining cases and connectives, however, the classical rules need to be modified
to some extent, by imposing some constraints on their applicability.

Proposition 7.4.11 LetΓ andΘ be theories in a propositional language L(A) and∆
and∆′ subsets of A. Then:

Γ,⊥ ²W
∆,∆′ Θ and Γ ²W

∆,∆′ Θ,>.

Proof: Obviously [[⊥]] = ø and [[>]] = 2A. Hence, both[[Γ ∪ {⊥}]] = ø and
〈〈Θ ∪ {>} 〉〉 = 2A. Now recall that for rough sets in general, bothapr(ø) = ø
andapr(S) = S, whereS is the universe (cf., page 38, above) and we are done by
Proposition 7.3.2. a
The behavior of∧ at the lefthand side and that of∨ at the righthand side of²W is
as in classical propositional logic. This holds in virtue of the lawsapr

( ⋂
X

)
=⋂

X∈X apr(X) andapr
( ⋃

X
)

=
⋃

X∈X apr(X).

Proposition 7.4.12 Let Γ andΘ be theories andϕ and ψ formulas in L(A). Let
further∆ and∆′ be subsets of A. Then:

Γ, ϕ, ψ ²W
∆,∆′ Θ iff Γ, ϕ ∧ ψ ²W

∆,∆′ Θ,

Γ ²W
∆,∆′ Θ,ϕ, ψ iff Γ ²W

∆,∆′ Θ,ϕ ∨ ψ.

Proof: Straightforward by Proposition 7.3.2 andapr distributing over∪ andapr over
∩. Observe the following equivalences:

Γ, ϕ, ψ ²W
∆,∆′ Θ iff Prop. 7.3.2 apr

∆
([[Γ ∪ {ϕ,ψ}]]) ⊆ apr∆′( 〈〈Θ 〉〉 )

iff apr
∆

([[Γ ]]) ∩ apr
∆

([[ϕ]]) ∩ apr
∆

([[ψ]]) ⊆ apr∆′( 〈〈Θ 〉〉 )

iff apr
∆

([[Γ ]]) ∩ apr
∆

([[ϕ]] ∩ [[ψ]]) ⊆ apr∆′( 〈〈Θ 〉〉 )

iff apr
∆

([[Γ ]]) ∩ apr
∆

([[ϕ ∧ ψ]]) ⊆ apr∆′( 〈〈Θ 〉〉 )

iff apr
∆

([[Γ ∪ {ϕ ∧ ψ}]]) ⊆ apr∆′( 〈〈Θ 〉〉 )

iff Prop. 7.3.2 Γ, ϕ ∧ ψ ²W
∆,∆′ Θ.

The other case goes by duality. a
However,Γ, ϕ ²W

∆,∆′ Θ andΓ, ψ ²W
∆,∆′ Θ do not in general implyΓ, ϕ∨ψ ²W

∆,∆′ Θ.
Neither is it in general the case thatΓ ²W

∆,∆′ Θ,ϕ andΓ ²W
∆,∆′ Θ,ψ imply Γ ²W

∆,∆′
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Θ,ϕ ∧ ψ. In view of Proposition 7.3.2, this corresponds to the failure of the inclusion
of apr(X ∨ Y) in apr(X) ∪ apr(Y) and that ofapr(X) ∪ apr(Y) in apr(X ∩ Y) to
hold in general for rough sets. Nevertheless, Propositions 7.4.13 and 7.4.14 specify
special conditions under which one may introduce a disjunction in the antecedent and
conjunction in the consequent.

Proposition 7.4.13 LetΓ andΘ be theories andϕ andψ be formulas of L(A). Let∆
and∆′ be subsets of A. Then:

Γ, ϕ ²W
∆∪A(ϕ),∆′ Θ and Γ, ψ ²W

∆∪A(ψ),∆′ Θ imply Γ, ϕ ∨ ψ ²W
∆,∆′ Θ,

Γ ²W
∆,∆′∪A(ϕ) Θ,ϕ and Γ ²W

∆,∆′∪A(ψ) Θ,ψ imply Γ ²W
∆,∆′ Θ,ϕ ∧ ψ.

Proof: The proofs of both claims are analogous. Here we only give that of the former.
Assume bothΓ, ϕ ²W

∆∪A(ϕ),∆′ Θ andΓ, ψ ²W
∆∪A(ψ),∆′ Θ. Then both:

apr
∆∪A(ϕ)

([[Γ ]]) ∩ apr
∆∪A(ϕ)

([[ϕ]]) ⊆ apr∆′( 〈〈Θ 〉〉 ) , and

apr
∆∪A(ψ)

([[Γ ]]) ∩ apr
∆∪A(ψ)

([[ψ]]) ⊆ apr∆′( 〈〈Θ 〉〉 ) .

Sinceπ∆∪A(ϕ) 6 π∆ as well asπ∆∪A(ψ) 6 π∆, by Proposition 2.2.4 on page 39,
both apr

∆
([[Γ ]]) ⊆ apr

∆∪A(ϕ)
([[Γ ]]) and apr

∆
([[Γ ]]) ⊆ apr

∆∪A(ψ)
([[Γ ]]). Because

obviously alsoapr
∆∪A(ϕ)

([[ϕ]]) = [[ϕ]] andapr
∆∪A(ψ)

([[ψ]]) = [[ψ]], both:

apr
∆

([[Γ ]]) ∩ [[ϕ]] ⊆ apr∆′( 〈〈Θ 〉〉 ) and apr
∆

([[Γ ]]) ∩ [[ψ]] ⊆ apr∆′( 〈〈Θ 〉〉 ).

Therefore,apr
∆

([[Γ ]]) ∩ (
[[ϕ]] ∪ [[ψ]]

) ⊆ apr∆′( 〈〈Θ 〉〉 ), i.e., apr
∆

([[Γ ]]) ∩ [[ϕ ∨ ψ]] ⊆
apr∆′( 〈〈Θ 〉〉 ). Since,apr

∆
([[ϕ ∨ ψ]]) ⊆ [[ϕ ∨ ψ]], alsoapr

∆
([[Γ ]]) ∩ apr

∆
([[ϕ ∨ ψ]]) ⊆

apr∆′( 〈〈Θ 〉〉 ) and we may conclude thatΓ, ϕ ∨ ψ ²W
∆,∆′ Θ. a

Proposition 7.4.14 LetΓ andΘ be theories andϕ andψ be formulas in L(A) such
that A(ϕ) and A(ψ) are disjoint. Then:

Γ, ϕ ²W
∆,∆′ Θ and Γ, ψ ²W

∆,∆′ Θ imply Γ, ϕ ∨ ψ ²W
∆,∆′ Θ,

Γ ²W
∆′,∆ Θ,ϕ and Γ ²W

∆′,∆ Θ,ψ imply Γ ²W
∆′,∆ Θ,ϕ ∧ ψ.

Proof: It suffices to prove that under the conditions specifiedapr
∆

([[ϕ ∨ ψ]]) ⊆
apr

∆
([[ϕ]]) ∪ apr

∆
([[ψ]]). By duality then alsoapr∆([[ϕ]]) ∩ apr∆([[ψ]]) ⊆

apr∆([[ϕ ∧ ψ]]). Consider an arbitrary valuations and assume for contraposition both
s /∈ apr

∆
([[ϕ]]) ands /∈ apr

∆
([[ψ]]). Hence there are valuationss′ ands′′ such that

s∼∆ s′ ands′ /∈ [[ϕ]], ands∼∆ s′′ ands′′ /∈ [[ψ]]. Now define yet another valuations∗

such that for alla ∈ A:

s∗ (a) =df.




s′ (a) if a ∈ A(ϕ) −∆,

s′′ (a) if a ∈ A(ψ) −∆,

s(a) otherwise.
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Note thats∗ is well-defined in virtue ofA(ϕ) andA(ψ) having been assumed to be
disjoint. It can easily be established thats′ ∼A(ϕ) s∗ ands′′ ∼A(ψ) s∗. Hence,s∗ /∈ [[ϕ]]
ands∗ /∈ [[ψ]]. Therefore,s∗ /∈ [[ϕ]]∪ [[ψ]] ands∗ /∈ [[ϕ ∨ ψ]]. Since, moreover,s∼∆ s∗,
we may conclude thats /∈ apr

∆
([[ϕ ∨ ψ]]). a

In classical propositional logic, formulas may be transposed to the other side of
the turnstile provided that they are appended to a negation symbol,i.e., Γ, ϕ ²CPC Θ
impliesΓ ²CPC Θ,¬ϕ. This holds on basis of the Boolean truism thatX ∩ Y ⊆ Z
impliesX ⊆ Z∪Y. This principle, of course, also holds for rough sets and so we have in
particular thatapr

π
(X)∩ apr

π
(Y) ⊆ aprπ′(Z) impliesapr

π
(X) ⊆ aprπ′(Z)∪ apr

π
(Y)

as well asapr
π
(X) ⊆ aprπ′(Z) ∪ aprπ(Y). If now π is finer thanπ′, i.e., if π 6 π′,

thenaprπ(Y) ⊆ aprπ′(Y). As another consequence, it then also holds thatapr
π
(X) ⊆

aprπ′
(
Z ∪ Y

)
. It is this principle of rough set theory which the next proposition invokes

to account for the behavior of negation. The conditionA(ϕ)∩∆′ ⊆ A(ϕ)∩∆ enforces
that the partitions involved in the approximations are suitably related as to coarseness.

Proposition 7.4.15 Let ∆ and∆′ be subsets of A andϕ a formula in L(A) such
that A(ϕ) ∩∆′ ⊆ A(ϕ) ∩∆. Then:1

Γ, ϕ ²W
∆,∆′ Θ implies Γ ²W

∆,∆′ Θ,¬ϕ,
Γ ²W

∆′,∆ Θ,ϕ implies Γ,¬ϕ ²W
∆′,∆ Θ.

Proof: Consider the following implications:

Γ, ϕ ²W
∆,∆′ Θ impliesProp. 7.3.2 apr

∆
([[Γ ]]) ∩ apr

∆
([[ϕ]]) ⊆ apr∆′( 〈〈Θ 〉〉 )

implies apr
∆

([[Γ ]]) ⊆ apr∆′( 〈〈Θ 〉〉 ) ∪ apr
∆

([[ϕ]])

implies apr
∆

([[Γ ]]) ⊆ apr∆′( 〈〈Θ 〉〉 ) ∪ apr∆
(
[[ϕ]]

)
implies(∗) apr

∆
([[Γ ]]) ⊆ apr∆′( 〈〈Θ 〉〉 ) ∪ apr∆∩A(ϕ)

(
[[ϕ]]

)
implies(∗∗) apr

∆
([[Γ ]]) ⊆ apr∆′( 〈〈Θ 〉〉 ) ∪ apr∆′∩A(ϕ)

(
[[ϕ]]

)
implies(∗) apr

∆
([[Γ ]]) ⊆ apr∆′( 〈〈Θ 〉〉 ) ∪ apr∆′

(
[[ϕ]]

)
implies Γ ²W

∆,∆′ Θ,¬ϕ.

The implications indicated with (∗) are valid because in generalaprB([[ϕ]]) =
aprB

(
aprA(ϕ)([[ϕ]])

)
= aprB∩A(ϕ)([[ϕ]]). The implication indicated with (∗∗) holds

in virtue of the assumption thatA(ϕ)∩∆′ ⊆ A(ϕ)∩∆ and henceapr∆∩A(ϕ)

(
[[ϕ]]

) ⊆
apr∆′∩A(ϕ)

(
[[ϕ]]

)
. The argument for the second claim runs along analogous lines.a

1Beware of the order of∆ and∆′!
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7.5 A Sequent System for Winning Consequence

The results of the previous section are the makings of a sound and complete formal
Gentzen-type system W for winning consequence.

Definition 7.5.1 (The SystemW) Let L(A) be a propositional language. ForΣ andT
finite sequences of formula ofL(A) and∆ and∆′ finite subsets ofA, an expression of
the formΣ⇒∆,∆′ T is asequentof W. The axioms and rules of W are given in Ta-
ble 7.5. If a sequentΣ⇒∆,∆′ T is derivable in W, this is denoted bỳW Σ⇒∆,∆′ T .
For, possibly infinite, theoriesΓ andΘ of L(A) and, possibly infinite, subsets of propo-
sitional variables∆ and∆′ we have:

Γ `W
∆,∆′ Θ iff `W Σ⇒∆∩A(Σ),∆′∩A(T ) T,

for Σ is a sequence of formulas inΓ ∗ andT a sequence of formulas inΘ∗ andΣ and
T denoting the sets of formulas occurring inΣ andT , respectively.

The soundness of W is established by a straightforward inductive argument.

Proposition 7.5.2 (Soundness ofW) LetΓ andΘ be theories in L(A) and∆ and∆′

subsets of A. Then:
Γ `W

∆,∆′ Θ implies Γ ²W
∆,∆′ Θ.

Proof: Observe that in virtue of the definition ofΓ `W Θ, Corollary 7.4.4 and Propo-
sition 7.4.6 and , it suffices to prove that in general:

`W Σ⇒∆∩A(Σ),∆′∩A(T ) T implies Σ ²W
∆∩A(Σ),∆′∩A(T ) T .

We find that both the axioms(0) and (1), as well(2) are sound in this respect be-
cause of the Propositions 7.4.10 and 7.4.11. The logical, structural and replace-
ment rules all preserve winning consequence. Propositions 7.4.12 through 7.4.15
prove the soundness of the left- and right introduction rules for the Boolean con-
nectives. The contraction and permutation rules are valid in virtue of winning con-
sequence being stated in terms of theories,i.e., unordered sets of formulas. Mono-
tonicity of winning consequence (cf., Proposition 7.4.4) vindicate the rulesthinL and
thinR. Corollary 7.4.5 grants the soundness of∆-slimL and∆-slimR. Finally, the
substitution rules are sound in virtue of the Corollaries 7.3.3 and 2.4.7, the latter
stating the identity ofapr

∆

(
[[ϕ (a/⊥)]] ∩ [[ϕ (a/>)]]

)
and apr

∆
([[ϕ]]) and that of

apr∆
(
[[ϕ (a/⊥)]] ∪ [[ϕ (a/>)]]

)
andapr∆([[ϕ]]), if a /∈ ∆ (cf., page 57). a

Inspection of the sequent system for W reveals that it contains obvious pendants for
the axioms and structural rules of GP (cf., Table 2.4 on page 52), above. The restrictions
on the rules for the connectives are satisfied trivially if∆,∆′,∆∗ and∆∗∗ are all taken
to be identical toA.

Fact 7.5.3 LetΓ andΘ be theories in L(A). Then:

Γ `GPΘ iff Γ `W
A,A Θ.
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Axioms:

(0) ⊥⇒∆,∆′ ε (1) ε⇒∆,∆′ > (2) a⇒∆,∆′ a

Logical Rules:

¬L :
Σ⇒∆;∆′ T, ϕ

Σ,¬ϕ⇒∆;∆′ T
¬R :

Σ,ϕ⇒∆′;∆ T

Σ⇒∆′;∆ T,¬ϕ
Provided that A(ϕ) ∩∆ ⊆ A(ϕ) ∩∆′, in ¬L and in¬R.

∧L :
Σ,ϕ, ψ⇒∆;∆′ T

Σ,ϕ ∧ ψ⇒∆;∆′ T
∨R :

Σ⇒∆;∆′ T, ϕ, ψ

Σ⇒∆;∆′ T, ϕ ∨ ψ

∨L :
Σ,ϕ⇒∆∗; ∆′ T Σ,ψ⇒∆∗∗; ∆′ T

Σ,ϕ ∨ ψ⇒∆;∆′ T

∧R :
Σ⇒∆′; ∆∗ T, ϕ Σ⇒∆′; ∆∗∗ T, ψ

Σ⇒∆′;∆ T, ϕ ∧ ψ
Provided that in∨L and∧R either (i)∆∗ = ∆ ∪ A(ϕ) and∆∗∗ = ∆ ∪ A(ψ),
or (ii) ∆∗ = ∆∗∗ = ∆ and A(ϕ) ∩ A(ψ) = ø.

Structural Rules:

contrL :
Σ,ϕ, ϕ⇒∆;∆′ T

Σ,ϕ⇒∆;∆′ T
contrR :

Σ⇒∆;∆′ T, ϕ, ϕ

Σ⇒∆;∆′ T, ϕ

permL :
Σ,ϕ, ψ, P ⇒∆;∆′ T

Σ,ψ, ϕ, P ⇒∆;∆′ T
permR :

Σ⇒∆;∆′ T, ϕ, ψ, Υ

Σ⇒∆;∆′ T, ψ, ϕ, Υ

thinL :
Σ⇒∆;∆′ T

Σ,ϕ⇒∆;∆′ T
thinR :

Σ⇒∆;∆′ T

Σ⇒∆;∆′ T, ϕ

∆-slimL:
Σ⇒∆∪{a} ; ∆′ T

Σ⇒∆;∆′ T
∆-slimR:

Σ⇒∆ ; ∆′∪{a} T

Σ⇒∆;∆′ T

Substitution Rules:

substL:
Σ,ϕ (a/⊥) , ϕ (a/>)⇒∆,∆′ T

Σ,ϕ⇒∆,∆′ T

substR:
Σ⇒∆′,∆ T, ϕ (a/⊥) , ϕ (a/>)

Σ⇒∆′,∆ T, ϕ

Provided that a/∈ ∆.

Table 7.5. The System W.
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Proof: For the left-to-right direction, assumeΓ `GP Θ. Then there is a derivationD
of a sequentΣ⇒T witnessing this fact. LetD∗ be the sequence of sequents that
results if each sequentΣ′ ⇒T ′ in D is replaced byΣ′ ⇒A(Σ),A(T ) T . Some reflection
reveals thatD∗ is a derivation in W. In particular observe that the restrictions on the
rules¬L, ¬R, ∨L and∧R are complied with trivially, because we may assumeD to
have the subformula property. The opposite direction, follows by soundness of W,
Corollary 7.4.2 and completeness of GP with respect to CPC. a

As we present it, the proof of the completeness of W with respect to winning con-
sequence parasitizes on the completeness of classical propositional logic with respect
to GP. Proposition 7.4.2 establishes that for each statement ofΓ ²W

∆,∆′ Θ there is a
corresponding statement in CPC. In virtue of GP’s completeness with respect to CPC,
it thus suffices for completeness of W with respect to winning consequence to show
that there is a derivation in W witnessingΓ `W

∆,∆′ Θ, for each derivation in GP wit-
nessing

⋃
γ∈Γ

{
σ (γ) : σ ∈ Σ∆

} `GP ⋃
ϑ∈Θ

{
σ (ϑ) : σ ∈ Σ∆′

}
. In demonstrating

that this is indeed the case, we invoke the following lemma.

Lemma 7.5.4 LetΓ andΘ be theories of a propositional language L(A).

Γ ∪ {
σ (ϕ) : σ ∈ Σ∆

} `W
∆,∆′ Θ implies Γ ∪ {ϕ} `W

∆,∆′ Θ,

Γ `W
∆,∆′ Θ ∪ {

σ (ϕ) : σ ∈ Σ∆
}

implies Γ `W
∆,∆′ Θ ∪ {ϕ} .

Sketch of proof: The proofs of both claims run along similar lines; here we only
give that of the former. The proof is by induction on‖∆ ∩ A(ϕ)‖, viz., the cardinality
of∆∩A(ϕ). If ‖∆ ∩ A(ϕ)‖ = 0, the case is trivial because then

{
σ (ϕ) : σ ∈ Σ∆

}
=

{ϕ}. For the induction step, let‖∆ ∩ A(ϕ)‖ = n + 1 and let∆ ∩ A(ϕ) be given by
{a0, . . . ,an}. AssumeΓ ∪ {

σ (ϕ) : σ ∈ Σ∆
} `W

∆,∆′ Θ, then:

`W Σ⇒∆∩A(Σ),∆′∩A(T ) T,

for some sequencesΣ ∈ (
Γ ∪ {

σ (ϕ) : σ ∈ Σ∆
})∗

andT ∈ Θ∗. In virtue of thinL

and the other structural rules, we may assume thatΣ = Σ′, ψ1, . . . , ψ2n+1 , where{
ψ1, . . . , ψ2n+1

}
=

{
σ (ϕ) : σ ∈ Σ∆

}
and none ofψ1, . . . , ψ2n+1 occurs inΣ′.

Observe that
{
σ (ϕ) : σ ∈ Σ∆

}
=

{
σ (ϕ) (an/⊥) , σ (ϕ) (an/>) : σ ∈ Σ∆−{an}

}
.

By 2n applications of the substitution rulesubstL — and a finite number of applications
of the structural rules — then:

`W Σ′, ψ′
1, . . . , ψ

′
2n ⇒∆∩A(Σ),∆′∩A(T ) T,

where
{
ψ′

1, . . . , ψ
′
2n

}
=

{
σ (ϕ) : σ ∈ Σ∆−{an}

}
. Hence,Γ ∪ {

σ (ϕ) : σ ∈
Σ∆−{an}

} `W
∆,∆′ Θ. By the induction hypothesis then eventuallyΓ ∪ {ϕ} `W Θ. a

We are now in a position to give the completeness proof for W with respect to winning
consequence.
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Theorem 7.5.5 (Completeness ofW) LetΓ andΘ be theories in L(A) and∆ and∆′

subsets of A. Then:
Γ ²W

∆,∆′ Θ implies Γ `W
∆,∆′ Θ.

Proof: AssumeΓ ²W
∆,∆′ Θ. In virtue of Corollary 7.4.2 and the subsequent remark,

then: ⋃
γ∈Γ

{
σ (γ) : σ ∈ Σ∆

}
²CPC

⋃
ϑ∈Θ

{
σ (ϑ) : σ ∈ Σ∆′

}
.

By completeness of GP, then:⋃
γ∈Γ

{
σ (γ) : σ ∈ Σ∆

} `GP
⋃
ϑ∈Θ

{
σ (ϑ) : σ ∈ Σ∆′

}
,

and by Fact 7.5.3 also:⋃
γ∈Γ

{
σ (γ) : σ ∈ Σ∆

} `W
A,A

⋃
ϑ∈Θ

{
σ (ϑ) : σ ∈ Σ∆′

}
.

Let D be a derivation of a sequentΣ⇒A(Σ),A(T ) T witnessing this fact, for some se-
quencesΣ andT in

( ⋃
γ∈Γ

{
σ (γ) : σ ∈ Σ∆

})∗
and

( ⋃
ϑ∈Θ

{
σ (ϑ) : σ ∈ Σ∆′

})∗
,

respectively. Employing the rules∆-slimL and∆-slimR, the derivationD can be ex-
tended to a derivation of the sequentΣ⇒∆∩A(Σ),∆′∩A(T ) T . Hence:⋃

γ∈Γ

{
σ (γ) : σ ∈ Σ∆

} `W
∆,∆′

⋃
ϑ∈Θ

{
σ (ϑ) : σ ∈ Σ∆′

}
.

Now let D ′ be a derivation of a a sequentΣ⇒∆∩A(Σ),∆′∩A(T ) T witnessing
this fact, for some sequencesΣ and T in

(⋃
γ∈Γ

{
σ (γ) : σ ∈ Σ∆

})∗
and( ⋃

ϑ∈Θ
{
σ (ϑ) : σ ∈ Σ∆′

})∗
, respectively. In virtue of the weakening rulesthinL

and thinR, we may assume thatΣ =
⋃
γ∈Γ ′

{
σ (γ) : σ ∈ Σ∆

}
and T =⋃

ϑ∈Θ′
{
σ (ϑ) : σ ∈ Σ∆′

}
, for some finiteΓ ′ ⊆ Γ andΘ′ ⊆ Θ. Accordingly,

Σ `W
∆,∆′ T . By Lemma 7.5.4, thenΓ ′ `W

∆,∆′ Θ′. Hence, alsoΓ `W
∆,∆′ Θ, which

concludes the proof. a

7.6 Conclusion

In this chapter we took the view that distributed control over the values of proposi-
tional variables is a notion worthy of logical analysis. We came to regard the valua-
tions of propositional languages as the strategy profiles of a strategic game. Thus a
game-theoretical perspective on logical space was acquired, giving rise to new issues
in propositional logic.

This chapter presentedwinning consequenceto illustrate how these ideas can be
elaborated formally in a relatively simple setting. From a game-theoretical point of
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view, moreover, the theory of winning consequence provides a formal framework in
which a particular type of game can be studied with respect to the winning strategies
they contain for one of the players. In short, every validity statement of the form
Γ ²W

∆,∆′ Θ can be interpreted in terms of the winning strategies of one of the play-
ers has in the gamesG(Γ,∆) andG(Θ,∆′). Moreover, a semantic interpretation of
winning consequence is advanced, facilitating the formal development of the theory.

The notion of a winning strategy, however, takes into account precious little inter-
action between the players. Whether a particular strategy profile contains a winning
strategy for a player only depends on the winning conditions and the powerof that
player. To which extent the other player or players can achieve their goals is quite
irrelevant, in this respect.

In the next two chapters we continue the analysis of of distributed control over
the variables in propositional logic. In doing so, however, we will come to consider a
considerably more extensive class of games and a more sophisticated game-theoretical
solution concept than that of a winning strategy. The preferences of the players in the
games by means of which this analysis is performed define a finer-grained relation over
the valuations. Moreover, the solution concept involved,viz., maximum equilibrium,
is of a more social and interactive nature.

In order to achieve this greater generality, we will come to revise the way theories
determine the preferences of players. So far, outcomes have been divided between wins
and losses and the players have tacitly been assumed to prefer the former to the latter.
In the next chapter, we will argue how the notion of logical strength (in the classical
sense) can be employed to define partial preorders as the players’ preferences over the
outcomes of a game.

The development of the logical framework will be analogous to that of winning
consequence, yet the framework itself will be of a considerably wider scope because
the games involved constitute a more comprehensive class of strategic games.



Chapter 8

Relational Semantics

8.1 Introduction

In the previous chapters we made a case for the conception of propositional variables
as binary decision variables controlled by individuals. It then becomes natural to view
a valuation for a propositional language as the combined result of the choices the indi-
viduals make with respect to their variables, rather than as a state of the world somehow
given independently. If, moreover, the individuals are assumed to entertain individual
preferences over the outcomes, some of the strategy profiles become salient from a
social point of view. In particular, some can be distinguished from others by particu-
lar game-theoretical solution concepts, such as containing a winning strategy for one
of the players or being amaximum equilibrium. Taking this perspective commands a
predominantly game-theoretical view on the semantics of propositional logic.

In order to make plausible the view that valuations are the strategy profiles of some
strategic game, players, their strategies and preferences should be specified. The play-
ers and their strategies are given by a partitioning of the propositional variables. A
strategy for a player is then a choice for the values of the propositional variables as-
signed to her and the valuations can be thought about as strategy profiles. Thus, logical
space assumes the structure of a frame of a strategic game (cf., page 27).

In the classical setting, theories could be thought of as imparting information about
the way the world is. On this conception, a theory demarcates the valuations that are
consistent with the information it conveys from those that are not. If, however, we think
about a logical possibility as a possible outcome of a decision making process, the clas-
sical image is less attractive. In interactive situations of which the outcome depends on
the decisions of individual agents, the most relevant information concerns what makes
the individuals decide in one way rather than in another. Thus, we come to view upon
theories as imparting information about the players’ preferences,e.g., by reporting the
goals they aim to achieve. Instead of interpreting a theory as the intersection or the
union of the extensions of the formulas it contains, as in a traditional Tarskian setting,
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a theory will be thought of as determining a player’spreference relationover the valu-
ations. Conceiving of logical space as the frame of a strategic game, theories provide
the complementary relational structure required for a fully fledged strategic game. In
this manner, moreover, solution concepts become available to distinguish valuations on
game-theoretical grounds.

Many, if not most, game-theoretical approaches to logic — such as Hintikka’s
Game Theoretical Semantics, Lorenzen’s dialogue games and, in particular, the Boolean
games as introduced in Part II of this thesis — concern two-player games in which
players are, moreover, thought of as complete antagonists. One player strives for ver-
ification of a formula, the other for its falsification. It has been argued in a more gen-
eral context that by imposing this restriction one passes by some of the most essential
and vitalizing aspects of the situations of conflicting interests, witness Schelling in his
Strategy of Conflict:

But, in taking conflict for granted, and working with an image of participants who
try to “win”, a theory of strategy does not deny that there are common as well
as conflicting interests among the participants. In fact the richness of the subject
arises from the fact that [...] there ismutual dependence as well as opposition.
Pure conflict, in which the interests of two antagonists are completely opposed, is a
special case; it would arise in a war of complete extermination, otherwise not even
in war. For this reason, “winning” in a conflict does not have a strictly competitive
meaning; it is not winning relative to one’s adversary. It meansgaining relative to
one’s own value system; [...]. (Schelling (1960), p.4 (emphasis mine))

The antagonism in Boolean games — as well as in other game-theoretical analyses
of classical logic — is due to the two players taking up the contrary roles of verifier
and falsifier of one particular formula. Clearly, in a classical framework for a language
containing negation, the falsifier could equivalently be understood as the verifier of the
negation of the formula the verifier strives to bring about. Taking the game-theoretical
perspective on logic as primary, an obvious generalization resolving the antagonism
now suggests itself. Each player could be considered a verifier of a separate formula.
It is then only a small step to lift the restriction that the formula of the one player
be true whenever the one of the other is false. Rather, there is little need to assume
these formulas to be related by any structural property whatsoever. Emancipated thus,
both players acquire their own “value system”. Within this setting mutual dependence
can just as well be made sense of as antagonism.E.g., a pure coordination problem,
the extreme case of mutual dependence, arises if both players try to verify logically
equivalent formulas. Also mixed forms of mutual dependence and opposition can be
represented. Suppose that one player tries to verify¬ (a → b) and anothera ∧ b.
Thena being true furthers the interests of both players, but they are in conflict as to the
truth-value of b.

However straightforward it may seem to lift the assumption of antagonism from
a game-theoretical perspective, this move has some significant logical repercussions.
With the preferences of the players being assumed to be independent of one another,
a single formula no longer suffices to define the preferences of all players simultane-
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ously. In the general case, for each player there may be need for a separate formula
capturing his preferences. Once this has been conceded, however, there seems little
point in limiting the number of players to two. One could distribute the propositional
variables over any (countable) number of players, and consider any of these players the
verifiers of separate formulas. Then, an assignment of the propositional variables over
the various players together with a formula for each player defines a game.

This setup could be taken a step further. A formula on its own defines an order over
the valuations of quite a rudimentary type. The player who is supposed to be its ver-
ifier may be thought of as preferring those valuations that satisfy the formula to those
that do not, and being indifferent otherwise. This makes that a player either wins or
loses, without the possibility of an intermediate outcome. However legitimate in itself,
this is slightly unsatisfactory from the perspective of the game-theorist. An essential
feature of social environments is that the eventual outcome depends on the choices of
all players taken together. Each player has control over only a limited number of the
relevant variables. It may very well depend on the choices of the other individuals,
whether an individual is in a position to bring about an outcome that she prefers most.
The achievement of the best possible outcome for a player may very well depend on the
other players choosing particular values for their variables. As one cannot in general
rely on one’s opponents to be lenient in this way, sometimes a player will have to settle
for a suboptimal outcome. A player’s strategy may be optimal with respect to particular
values for the other agents’ variables, but be inferior to what she can achieve relative
to other values for the other agents’ variables. Still, such a relatively (or locally) op-
timal but absolutely (globally) lesser outcome constitutes an important game-theoretic
datum. In this respect it be observed that,e.g., the important solution concept of a
Nash equilibrium is characterized as the combination of best-response strategies of all
players, where a strategy is a best-response if it is the optimal choicegiven a particular
choice of strategy by the other players.In social environments it is thus important to
know, not only the most preferred outcomes of an agent, but also her preferences over
the lesser preferred outcomes. In this chapter we will argue how theories together with
the notion of logical strength of their constituent formulas can be employed to deter-
mine such finer-grained preferences over the valuations,c.q., strategy profiles. Thus a
more comprehensive class of games is brought within the scope of propositional logic.

This chapter leads up to a definition of the class ofdistributed evaluation games
in Section 8.4. A distributed evaluation game is a strategic game specified by count-
able number of players, a function assigning propositional variables to the players —
defining their strategies and manipulative powers — and a function assigning theories
to players — defining their preferences over the valuations. In Section 8.5 an effort is
made to demarcate the precise scope of the class of distributed evaluation games. We
find that the class of distributed evaluation games for a propositional languageL(A)
are those strategic games with the valuations as strategy profiles and for which each
player’s preference relation is the ‘limit’ of the finite approximations of a proto-order
(i.e., the empty relation or a reflexive and transitive relation) over the valuations (cf.,
Theorem 8.5.15 on page 207).

Distributed evaluation games will form the semantical basis of the game-theoretical
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notion of consequence to be advanced and investigated in Chapter 9. This notion of
consequence integrates the two main ideas on which this part pivots. First, it encap-
sulates the notion of distributed control over the propositional variables. Secondly,
propositional theories are interpreted as reflexive and transitive relations over valua-
tions rather than as mere sets thereof. These may seem rash departures from the tradi-
tional canons of logic, if no heed is taken. Nevertheless, the game-theoretical notion of
consequence derives some of its respectability from the fact that classical consequence
happens to be a special instance.

First, however, we propose arelational semanticsfor classical propositional con-
sequence, which is phrased in terms of particular relations formulas define over the
valuations rather than in terms of their extensions. From a classical point of view re-
lational semantics has little to offer over and above a Tarskian semantics, in terms of
extensions of formulas, as the latter is sound and complete with respect to classical
propositional logic.1 Still, it constitutes a natural starting point for the development of
a game-theoretical concept of consequence.

The call for a richer structure on logical space has had many precursors in the field
of artificial intelligence and philosophical logic. Semantical treatments of non-standard
reasoning mechanisms often appeal to a richer ordinal structure on the models. Formal
analyses of default reasoning (e.g., Veltman (1996)) and studies in non-monotonic con-
sequence relations (cf. e.g., Shoham (1988), Kraus, Lehmann, and Magidor (1990) and
Makinson (1994)) come under this heading. In this context, also qualitative decision
theory (e.g., Boutilier (1994)) and belief revision (e.g., Gärdenfors (1988)) should be
mentioned. In each of these cases the models that are somehowoptimalwith respect to
these structures, play in one way or another a role in the definition of the key semanti-
cal concepts. Our proposal for a game-theoretical notion of consequence is in line with
these researches, be it that the structure imposed on logical space is that of a distributed
evaluation game and that the notion of optimality is understood in terms of compliance
with a game-theoretical solution concept.

8.2 Relational Semantics for Propositional Logic

A propositional logic is introduced as a pair(L,`) whereL is a propositional language
over a countable set of propositional variables and` is a relation on theories ofL. For
classical propositional logic(CPC),Γ `CPC Θ informally reads “if all formulas inΓ
are true, then so are some ofΘ”. This notion can be given a formal semantics in terms
of valuations. Assuming classical consequence being given independently by`, the
following soundness and completeness result is obtained:

Γ `CPCΘ iff
⋂
γ∈Γ

[[γ]] ⊆
⋃
ϑ∈Θ

[[ϑ]].

1Observe that on page 46 we defined soundness and completeness relative to an abstract relation between
theories. As such neither a deductive system nor a semantics is primary in the definition of a logic and the
notions of soundness and completeness apply to both.
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Also other fundamental logical notions — such as validity, satisfiability and re-
futability — can be couched in terms of extensions of formulas or theories. In this
manner, a formulaϕ is said to be valid if its extension coincides with the set of all
valuations; otherwiseϕ is refutable.

The extension of a theoryΓ could be seen as semantically summarizing the infor-
mation contained inΓ . Yet in doing so, much structure of the set

{
[[γ]] : γ ∈ Γ

}
may

be lost. In an attempt to retain more of the structure of the set
{
[[γ]] : γ ∈ Γ

}
we

suggest an interpretation of a theoryΓ as a relation over valuations, rather than a mere
set thereof. For a natural definition the concept ofrelative logical strengthis resorted
to.

The relative logical strength of two formulas can also be captured in terms of the
extensions of the formulas involved. Formally, a formulaϕ is said to be at least as
strong as another formulaψ if any formula that follows fromψ is also a consequence
of ϕ. In terms of sets of valuations,ϕ is then at least as strong asψ if and only if the
extension ofϕ is included in that ofψ. This definition of relative logical strength can
straightforwardly be extrapolated as to hold between theories. A theoryΘ is said to be
logically at least as strong as another theoryΓ if the consequences ofΓ are contained
in those ofΘ. In this manner, relative logical strength induces a reflexive and transitive
relation,i.e., a preorder, on the subtheories of a theory.

For each theoryΓ , this ordering in turn engenders an ordering over the valuations
as follows. LetΓs be the subtheory ofΓ containing exactly those formulas fromΓ sat-
isfied bys. Then,Γs is easily recognized as the (unique) logically strongest subtheory
of Γ satisfied bys. On this basis, we might define a valuations to be at least as strong
as a valuations′ with respect toΓ if and only if Γs is logically at least as strong asΓs′ .
This ordering on the valuations is reflexive and transitive.

For an example, letΓ be the theory{a∨ b,¬a,¬a∧ ¬b} and consider the val-
uations{a} and {b}. Then{a∨ b,¬a} is the strongest subtheory ofΓ the valua-
tion {b} satisfies. The valuation{a}, on the other hand, satisfies no subtheory stronger
than{a∨ b}. Because{a∨ b,¬a} is logically stronger than{a∨ b}, the valuation{b}
is ranked higher with respect toΓ than the valuation{a}. For a similar reason, the val-
uations{a} and ø are incomparable with respect toΓ . Also consider Figure 8.1 for a
pictorial illustration of these considerations.

Tarskian semantics for classical propositional logic disregards much of this ordinal
structure a theory imposes on the valuations. This, of course, can be no censure of
Tarskian semantics as a semantics for classical propositional logic, as its very sound-
ness and completeness would belie this. However, recent semantical studies in non-
standard reasoning mechanisms had need for an ordinal structure on the set of valua-
tions. A good example is Veltman’s update semantics for default reasoning. Moreover,
classical logic treats all inconsistent theories on a par. In particular, anything follows
from an inconsistent theory. This distinguishes classical logic from paraconsistent log-
ics. The orders two inconsistent theories induce over the set of valuations, however,
may be very well be different. Lets be a valuation that forcesb but nota ands′ a
valuation that forces botha andb. Consider again the theory{a∨ b,¬a,¬a∧ ¬b}
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[[ϕ]]

[[χ]]

[[ψ]]

Figure 8.1. The extensions of three formulasϕ, ψ andχ in logical space. The ordering on
the valuations determined by the theory{ϕ,ψ, χ} on the basis of relative logical strength is
indicated by the different shades of grey. The darker the area a valuation is in the higher that
valuation is in the ordering on valuations determined by the three formulas, on the understanding
that the valuations in[[ϕ]] − [[ψ]] and those in[[ψ]] − [[ϕ]] are incomparable. The valuations in the
darkest area satisfy all ofϕ, ψ andχ and are ranked highest; those in the lighter areas satisfy no
so strong a subtheory of{ϕ,ψ, χ} and are consequently ranked lower.

along with the theory{a,¬a}. Both theories are classically inconsistent. However,
with respect to the formers will be ranked higher thans′. Observe that any subthe-
ory of {a∨ b,¬a,¬a∧ ¬b} satisfied bys will also be satisfied bys′. The valuations,
moreover, also satisfies the subtheory{a∨ b,¬a} whereass′ does not. However, with
respect to the inconsistent theory{a,¬a}, the valuationssands′ are incomparable, the
former satisfying the subtheory{¬a} but not{a} and the latter{a} but not{¬a}

The relation on the valuations based on the notion of logical strength as it was in-
troduced above, however, has a drawback: it does not allow for a neat compositional
definition. The malefactor is here the fact both theories containing merely contradic-
tions and theories solely made up of tautologies induce the universal relation over the
valuations.

In the next subsection we propose a relational semantics for classical propositional
logic, in which formulas and theories are associated withrelationsover the valuations.
The relation a theory is associated with is very similar to the relation its subtheories
define on the valuations as based on their relative logical strength. It differs however
from the latter in that it does allow for a compositional definition. The merits of this
relational semantics are that it provides a natural point of departure for the formal anal-
ysis of game-theoretical consequence in Chapter 9. It provides a natural interpretation
of theories if they are taken to reflect the interests, goals and preferences of individuals.

Set Induced Relations

In the next subsection a relational semantics for classical propositional logic is ad-
vanced. The set-theoretic basis for the semantics is provided by relations on a uni-
verseSthat sets and sets of sets give rise to. With each subsetX of a setSwe associate
a relationρ0(X), which relates all elements outsideX to any other element ofSas well
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as all elements inX to one another. Intuitively, the objects inX are considered ‘higher’
than those outsideX. Formally we define for each subsetX of S and all elementsx
andx′ of S:

(x, x′) ∈ ρ0(X) iff x ∈ X implies x′ ∈ X

On this basis we also define for each setX of subsets ofSa relationρ0 (X) onS:

ρ0 (X) =df.

⋂
X∈X

ρ0(X) .

As can easily be checked, for eachX ⊆ S, the relationρ0(X) is a total pre-order,i.e., it
is reflexive, transitive and connected. For each setX of subsets ofS, the relationρ0 (X)
is apartial pre-order overS, i.e., it is both reflexive and transitive but not necessarily
connected. As auxiliary notions we haveρ̄0 (X) and ρ̄0 (X), defined as, respectively,
ρ0

(
X
)

and
⋂

X∈X ρ̄0 (X).
Of particular interest are the relations on the valuations induced by the extensions

of formulas of a propositional language. Letϕ be a formula andΓ a theory. We de-
noteρ0([[ϕ]]) by ρ0(ϕ) and

⋂
γ∈Γ ρ0(γ) by ρ0 (Γ ). Observe that, defined thus,ρ0 (Γ )

does notin general coincide withρ0([[Γ ]]).
For Γ a theory,ρ0 (Γ ) is exactly the relation the subtheories ofΓ defines over

the valuations relative to their respective logical strength. To appreciate this, define
for each theoryΓ the relationρ1(Γ ) over the valuations, such that for all valuationss
ands′:

(s, s′) ∈ ρ1(Γ ) iff Cn
({
γ ∈ Γ : s ° γ

}) ⊆ Cn
({
γ ∈ Γ : s′ ° γ

})
.

Intuitively, ρ1(Γ ) relates a valuations with anothers′ if the latter satisfies at least all
those subtheories ofΓ that s satisfies as well. As such, it is in effect the relation on
the valuations based on the classical notion of logical strength that was proposed in the
introduction to this chapter. We now have the following easy proposition.

Proposition 8.2.1 Let Γ be a theory in a propositional language L(A). Then the
relationsρ0 (Γ ) andρ1(Γ ) coincide.

Proof: First assume(s, s′) ∈ ρ0 (Γ ). Then, for allγ ∈ Γ , if s ° γ thens′ ° γ.
Hence,{γ ∈ Γ : s ° γ} ⊆ {γ ∈ Γ : s′ ° γ}. By monotonicity ofCn, immediately
Cn({γ ∈ Γ : s ° γ}) ⊆ Cn({γ ∈ Γ : s′ ° γ}), i.e., (s, s′) ∈ ρ1(Γ ). For the oppo-
site direction, assumeCn({γ ∈ Γ : s ° γ}) ⊆ Cn({γ ∈ Γ : s′ ° γ}) as well as for
an arbitraryγ ∈ Γ thats ° γ. Then,γ ∈ {γ ∈ Γ : s ° γ} and by monotonicity ofCn
alsoγ ∈ Cn({γ ∈ Γ : s ° γ}). By the assumption,γ ∈ Cn({γ ∈ Γ : s′ ° γ}).
Then {γ ∈ Γ : s′ ° γ} ²CPC γ, i.e., for all valuationss′′, if s′′ ° ϕ for all ϕ ∈
{γ ∈ Γ : s′ ° γ}, thens′′ ° γ. Since trivially,s′ ° ϕ for all ϕ ∈ {γ ∈ Γ : s′ ° γ},
in particulars′ ° γ. Therefore(s, s′) ∈ ρ0 (Γ ) and we are done. a

For formulasϕ, however, the relationρ0(ϕ) does not have in general a neat compo-
sitional definition in the complexity ofϕ. To appreciate this, observe that bothρ0(>)
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andρ0(⊥) are the universal relation over the valuations. In contrast, for each proposi-
tional variablea, the relationρ0(a) is not universal. Whenever a valuations forcesa
but another valuations′ does not, the pair(s, s′) will not be inρ0(a). This is in partic-
ular the case for the valuations{a} andø, which are guaranteed to exist for any lan-
guage witha as a propositional variable. Now consider the formulas⊥ ∧ a and> ∧ a.
Since[[> ∧ a]] = [[a]], it should also be the case that the relationsρ0(> ∧ a) andρ0(a)
coincide. So, withρ0(a) not being the universal relation, neither isρ0(> ∧ a). How-
ever,ρ0(⊥ ∧ a) is the universal relation on the valuations, in virtue of⊥∧a and⊥ being
logically equivalent, and as such having the same extension. Henceρ0(> ∧ a) is dis-
tinct fromρ0(⊥ ∧ a). However, withρ0(>) andρ0(⊥) being identical, this distinction
cannot be made on the basis of the relationsρ0(>), ρ0(⊥) andρ0(a) alone.

The problem here of course is thatρ0(ø) andρ0(S) are the same relation. For any
two non-empty subsetsX andY of S the reader can easily verify thatρ0(X) andρ0(Y)
coincide if and only ifX and Y are identical (also compare Fact 8.5.1, below). By
treating the empty set as a special case, many of the problems dissolve. So, define, for
each subsetX of a setS, the relationρ (X) onSas follows:2

ρ (X) =df.

{{
(x, x′) : x ∈ X impliesx′ ∈ X

}
if X 6= ø,

ø otherwise.

Defined thus,ρ (X) coincides withρ0(X) for non-empty subsetsX, and is empty oth-
erwise (cf., Fact 8.5.2 below). ForA a set of propositional variables, let,R (A) denote
the set

{
ρ (ϕ) : ϕ a formula inL(A)

}
. Similarly, for each setX of subsets ofS, we

define the relationρ (X) overSas:

ρ (X) =df.

⋂
X∈X

ρ (X) .

Let furtherρ (ϕ) andρ (Γ ) denoteρ ([[ϕ]]) and
⋂
γ∈Γ ρ ([[γ]]), respectively. Observe

thatρ (X) = ρ0 (X) if and only if ø /∈ X (cf., idem). Forø ∈ X, the relationρ (X) is
empty. As a dual notion we also introduce for each subsetX of Sthe relationρ̄ (X) onS
defined asρ

(
X
)
. Also, for each setX of subsets ofS, let ρ̄ (X) denote the relation onS

given by
⋂

X∈X ρ̄ (X). We haveρ̄ (ϕ) andρ̄ (Γ ) abbreviatēρ ([[ϕ]]) and
⋂
γ∈Γ ρ̄ ([[γ]]).

We mention in passing that, in contradistinction toρ0(ϕ), the relationρ (ϕ) does allow
for a compositional definition inϕ (cf., Harrenstein (to appear-b)).

2It might seem that the identity relationId would have been an equally suitable choice forρ (ø), as there
is no subsetX of Ssuch thatρ0(X) = Id. Had the definition been chosen thus, however, an exception should
be made in Proposition 8.2.3 below for propositional languages with no propositional variables. For such
languages there is only one valuation,viz., ø, and againρ (ø) would coincide with the universal relation
over all valuations. Then it would have been the case thatmax(ρ (⊥)) = {ø} andmax(ρ̄ (>)) = ø.
Hence,max(ρ (⊥)) * max(ρ̄ (>)). In classical logic, however,⊥ ` >, even for languages lacking in
propositional variables.
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Relational Semantics

We are now in a position to furnish classical propositional logic with a relational seman-
tics. With each formulaϕwe associate the relationsρ (ϕ) andρ̄ (ϕ) over the valuations
and, similarly, with each theoryΓ the relationsρ (Γ ) andρ̄ (Γ ). Denoting the set of
maximumelements of a relationρ by max(ρ), we have the following proposition.

Proposition 8.2.2 LetΓ be a theory in a propositional language L(A). Then:

[[Γ ]] = max(ρ (Γ )) and 〈〈Γ 〉〉 = max(ρ̄ (Γ )).

Proof: First assume[[Γ ]] to be empty. Assume further for areductio ad absurdum
thats is a maximum element ofρ (Γ ) and consider an arbitraryγ ∈ Γ . Then,(s′, s) ∈
ρ (γ), for all valuationss′. So, in particular,(s, s) ∈ ρ (γ) and from the definition
of ρ (γ) then follows that[[γ]] 6= ø. Hence,s∗ ∈ [[γ]], for somes∗. Then also(s∗, s) ∈
ρ (γ) and consequentlys ∈ [[γ]] as well. Withγ having been chosen as an arbitrary
element ofΓ , we have thats∈ [[Γ ]], which is at variance with the assumption that[[Γ ]]
be empty.

So, for the remainder of the proof we will assume[[Γ ]] to be not empty. Consider an
arbitrary valuations. First assume thats /∈ [[Γ ]]. Thens /∈ [[γ]], for someγ ∈ Γ . With
[[Γ ]] not empty, we may assume there is somes′ ∈ [[γ]]. Then, however,(s′, s) /∈ ρ (γ)
and (s′, s) /∈ ρ (Γ ). Hence,s is no maximum element ofρ (Γ ). Finally, assume
s ∈ [[Γ ]]. Now consider an arbitrary valuations′ along with an arbitraryγ ∈ Γ .
Then, s ∈ [[γ]] and so(s′, s) ∈ ρ (γ). With γ having been chosen arbitrarily, also
(s′, s) ∈ ρ (Γ ) and we may conclude thats is a maximum element ofρ (Γ ). This
concludes the first part of the proof

The second part of the proof can be obtained using the first one (duality). Merely
consider the following equalities:

〈〈Θ 〉〉 =
⋃
ϑ∈Θ [[ϑ]] =

⋂
ϑ∈Θ [[ϑ]] =

[[ {¬ϑ : ϑ ∈ Θ} ]]
= max

(
ρ

({¬ϑ : ϑ ∈ Θ
}))

= max
( ⋂

ϑ∈Θ ρ
(
[[ϑ]]

))
= max

(
ρ̄ (Θ)

)
.

This concludes the proof. a
As an immediate consequence of this result, we have the following corollary, which
characterizes classical logical consequence in terms of the relations theories define.
A theoryΘ follows classically from another theoryΓ if and only if the maximum
elements of the relationρ (Γ ) arenomaximum elements of the relation̄ρ (Θ).

Corollary 8.2.3 LetΓ be a theory andϕ a formula. Then:

Γ `CPCΘ iff max(ρ (Γ )) ⊆ max(ρ̄ (Θ)).

Proof: Immediate by Proposition 8.2.2. a
As an alternative to classical consequence, one could define a consequence rela-

tion`∗ as follows in terms of the maximum elements of the relationsρ0 (Γ ) andρ̄0 (Γ ):

Γ `∗ Θ iff max(ρ0 (Γ )) ⊆ max(ρ̄0 (Θ)).
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This consequence relation is as the classical one, except for its behavior with respect
to classical contradictions and tautologies. In virtue of Fact 8.5.2 below — which
states thatρ (Γ ) = ρ0 (Γ ) if and only if ø /∈ X — it can easily be appreciated that
Γ `∗ Θ if and only if Γ `CPC Θ, provided thatΓ contains no contradictions andΘ
no tautologies. We have already seen, however, thatρ0(⊥) andρ0(>) are both inter-
preted as the universal relation over the valuations. Consequently,`∗ treats classical
contradictions on a par with classical tautologies. This makes that,e.g., the classical
rule ex falso quod libetfails for `∗. For a counterexample, leta be a propositional
variable of a languageL(A). Then observe that⊥ 0∗ a, asmax(ρ0 ({⊥})) = 2A and
max(ρ̄0 ({a})) = max(ρ0 ({¬a})) = [[a]]. A similar remark would have applied, had
`∗ been defined in terms of themaximalelements of the relationsρ0 (Γ ) andρ̄0 (Θ).
Observe in this respect that the maximal elements ofρ0 ({⊥}) exhaust logical space
just as well as the maximum elements ofρ0 ({⊥}) do. The consequence relations de-
fined in terms of maximal elements also exhibit non-monotonic features, but we will
not pursue this issue here.

The advantage of the relational semantics is that it preserves more of the structure
that formulas and theories impose on logical space. From the extension[[Γ ]] of a the-
ory Γ the extensions[[γ]] of the formulasγ in Γ cannot in general be recovered; this
structure may have been lost beyond repair. In a strict sense a similar thing can be
said of the relationρ (Γ ) and the relationsρ (γ): it is not in general the case that from
the relationρ (Γ ) the theoryΓ can be reconstructed. Nevertheless, the relationρ (Γ )
can distinguish valuationss ands′ even if neither of them is maximum inρ (Γ ), in-
dicating thatΓ contain a formula that is validated in the one but not in the other, or
if Γ is inconsistent.E.g., the valuationø is strictly less than the valuation{a} in the
relationρ ({a,b}), yet neither of them is a maximum element in this respect. This
feature of the relational semantics is especially serviceable when one is interested in
the maximal or maximum elements of the relation determined by a theory as restricted
to a subset of valuations, even if the maximal or maximum elements of the unrestricted
relation are disjoint from that subset.

In our proposal for a game-theoretical notion of consequence, the theory induced
relations are viewed upon as reflecting the preferences of a player. Moreover, we will
be interested in the maximum elements of a relation induced by a theory within certain
subsets of the valuations,viz., those subsets that are still possible outcomes given a
particular choice of strategy for all but one player. In view of Proposition 8.2.2, the
extension of a theory, however, merely contains a player’s most preferred outcomes,
independently of her powers or the others players’ preferences. In game-like situations,
however, a player has generally control over only a limited number of the relevant
variables. Whether she is able to achieve an outcome she prefers above all others,
may well depend on the decisions of the other players. Moreover, even if a particular
choice of values for the variables in an agent’s control may achieve such a consummate
outcome given certain partisan choices by the other players, it may have another, if
not opposite, effect in case the other players decide differently. The best an agent can
achieve relative to some fixed values for the other players’ variables may be inferior
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[[ϕ]] [[ψ]]

[[χ]]

Figure 8.2. Let the preferences of a playeri be captured in the theory{ϕ,ψ, χ}. Playeri’s
preference relation over the valuations is then as in Figure 8.1, above. Here, each block represents
a particular choice of strategy byi’s opponents. The darkest areas indicate where the maximum
responses ofi are to be found. Observe that a block may contain no maximum responses fori
and also that a valuation may contain a maximum response fori even if it is outside the extension
of the theory{ϕ,ψ, χ}.

to what she can achieve relative to other values for the other players’ variables. Such
a locally optimal outcome is a significant detail from a game-theoretic point of view.
Intuitively, what we are looking for are an agent’s optimal outcomes given particular
choices of strategies by the other agents. Let the preferences of an agent be represented
by a theoryΓ . Fixing the values of the variables outside the control of an agent, gives
us a set of valuations, sayX. If now the extensions ofΓ andX are disjoint, the former
provides us no information whatsoever as to which outcomes are most preferred by
the agentwithin X. The relationρ (Γ ), however, does. In particular, it enables us to
identify for each particular choice of strategy by the opponents, which are a player’s
maximum responses. In our proposal we will therefore refer to the maximum elements
of the relation representing an agenti’s preferences in the subsets of valuations in
which the values of all variables are fixed except for those whichi controls. Figure 8.2
illustrates this point graphically.

8.3 Intermezzo: Veltman’s Updates for Defaults

The additional ordinal structure the relational semantics for propositional logic engen-
ders over the set of valuations, is quite superfluous if one’s concerns are with classical
consequence only. However, the semantics of a considerable number of non-standard
variants or extensions of classical propositional logic appeal to a relational structure
over the valuations or possible worlds. We have already mentioned qualitative deci-
sion theory (e.g., Boutilier (1994)), belief revision (e.g., Gärdenfors (1988)), and non-
monotonic consequence relations (e.g., Shoham (1988), Kraus, Lehmann, and Magidor
(1990) and Makinson (1994)). The prime example in this respect is, of course, Kripke
semantics for modal languages. As in Kripke semantics, this relational structure is
often assumed to be given independently by the semantics, rather than induced by syn-
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tactic objects, such as formulas.
Veltman’s analysis of defaults (Veltman (1996)), however, is different in this re-

spect. There it is suggested that in a proper treatment of defeasible reasoning, some
formulas are interpreted as imposing a relational structure on logical space. This en-
ables one to distinguish among any subset of valuations those that are optimal with
respect to this structure. In the semantics of formulas of another logical form these
optimal valuations play a crucial role. There being a clear parallel between the con-
cluding remarks of the previous section and Veltman’s semantical ideas, we will here
give a synopsis of the third section of ‘Defaults in Update Semantics’.

Classical logic is monotonic in the sense that if a conclusion follows from a col-
lection of premissesΓ , then the same conclusion also follows from any collection of
premisses that includesΓ . If premisses are taken to represent the information available
to an agent and conclusions the inferences that agent may reasonably draw from the
premisses, it has been argued that much of human reasoning exhibits non-monotonic
features. In the face of new evidence one may be happy to withdraw conclusions ar-
rived at on the basis of information obtained previously. The new evidence is then said
to defeat the conclusion and the conclusion itself is said to be defeasible.E.g., if the
only piece of information available is that it normally rains, one could arguably infer
that it presumably rains. However, if one obtains as an additional piece of informa-
tion that it as a matter of fact does not rain, one might be quite willing to retract the
conclusion that it rains, as it does not.

Veltman gives a formal account of these and similar phenomena having to do with
defeasible reasoning and the order in which information is received. Using a dynamic
framework Veltman can account for the contrast between theacceptabilityof texts as
(1) and (2), and theunacceptabilityof the sequence (3):

“Normally, it rains. . . . Presumably, it rains.”(1)

“Normally, it rains. . . . Presumably, it rains. . . . Itdoes not rain.”(2)

“Normally, it rains. . . . Itdoes not rain.. . . Presumably, it rains.”(3)

Although many of the merits of Veltman’s approach lie in its ability to deal with such
examples using a dynamic framework, we concentrate on some of its static aspects.
The intuition behind Veltman’s approach is that a sentence like“Presumably, it rains”
signifies that it rains in all of the most normal states of affairs that are consistent with the
information available. This presupposes that the possible states of affairs can somehow
be ordered with respect to normality. A distinguishing mark of Veltman’s proposal is
that this normality order over the possible states of affairs is determined by sentences
like “Normally, it rains” that occurred earlier in the text, rather than merely fixed
exogenously.

Veltman proposes a propositional modal languageL(A, {normally,presumably}),
wherenormallyandpresumablyare modalities operating on formulas of the proposi-
tional languageL(A) only. I.e., the formulas ofL(A, {normally,presumably}) are given
by the set

{
ϕ,normallyϕ,presumablyϕ : ϕ a formula ofL(A)

}
and there is no nest-

ing of the modalities. The intended readings ofnormallyϕ andpresumablyϕ suggest



VELTMAN ’ S UPDATES FOR DEFAULTS 189

themselves.
The formulas ofL(A, {normally,presumably}) are interpreted in terms of states

consisting of a so-calledexpectation patternρ and aninformation set X. An expecta-
tion pattern is a reflexive and transitive relation over the valuations forL(A) and the
information setX is a subset of valuations, intuitively, containing the possible states of
affairs that are compatible with one’s factual information about the world.Veltman dis-
tinguishes the minimal state0 and the absurd state1, defined by(S× S,S) and(Id,ø),
respectively. The valuationss that are minimal with respect toρ— i.e., such thats′ < s
in ρ, for no valuations′ — are callednormal. If the set of normal worlds in an expec-
tation patternρ is not empty,ρ is said to becoherent. A state(ρ,X) is aninformation
stateif ρ is coherent andX non-empty, or if(ρ,X) is the absurd state1.

Semantically, formulaϕ in L(A, {normally,presumably}) is interpreted as a post-
fixedoperation[ϕ] on information states. For each formulaϕ in L(A), the operation[ϕ]
performs an update on the information set of an information state, accommodating the
information conveyed byϕ without changing the expectation pattern. That is, pro-
vided that the update does not render the information set void, for then the absurd state
results.

By contrast, ifϕ is of the formnormallyψ and the extension[[ψ]] contains a normal
world with respect toρ, we have[ϕ] operate on the expectation patternρ of an infor-
mation state(ρ,X). It leaves the information setX as it was butρ by removing from
it all edges(s, s′) with ψ holding ins but not ins′. This renders any valuations that
forcesψ strictly more normal than any valuation in whichψ does not hold but that was
as normal ass in the original expectation pattern. As such[normallyψ] imposes ad-
ditional structure on logical space renderingψ worlds more normal that non-ϕ worlds
without affecting the agents factual information about the world. Rather,[normallyψ]
refines the expectation pattern by intersecting it with the inverse of the relationρ0(ψ),
as defined in the previous section. If, however,[[ψ]] fails to contain a normal world with
respect toρ, then updating(ρ,X) with [normallyψ] will result in the absurd state1.

Finally, [presumablyϕ] performs a test on information states. In caseϕ holds in all
valuations that are minimal with respect to the expectation pattern of the information
state,[presumablyϕ] returns the original information state. Otherwise, it returns the
absurd state. Letϕ be a formula inL(A). Then — employing notations used throughout
this thesis — Veltman’s formally definitions are given by:

(ρ,X)[ϕ] =df.

{
(ρ,X ∩ [[ϕ]]) if X ∩ [[ϕ]] 6= ø,

1 otherwise.

(ρ,X)[normallyϕ] =df.

{
(ρ ∩ ρ0(ϕ)˘,X) if [[ϕ]] contains a normal world,

1 otherwise.

(ρ,X)[presumablyϕ] =df.

{
(ρ,X) if s∈ [[ϕ]], for all sminimal inX w.r.t. ρ,

1 otherwise.

(Here,ρ0(ϕ)˘ denotes theinverseof the relationρ0(ϕ).)
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Figure 8.3. The figure on the left depicts0 for a language witha andb as the only propo-
sitional variables. The dashed box and the grey balloons indicate the subset of valuations and
the expectation patter, respectively. From left to right the figures depict the minimal state0,
0[normally a] and0[normally a][¬b]. The valuation{a} is now minimal in0[normally a][¬b], but
for instanceø is not. Hence,0[normally a][¬b] ° presumably(a∧ ¬b) but 0[normally a][¬b] 1
presumably(¬ (a∨ b)).

For formulasϕ of L(A, {normally,presumably}) and information statesσ define
σ ° ϕ if and only if σ[ϕ] = σ. Moreover, consequencèV for this particular system is
defined as a relation between thesequencesof formulasϕ0, . . . , ϕn and a formulaψ as
follows:

ϕ0, . . . , ϕn `V ψ iff 0[ϕ0] . . . [ϕn] ° ψ.

The sequential order of the formulasϕ0, . . . , ϕn here makes a difference.E.g., as the
formal counterparts of (1), (2) and (3), above, we find:

0[normally a][presumably a] 6= 1,(1′)
0[normally a][presumably a][¬a] 6= 1,(2′)
0[normally a][¬a][presumably a] = 1.(3′)

The reader be also referred to Figure 8.3 for further illustration.
The guiding principle behind Veltman’s update semantics for defaults is that Boolean

formulasϕ and those of the formnormallyϕ build up an information state. Suppose
that0[ϕ0] . . . [ϕn] is an information state that is being constructed in the course of an
update process and distinct from the absurd state. The constituent expectation pat-
tern is then precisely the inverse of the relationρ0 (Θ), whereΘ is given by exactly
those formulasψ such that the formulanormallyψ is amongϕ0, . . . , ϕn. Formulas of
the formpresumablyϕ are then evaluated with respect to the information state con-
structed. A formulapresumablyϕ holds in a non-absurd information state(ρ,X), i.e.,
σ ° presumablyϕ, if ϕ holds in alloptimal states inρ that are compatible with the
factual information represented byX. Optimality is here taken as minimality with re-
spect to the information pattern, but could equally well be defined as maximality with
respect to its inverse.

In the next section distributed evaluation games are introduced as a special kind of
strategic game. The strategy profiles of these games are the valuations of a proposi-
tional language, each player having control over a set of propositional variables. Each
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playeri is associated with a theoryΓi , which is interpreted as the relationρ (Γi) on log-
ical space and intuitively reflect the player’s preferences. Thus the theory determines
the player’s preferences in much the same way as formulas of the formnormallyϕ
build up an expectation pattern in Veltman’s default logic. The manipulative power
of a player is relative to the propositional variables assigned to her. For each player,
logical space is partitioned in blocks that contain valuations that coincide on the val-
ues of the variables assigned to her opponents. If it is given that the outcome of the
game will be in one particular block, it is then up to her which of the outcomes in that
block will prevail. To determine her best response strategies, she has thus to look for
the valuations within each block that are optimal with respect to her preference order.
As such, each of these blocks of a player’s partition relates to her preference order
in much the same way as the information set to the expectation pattern in Veltman’s
framework. Also in the game-theoretical setting, it is the optimal valuations that seem
to be relevant.

In order to determine her best-response strategies, however, a player has to find
the optimal strategies inall of the blocks. If one is interested in the Nash equilibria,
one should, moreover, take into account the best-responses for all players.I.e., one
has to investigate all blocks in all of the players’ partitions with respect to the players’
individual preference orders. In Veltman’s semantics for defeasible reasoning there is
only one information set to be considered. However, in essence the principle remains
the same.

8.4 Distributed Evaluation Games

In the Preliminaries astrategic gamewas introduced as a tuple
(
N, {Si}i∈N , {ρi}i∈N

)
,

with N as set of players, and for each playeri in N a set of strategiesSi as well as a
reflexive and transitive, or empty relationρi over the strategy profiles

∏
i∈N Si which is

usually denoted byS.
In this section we define, for each propositional languageL(A), a special class of

strategic games, which we refer to asdistributed evaluation games. Henceforth we will
assume the set of propositional variablesA to be non-empty. The distributed evaluation
games provide a formalization of the interactive situations that result if the variables
of the propositional languageL(A) are construed as binary decision variables the con-
trol over which is distributed over a number of individuals. The sets of propositional
variables assigned to the players are assumed to be pairwise disjoint —i.e., no joint
control over a propositional variable occurs — and to exhaust the set of propositional
variablesA. If A is non-empty, moreover, each player controls at least one variable
and each variable is controlled by one player. The strategies available to each player
are given by the different binary choices he can make with respect to his propositional
variables.I.e., if Ai is the set of variables assigned to the control of playeri, the set of
strategies available toi is given by 2Ai .

With each propositional variable controlled by precisely one player, each strategy
profile of a distributed evaluation game determines an assignment of a binary value to
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each of the propositional variables. Thus each strategy profile can be seen as a valuation
of L(A) and each valuation as a strategy profile, there being no further restrictions on
the strategies available to the players. This is the reason why havingSdenote both the
set of valuations and the set of strategy profiles of a distributed evaluation game is a
harmless ambiguity.

Each playeri of a distributed evaluation game is thought of as the verifier of a sep-
arate theoryΓi of L(A) and to aim at an outcome of the game that satisfies as much
as possible ofΓi by choosing appropriate values for the propositional variables in his
control. This leaves us the issue of a criterion to measure the degree to which a valua-
tion satisfies a theory. The considerations of Section 8.2 concerning the relative logical
strength of a theories enable us to be precise in this respect. Accordingly, the prefer-
ences of a playeri in a distributed evaluation game are given by the relationρ (Γi).
Consequently, the preferences ofi are considerably more gradated than merely distin-
guishing valuations that satisfy the whole ofΓi from those those that do not. Formally,
we have the following definition.

Definition 8.4.1 (Distributed evaluation games)Let L(A) a propositional language on
a non-empty setA of propositional variables. A strategic game

(
N, {Si}i∈N , {ρi}i∈N

)
is adistributed evaluation gamefor L(A) if for eachi ∈ N:

Si =df. 2Ai and ρi =df. ρ (Γi) ,

whereΓi is a term of a family{Γi}i∈N of theories inL(A) andAi a term of a fam-
ily {Ai}i∈N of non-empty and pairwise disjoint subsets of propositional variables that
partitionsA.3

For each distributed evaluation game
(
N, {2Ai}i∈N, {ρi}i∈N

)
for L(A), a natural

isomorphism exists between its strategy profiles
∏

i∈N 2Ai and 2A, the set of valuations
for L(A). Accordingly, we will generally let the latter go proxy for the former.

In the context of distributed evaluation games, we will frequently identify the play-
ers with the propositional variables they control. Thus, a partitionπ of A is taken as
the index setN of players and the family{Ai}i∈N itself, which assigns control over

3For the propositional languageL(ø) without propositional variables this definition would leave the set
of strategies for a player undefined and as such would not deliver well defined distributed evaluation games.
One could, however, treatL(ø) as a special case and define strategic games with one player that has no
control over any propositional variables at all. This player could be defined as having only one strategy at his
disposal,viz., ø. Accordingly, any such game would have merely one strategy profile,viz., the empty setø.
Observe in this context thatø is the only element ofPart(ø). The preferences of the player could be given
by the relationρ (Γ ) induced by a theoryΓ of L(ø) over the strategy profiles. There are then essentially
two of such distributed evaluation games forL(A). In the one game the player’s preferences are given by the
universal relation over the strategy profiles,i.e., by{(ø,ø)}, in the other by the empty relation, depending on
whether the theory defining the player’s preferences is consistent or inconsistent. Neither of the two games is
particularly interesting from our perspective. Most, if not all, of the subsequent results regarding distributed
evaluation games and game-theoretical consequence would also hold if the notion of a distributed evaluation
game were extended as to include these two games forL(ø) as well. Yet, including these games forL(ø)
would complicate the formulation of the proofs, as each of them would have to treatL(ø) separately as a
special case.
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ø {c}

{b, c}
{b}

Bonnie:

ø

Clyde:

{c}

{b}
{b, c}

Figure 8.4. The extensions of the formulas in the theories by means of whichBonnie’s and
Clyde’s preferences are defined.

propositional variables to the players, the identity function.I.e., for eachX ∈ π, we
haveAX = X. Depending on whether the emphasis is on the player or the set of propo-
sitional variables he controls, we usei and, respectively,Ai or πi to denote members
of the partitionπ. Also, π−i is short for the set

⋃
j 6=i πj . In the sequel we will useΓI

to denote a family of theories indexed byI . Furthermore,(Γ−i , Γi)I is an abbreviation
of the family of theoriesΓ ∗

I such that for allj 6= i, Γ ∗
j = Γj andΓ ∗

i = Γ . For π
a partition of the propositional variables andΓπ a family of theories indexed byπ,
we denote byG(Γπ) the distributed evaluation game withπ the set of players. Each
playeri in π has control over the blockπi and her preferences are given byρ (Γi). In
short,G(Γπ) is the strategic game

(
π, {2Ai}i∈π, {ρ (Γi)}i∈π

)
. We haveG(Γπ) denote

the gameG(Γ ∗
π), with Γ ∗

i = {¬γ : γ ∈ Γi}, for eachi ∈ π.

Definition 8.4.1 is illustrated by the following example, which is the representation
of the infamous Prisoner’s Dilemma (cf., page 8, above) as a strategic evaluation game.

Example 8.4.2 (Prisoner’s Dilemma)Consider the languageL(A) with A = {b, c}
andN a set of players containing as sole elementsBonnieandClyde. Let Bonniebe
assigned control over the propositional variableb and Clyde over c, i.e., ABonnie =
{b} andAClyde = {c}. Let further theoryΓBonnie be given by

{
c → b,¬c,¬c ∧ b

}
andΓClyde by

{
b → c,¬b,¬b∧ c

}
. These stipulations define a distributed evaluation

game, in which the strategies available toBonnieare given by 2{b} =
{
ø, {b}} and

those toClydeby 2{c} =
{
ø, {c}}. Intuitively, the binary decision variablesb andc

representBonnie’s and Clyde’s respective choices between denying and confessing.
For both players, setting a decision variable to 0 means denying and setting it to 1 is
to confess. The presence of the formulac → b in ΓBonnie conveysBonnie’s preference
to confess ifClydedoes so as well and¬c ∧ b that she prefers above all the outcome
in which she confesses butClyde refrains from doing so. Taking the extensions of
the formulas in the theoriesΓBonnie andΓClyde we obtain the following sets of sets of
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ø {c}
2 3

ø
2 0

0 1
{b}

3 1

Figure 8.5. The game matrix of thePrisoner’s Dilemma. The typical Pareto dominated Nash
equilibrium is the outcome bottom right. The figures indicate theordinal preferences of the
players.

valuations:

Bonnie:
{{ {b} , {b, c} ,ø}

,
{ {b} ,ø}

,
{ {b}}}

,

Clyde:
{{ {c} , {b, c} ,ø}

,
{ {c} ,ø}

,
{ {c}}}

.

Figure 8.4 serves as a graphical representation of how these extensions are related to
one another with respect to set inclusion. The preferences ofBonnieandClydeover the
valuations 2{b,c} are then given by the relationsρ (ΓBonnie) andρ (ΓClyde), respectively,
i.e.:

Bonnie: {c} < {b, c} < ø < {b} ,
Clyde: {b} < {b, c} < ø < {c} .

Thus, we obtain the strategic game depicted in Figure 8.5, with the characteristic
(Pareto dominated) Nash equilibrium in bold face. Observe that this distributed evalua-
tion game has a maximum equilibrium, although union ofBonnie’s and Clyde’s theory,
i.e., the theoryΓBonnie∪ ΓClyde, is unsatisfiable.

Since distributed evaluation games are fully fledged strategic games, game-theoret-
ical methods can be used to investigate them. Solution concepts may be employed to
distinguish valuations that are somehow significant from a game-theoretical perspec-
tive. Each familyΓ of theories and each partitionπ of propositional variables can thus
be associated the set of valuations that comply with a particular solution concept in
the distributed evaluation gameG(Γπ). The role of the solution concept can be seen
as analogous to that of set-theoretic intersection in the definition of the extension of a
theory on basis of the extensions of its constituent formulas. In the next chapter the
notion ofmaximal equilibrium(cf., page 28, above) is used in this manner to formulate
a game-theoretical concept of consequence. Distributed evaluation games provide the
semantical basis of this definition.
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ø {b}
0 1

ø
0 1

1 0
{a}

1 2

ø {b}
0 1

ø
0 1

1 2
{a}

1 0

ø {a}
0 1

ø
0 1

1 0
{b}

1 2

Figure 8.6. Let Γ = {a → b, a∧ b} andΘ = {a ↔ ¬b}. The left matrix represents the
gameG

`
Γ{a}, Θ{b}

´
. The matrix in the middle results if the preferences of the row and column

player are interchanged. In the one on the right, the row and column players have exchanged the
propositional variables they control. From our perspective this difference between the latter two
games is immaterial and both are represented byG

`
Θ{a}, Γ{b}

´
. Their maximum equilibria (in

boldface) differ from the game on the left.

The concept of maximum equilibrium pivots on the notion of unilateral deviation
of a player from a strategy profile. In a distributed evaluation gameG(Γπ) it can be
expressed in neat set-theoretic terms when a playeri can achieve a strategy profiles′

by unilaterally deviating from another strategy profiles. Since the strategy profiles of
a distributed evaluation game are taken to be the valuations of the respective proposi-
tional language and because valuations stripped to their bare essentials are mere subsets
of propositional variables, we have in general for any strategy profiless ands′ an any
playeri in a partitionπ:

(s−i , s
′
i ) =

(
s∩ π−i

) ∪ (
s′ ∩ πi

)
.

A gameG(Γπ) abstracts, as it were, from the identity of its players and only takes
into account their relative powers and their preferences. The following fact states that
such an abstraction is quite immaterial for our purposes, in which we focus on maxi-
mum and maximal responses and their equilibria. Since it is quite obvious that maximal
and maximal equilibria are independent of the identity of the players, we leave the fact
without its proof.

Fact 8.4.3 Consider the distributed evaluation game
(
N, {2Ai}i∈N, {ρ (Γi)}i∈N

)
for

a propositional language L(A). Let π be the indexed set of the family{Ai}i∈N and
let{ΘX}X∈π be the family of theories such that, for each X∈ π, we haveΘX = Γi if and
only if X = Ai. Then the maximum (maximal) equilibria of

(
N, {2Ai}i∈N, {ρ (Γi)}i∈N

)
coincide with the maximum (maximal) equilibria of

(
π, {2X}X∈π, {ρ (ΘX)}X∈π

)
.

To illustrate this point, consider the languageL({a,b}) and let the partitionπ
be given by

{{a} , {b}}. Let the theoriesΓ andΘ be given by{a → b,a∧ b} and
{a ↔ ¬b}, respectively. Consider the distributed evaluation gameG

(
Γ{a}, Θ{b}

)
. In-
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dexingΓ with {b} andΘ with {a} gives rise to the gameG
(
Θ{b}, Γ{a}

)
. The maxi-

mum equilibria of these games differ (cf., Figure 8.6), illustrating that control matters.
The gameG

(
Θ{a}, Γ{b}

)
could be seen as the result of the players either adopt-

ing one another’s preferences or swapping the propositional variable they have control
over. Focussing on maximum equilibria as we do, however, both scenarios can be seen
as different manifestations of the same phenomenon, witness Fact 8.4.3 on page 195.
For our purposes, the important thing is the extend to which control over a set of propo-
sitional variables is conductive to the achievement of a desirable outcome relative to a
preference order defined by a theory. Theidentityof the player who has control over
those propositional variables and who entertains those preferences is quite immate-
rial. Distributed evaluation games precisely capture this formal dependency between
preferences and control.

As presented here, the players’ preferences in distributed evaluation games are fixed
by the relations induced by theories. One could, however, prefer the image of theories
describingthe preferences, in a possibly partial fashion, rather than fixing them. On
this conception, a distributed evaluation game would not so muchbea strategic game,
but rather it wouldrepresenta class of strategic games in which the preference re-
lations comply with the constraints imposed by the theories. Theories could then be
understood as partially specifying a preference relations. Making this idea precise, it
seems reasonable to stipulate that a preference relationρ complies with the constraints
imposed by a theoryΓ , if the relationρ is included inρ (Γ ).4 The following fact es-
tablishes that the two conceptions of distributed evaluation games make no difference
with respect to the formulas that hold in all maximum equilibria of distributed evalua-
tion game conceived as as strategic game and those that hold in all maximum equilibria
of all strategic games in a distributed evaluation game, conceived of as a collection of
strategic games.

Fact 8.4.4 Let π be a partition of the propositional variables of a language L(A).
Let furtherϕ be a formula andΓπ a family of theories of L(A). Then,ϕ holds in all
maximum equilibria of G(Γπ) iff ϕ holds in all maximum equilibria of each strategic
game

(
π, {2Ai}i∈π, {ρi}i∈π

)
with ρi ⊆ ρ (Γi), for each i∈ π.

Proof: From right to left the proof is trivial. The left-to-right direction follows im-
mediately from Proposition 2.1.1 on page 28, above. a

Both the extension of a theory and the maximum equilibria of a distributed evalua-
tion game single out subsets valuations on the basis of information in the form of for-
mulas. In the truth-theoretical semantics this information comes in the form of a single

4Construed thus, a distributed evaluation game is not a strategic game as such; it rather represents a
collection of strategic games. In this thesis we employ a notion of a strategic games that is slightly more
liberal than the usual notion in that the preference relations need not in general be connected and may even
be empty. One may, of course, confine one’s attention to,e.g., the subclass of games in which all preference
relations are total preorders. Each distributed evaluation game could then be understood as defining a set of
such games. Restricting one’s attention on such subclasses of strategic games, however, may have serious
repercussions for the concept of game-theoretical consequence to be developed in the next chapter. Here we
leave it as a subject for future research.
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set of formulas, which, intuitively, describe a part of the world. In the game-theoretical
case the information is couched in a family of theories, each member of which con-
cerns the preferences of one player. The valuations that are singled out as maximum
equilibria of a distributed evaluation gameG(Γπ) on the basis of a collection of for-
mulasΨ , i.e., provided that

⋃
i∈π Γi contains formulas inΨ only, will always include

the valuations in the extension ofΨ . Intuitively, this vindicates formally the intuitive
presumption that simultaneously accommodating all of each players’ preferences is a
sufficient condition for a strategy profile to qualify as a maximum equilibrium, though
not a necessarily necessary one.

Proposition 8.4.5 Let Γπ be a family of theories in L(A) indexed by a partitionπ
of A. Then,

⋂
i∈π [[Γi ]] is contained in the set of maximum equilibria of G(Γπ).

Proof: Straightforward. If
⋂

i∈π [[Γ i ]] is empty, the proof is trivial, so assume⋂
i∈π [[Γ i ]] to be non-empty. Assume for an arbitrary valuations that s ∈ ⋂

i∈π [[Γi ]].
Consider an arbitraryi ∈ π and an equally arbitraryγ ∈ Γi . Then,s ∈ [[γ]]. Hence,
[[γ]] is non-empty, and therefore(s′, s) ∈ ρ (γ), for all valuationss′. Hence, also
(s′, s) ∈ ρ (Γi). It follows that s is a maximum response fori. With i having been
chosen arbitrarily,s is a maximum equilibrium inG(Γπ) as well. a

The inverse of this claim, however, does not hold in general. Example 8.4.2 shows
that a distributed evaluation gameG(Γπ) may have maximum equilibria although⋂

i∈π [[Γi ]] is empty.
An interesting issue is theformation of coalitionsin a distributed evaluation game

G(Γ π). Our concern is then which game results if the players of a distributed evalua-
tion game join in coalitions and how its formal properties relate to those of the original
game. Here we will make the natural but not necessary assumption that each coalition
assumes control over the propositional variables that were previously controlled by its
individual members. In virtue of Fact 8.4.3, the players of a distributed evaluation game
may then be identified with the union of the propositional variables under the control
of its members. This leaves the question of how the coalitional preferences relate to
those of its constituent members.

On page 33 we described a particular way in which the players of a strategic
game can join in coalitions. We hadGκ denote the game in which the players of
the gameG have formed the set of coalitionsκ. The coalitional preferences of eachκ
in κ were fixed as the intersection of the preference relations of its members,i.e., as
ρκ =df.

⋂
i∈κ ρi , for eachκ in κ. This way of combining individual preferences into a

coalitional preference relation preserves thestrong Pareto property, i.e., if all players
strictly prefer one outcome to another, the coalition as whole will do so as well.

This method of coalition formation is also applicable to distributed evaluation games.
Let G(Γπ) be a distributed evaluation game and suppose that a set of coalitionsκ is
formed in this manner. This results in a new distributed evaluation game with the
coalitions as players. Each coalitionκ in κ can then be identified with the set of propo-
sitional variables

⋃
i∈κ πi and its preferences are given byρ

(⋃
i∈κ Γi

)
(cf., Figure 8.7).

This observation is laid down formally in the following fact.
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Γ0z }| {
a00, a01, a02, a03,

Γ1z }| {
a10, a12, a13,

Γ2z }| {
a20, a22

| {z }
Γ0 ∪ Γ1 ∪ Γ2

,

Γ3z }| {
a30, a31,

Γ4z }| {
a40, a41, a42

| {z }
Γ3 ∪ Γ4

,

Γ5z }| {
a50, a51,

Γ6z }| {
a60, a61, a62

| {z }
Γ5 ∪ Γ6

Figure 8.7. Illustration of coalition formation with each of the coalitional preferences the inter-
section of the preferences relations of its members. Each playeri (0 6 i 6 6) has control over the
variablesaij andi’s preferences are captured by the theoryΓi . Now suppose that 0, 1 and 2, 3 and
4, and 5 and 6 decide to join in coalitions, respectively. Then,e.g., the coalition{3, 4} obtains
control over the propositional variables in{a30, a31, a40, a41, a43}. The coalitional preferences
are then given by the relationsρ (Γ0 ∪ Γ1 ∪ Γ2), ρ (Γ3 ∪ Γ4) andρ (Γ5 ∪ Γ6), respectively.

Fact 8.4.6 For π a partition of the propositional variables of L(A), let G be the
distributed evaluation game

(
π,

{
2Ai

}
i∈π,

{
ρ (Γi)

}
i∈π

)
. Let κ ∈ Part(π) a coali-

tion partition ofπ. Let further G∗ be the game
(
π∗,

{
2Ak

}
k∈π∗ ,

{
ρ (Γ ∗

k )
}

k∈π∗
)
, with

π∗ =df.
{ ⋃

κ : κ ∈ κ
}

and for each k∈ π∗:

Γ ∗
k =df.

⋃
i∈π
i⊆k

Γi .

Then, the maximum (maximal) equilibria of G∗ coincide with those of Gκ.

Sketch of proof: By definition 2.1.5, for eachκ ∈ κ we haveSκ =
∏

i∈κ Si .
BecauseSi = 2Ai and the propositional variables assigned to the players being pairwise
disjoint, then there is a natural isomorphism between

∏
i∈κ Si and 2

S

i∈κ Ai . Then the
claim follows from Fact 8.4.3 as a corollary. a
Thus, for distributed evaluation gamesG(Γπ) andG(Θπ′) with π 6 π′, we may say
that in the latter players of former have joined in coalitions. Eachj ∈ π′ then rep-
resents the coalition{i ∈ π : i ⊆ j} have been formed. The way in which for each
j ∈ π′ the theoryΘj relates to the theories in

{
Γi : i ⊆ j

}
reflects how the coali-

tional preferences depend on those of the members of the coalition. LettingΘj be
the union of the theories in

{
Γi : i ⊆ j

}
corresponds to intersecting the members’

preference relations. In virtue of Fact 8.4.6, Corollary 8.4.7 presents a special case of
Proposition 2.1.8 specifically for distributed evaluation games.

Corollary 8.4.7 Let L(A) be a propositional language and letπ andπ′ be partitions
of A such thatπ 6 π′. Let further G(Γπ) and G(Θπ′) be distributed evaluation games
such thatΘk =df.

⋃
i∈π
i⊆k

Γi , for each k∈ π′. Then, the maximum equilibria in G(Θπ′)

are also maximum equilibria in G(Γπ).

Sketch of proof: Observe that in general for each set of subsetsX and each family
of sets of subsets{Yi}i∈I such thatX =

⋃
i∈I Yi we have thatρ (X) =

⋂
i∈I ρ (Yi).
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Hence, in particular,ρ (Θk) =
⋂

i∈π
i⊆k

ρ (Γi), for eachk ∈ π′. The claim then follows

immediately from Proposition 2.1.8 on page 35 and Fact 8.4.6. a
Other ways of combining individual preferences have been studied within the field of
social choice theory. It is an interesting issue how these correspond to ways of com-
bining theories and the theory of game-theoretical consequence advanced in the next
chapter may provide a suitable logical framework. Nevertheless, we will not pursue
the matter here. The account of coalition formation presented in this section, however,
will play a noticeable role in the formal analysis of game-theoretical consequence.

8.5 Formal Properties of Set-Induced Relations

In the previous section distributed evaluation were introduced as a class of strategic
game. The strategy profiles of these games coincide with the valuations of a propo-
sitional language and the strategies of the players were given by the possible binary
choices they could make with respect to the propositional variables they are assigned
control over. The preferences of each players are specified by relationρ (Γ ) a the-
ory determines over the valuations. In the next chapter a game-theoretical concept of
consequence is proposed, which semantic formalization depends on the notion of a dis-
tributed evaluation game. There the relationsρ (Γ ) play a much similar role in defining
players’ preferences as the the extensions of the formulas making up a theory did in
the traditional semantic account of classical consequence.

This section concerns two formal issues relating to the class of relations induced
by theories over the set valuations of a propositional language. The first pertains to
the formal delineation of this class within the class of all reflexive and transitive, and
otherwise empty, relations over the valuations. The second relates to closure properties
of set-induced relations,i.e., it concerns the problem to which setsX′ a setX of subsets
can be extended such thatρ (X) equalsρ (X′).

We first review some of the more elementary properties of the relationsρ (X)
andρ (X). As a first fact we find that no two different subsetsX and Y of a setS
such thatρ (X) andρ (Y) are identical relations onS.

Fact 8.5.1 Let X and Y be subsets of some set S. Then:

ρ (X) = ρ (Y) iff X = Y.

Proof: The right-to-left direction is trivial. For the opposite direction supposeX 6= Y.
Without loss of generality we may assume there be somex ∈ X for which x /∈ Y. In
caseY is empty,(x, x) /∈ ρ (Y) but (x, x) ∈ ρ (X) anda fortiori ρ (X) 6= ρ (Y). If on the
other handY is not empty there is somey ∈ Y. Then,(y, x) /∈ ρ (Y) and(y, x) ∈ ρ (X).
Again we may conclude thatρ (X) 6= ρ (Y). a
By contrast,ρ0(X) andρ0(Y) may be identical even for distinctX andY, be it only
if either X or Y is the universe and the other the empty set. Bothρ0(X) andρ0(Y)
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are then the universal relation. ForX any subset other than the empty set, the rela-
tionsρ0(X) andρ (X) coincide. This observation also sustains a corresponding result
for relationsρ (X) induced by sets of subsetsX.

Fact 8.5.2 Let X be a subset of some non-empty set S. Then:

ρ0(X) = ρ (X) iff X 6= ø and ρ0 (X) = ρ (X) iff ø /∈ X.

Proof: For the first claim, the proof from right to left is trivial. So assumeX = ø.
Then,ρ (X) = ø andρ0(X) = S× S. SinceShad been assumed to be non-empty, also
ρ0(X) 6= ρ (X). For the second claim merely observe the following equalities:

ρ0 (X) =
⋂
X∈X

ρ0(X) =ø /∈ X

⋂
X∈X

ρ (X) = ρ (X) . a

We also have the following equally easy fact.

Fact 8.5.3 Let X be a set of subsets of a non-empty set S. Then:

ρ (X) = ø iff ø ∈ X.

Proof: Straightforward. From right to left the proof is almost trivial. Merely observe
that thenρ (ø) ∈ {

ρ (X) : X ∈ X
}

and, sinceρ (ø) = ø, ρ (X) =
⋂

X∈X ρ (X) = ø.
For the opposite direction assume thatø /∈ X. In virtue of Fact 8.5.2, thenρ (X) =
ρ0 (X). With the latter begin reflexive, it follows thatρ (X) is reflexive as well. Having
assumedS to be non-empty, we may conclude thatρ (X) is non-empty. a

For any subsetX, the relationρ (X) is not in general monotone inX. To appreciate
this, letX andY be two non-empty proper subsets of a setSsuch thatY is also a proper
subset ofX. Assume thaty ∈ Y, x ∈ X − Y andz /∈ X. Then,(y, x) ∈ ρ (X) but
(y, x) /∈ ρ (Y). Moreover,(x, z) ∈ ρ (Y) but (x, z) /∈ ρ (X). More in general we have
the following fact.

Fact 8.5.4 Let X and Y bedistinctsubsets of some set S. Then:

ρ (X) ⊆ ρ (Y) iff X = ø or Y = S.

Proof: From right-to-left the claim is trivial. The opposite direction is by contraposi-
tion. So, assumeX 6= ø andY 6= S. Hence,x ∈ X andz /∈ Y, for somex, z∈ S. In case
Y is empty, we are done immediately, for then(x, x) ∈ ρ (X) and(x, x) /∈ ρ (Y). So
for the remainder of the proof we may assume there to be somey ∈ Ssuch thaty ∈ Y.
By Fact 8.5.2, moreover, bothρ (X) = ρ0(X) andρ (Y) = ρ0(Y), which simplifies the
reasoning.

With the assumption thatX andY be distinct, eitherY * X, orY ( X. In the former
case,y′ ∈ Y andy′ /∈ X, for somey′ ∈ S. Hence,(y′, z) ∈ ρ (X) and(y′, z) /∈ ρ (Y).
In the latter case,x′ ∈ X andx′ /∈ Y, for somex ∈ S. BecauseY ⊆ X, alsoy ∈ X.
Therefore,(y, x′) ∈ ρ (X) whereas(y, x′) /∈ ρ (Y). a
By contrast, bothρ0 (X) andρ (X) are tidily downward monotone inX.
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Fact 8.5.5 (Monotonicity) LetX andY be sets of subsets of a set S. Then:

X ⊆ Y implies ρ0 (Y) ⊆ ρ0 (X) and ρ (Y) ⊆ ρ (X) .

Proof: Straightforward. AssumeX ⊆ Y. Then also
{
ρ0(X) : X ∈ X

} ⊆ {
ρ0(Y) :

Y ∈ Y
}

. Hence:

ρ0 (Y) =
⋂{

ρ0(Y) : Y ∈ Y
} ⊆X ⊆ Y

⋂ {
ρ0(X) : X ∈ X

}
= ρ0 (X) .

The reasoning forρ (Y) ⊆ ρ (X) runs along analogous lines. a

The Scope of Distributed Evaluation Games

The main purpose of this section is to demarcate the class of distributed evaluation
games for a propositional languageL(A) within the comprehensive class of strategic
games that can be defined on the frames of distributed evaluation games. Thus, for
each strategic game in the comprehensive class, the players and their strategies are
those of some distributed evaluation game forL(A). Moreover, the strategy profiles are
given by the valuations forL(A). Restricted thus, the issue boils down giving a precise
characterization of the class of the players’ preference relations that the definition of
distributed evaluation games allows,i.e., of the set{ρ (Γ ) : Γ is a theory inL(A)}.
For the propositional languageL(ø), with no propositional variables, the issue is trivial.
Thenø is the only valuation and the two preference relations that are possible,viz., the
empty relation and{(ø,ø)}, are represented byρ ({⊥}) andρ ({>}). In case the
number of propositional variables inA is finite, we find the set relations induced by the
theories ofL(A) is complete with respect to the transitive and reflexive, or otherwise
empty relations over the valuations. Matters are different if the set of propositional
variables is infinite. Then the relations induced by theories on logical space constitute
a proper subclass of all preference relations. This phenomenon is comparable with the
fact that for a language with a countably infinite number of propositional variables, the
extensions of theories do not exhaust the powerset of valuations.

The relationsρ (X) have a neat characterization in terms of general properties of
relations. We say that a relationρ on a setS is bisectiveif it is transitive and moreover
satisfies the following condition:

(∗) for all x, x′, x′′ ∈ S : x 6 x′ implies x′′ 6 x or x′ 6 x′′.

Observe that the empty relation qualifies as bisective, as in that case both transitivity
and (∗) are satisfied trivially in virtue of vacuous quantification. Any other bisective
relation, however, is both reflexive in addition to being transitive.

Fact 8.5.6 Any non-empty bisective relation over a set S is reflexive.



202 RELATIONAL SEMANTICS

Proof: Let ρ be a non-empty bisective relation over a setS. Thenx 6 x′, for some
x, x′ ∈ S. Consider an arbitraryy in S. In virtue of ρ satisfying (∗), then,y 6 x or
x′ 6 y. In both cases the reasoning runs along similar lines; here we deal with the
former case only. Ify 6 x, again in virtue of (∗), eithery 6 y or x 6 y. If y 6 y we are
done immediately. Otherwise, we havey 6 x 6 y and by transitivity ofρ alsoy 6 y. a
The following proposition characterizes a bisective relation over a universeS as one
which coincides withρ (X) for some subsetX of S. In its proof, as elsewhere in this
section,↑ρ x denotes the set{y ∈ S : (x, y) ∈ ρ}, for all elementsx of and all rela-
tionsρ on a setS.

Proposition 8.5.7 Let S be a set. Then the set
{
ρ (X) ⊆ S× S : X ⊆ S

}
coincides

with the set of bisective relations on S.

Proof: In caseS is empty, the empty relation is the only (bisective) relation onS.
Also, ø is the only subset ofS. Now, observe thatρ (ø) is the empty relation as well.
So, for the remainder of the proof we may assumeS to be non-empty.

First consider an arbitraryX ⊆ S along with equally arbitraryx, x′, x′′ ∈ S. We
prove thatρ (X) is bisective. For transitivity first assume that both(x, x′) and(x′, x′′)
are inρ (X) as well as thatx ∈ X. Since(x, x′) ∈ ρ (X), alsox′ ∈ X and because
(x′, x′′) ∈ ρ (X), moreover,x′′ ∈ X. We may conclude that(x, x′′) ∈ ρ (X). To show
that ρ (X) satisfies condition (∗) as well, assume(x, x′) ∈ ρ (X). Either x′′ ∈ X or
x′′ /∈ X. If the former,(x′, x′′) ∈ ρ (X); if the latter(x′′, x) ∈ ρ (X). In both cases we
are done.

To prove that for an arbitrary bisective relationρ on S there is a subsetX such
thatρ = ρ (X), assumeρ to be bisective and consider the set

⋂
x∈S↑ρ x. Suppressing

the subscriptρ in ↑ρ x, we prove thatρ = ρ
(⋂

x∈S↑ x
)
. In caseρ is empty,↑ x is

equally empty, for anyx ∈ S. Having assumedS to be non-empty,
⋂

x∈S↑ x = ø.
Hence,ρ

(⋂
x∈S↑ x

)
= ρ (ø) = ø. For the remainder of the proof, we may accordingly

assumeρ to be non-empty. In virtue of Fact 8.5.6, the relationρ may be assumed to be
reflexive as well.

For the⊆-inclusion, assume for arbitraryy, y′ ∈ S that(y, y′) ∈ ρ. Assume further
that y ∈ ⋂

x∈S↑ x and consider an arbitraryx ∈ S. Theny ∈ ↑ x, i.e., (x, y) ∈ ρ.
By transitivity, also(x, y′) ∈ ρ, i.e., y′ ∈ ↑ x. With x having been chosen arbitrarily,
y ∈ ⋂

x∈S↑ x, and we are done.
For the⊇-inclusion, assume for arbitraryy, y′ ∈ S that(y, y′) /∈ ρ. Then,y′ /∈ ↑ y

and, therefore,y′ /∈ ⋂
x∈S↑ x. It suffices now to prove thaty ∈ ⋂

x∈S↑ x. So, consider
an arbitraryx ∈ S; we prove thaty ∈ ↑ x. By reflexivity, (y, y) ∈ ρ. In virtue of
(y, y′) /∈ ρ and (∗), then(y′, y) ∈ ρ. Again because of (∗), either(x, y′) or (y, x) ∈ ρ. In
the former case,(x, y) ∈ ρ sinceρ is transitive and(y′, y) ∈ ρ. Also in the latter case
we have(x, y) ∈ ρ, because(y, y′) /∈ ρ and (∗). With x having been chosen arbitrarily,
y ∈ ⋂

x∈S↑ x. We may conclude that(y, y′) /∈ ρ
(⋂

x∈S↑ x
)
. a

For a classical propositional language with a countably infinite number of propo-
sitional variables, the relationsρ (ϕ) for formulasϕ of the language, exhaust the set
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of bisective relations on the valuations just as little as the extensions of the formulas
exhaust the set of subsets of the valuations. Recall that the number of relations over
the valuations of a countably infinite propositional language is uncountable, whereas
the number of formulas remains countable. Corollary 2.4.2 on page 54 characterizes
the set of extensions of a language as the approximations of the subsets of valuations
by means of a finite subset of propositional variables. Proposition 8.5.10, gives a sim-
ilar result for the relational semantics for classical propositional logic. Before getting
there, however, we make some more general remarks concerning approximations of
relations.

The approximation operatorsapr andapr on the powerset of some setS are rela-
tive to an equivalence relationε on S. The coordinate-wise square5 of an equivalence
relation overS is again an equivalence relation over the Cartesian product ofS. The
coordinate-wise square ofε — denoted byε⊗ ε — can in turn be used to approxi-
materelationson S by means of rough sets. Thus, we have forρ a relation over a
setS:

(x, x′) ∈ aprε⊗ε(ρ)

iff for some(y, y′) ∈ S× S:
(
(x, x′), (y, y′)

) ∈ ε⊗ ε and (y, y′) ∈ ρ

iff for somey, y′ ∈ S: (x, y), (x′, y′) ∈ ε and (y, y′) ∈ ρ.

When no confusion is likely, we will denote the approximation operations on the rela-
tions ofS relative to the squares of an equivalence relationεX also byaprX andapr

X
.

I.e., we will write aprX(ρ) for aprεX⊗εX
(ρ).

The approximation operationaprX on relations does not in general preserve tran-
sitivity. For a counterexample one consider a base set of three elements{a,b, c}.
Let ρ be the smallest reflexive transitive relation on 2{a,b,c} containing(ø, {a}) and
({a, c} , {a,b}). Transitivity fails for the relationapr{a,b}(ρ). Observe in this respect
that both(ø, {a, c}) and ({a, c} , {a,b}) are inapr{a,b}(ρ). The latter becauseρ ⊆
apr{a,b}(ρ). For the former, observe that bothø ∼{a,b} and{a} ∼{a,b} {a, c}. As a
consequence also

(
(ø, {a}), (ø, {a, c})) ∈ ε{a,c}⊗ε{a,c}. Nevertheless,

(
ø, {a,b} )

/∈
apr{a,b}(ρ). In a similar fashion it can be shown that the upper approximation operation
does not preserve reflexivity.

Since, every relationρ (X) is transitive, witness Proposition 8.5.7, the set of bi-
sective relations is not closed under taking approximations. The following proposition,
however, establishes a general connection between bisective relations and their approx-
imations.

5In Preliminaries. Let{Si}i∈I be a family of sets. Let further for eachi ∈ I , ρi be a relation onSi . We
define thecoordinate-wise product,or the product relation, of{ρi}i∈I as the relationρ∗ on the generalized
Cartesian order over theSi such that for all~x,~y ∈ Q

i∈I Si :

(~x,~y) ∈ ρ∗ iff for all i ∈ I : (xi , yi) ∈ ρi .

Thecoordinate-wise squareρ⊗ρ of a relationρ onS is the coordinate-wise product relation ofρ with itself.
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x

y

Xz

Figure 8.8. Counterexample againstaprε⊗ε

`
ρ (X)

´ ⊆ ρ
`

aprε(X)
´
. Let the partition be given

by ε. Because(x, y) ∈ ρ (X), immediately also(x, y) ∈ aprε(ρ (X)). However,x ∈ aprε(X)
andy 6∈ aprε(X). Therefore,(x, y) 6∈ ρ (aprε(X)).

Proposition 8.5.8 Let ε be an equivalence relation on some set S andε⊗ ε its coor-
dinatewise square. Then for each X⊆ S:

ρ
(

aprε(X)
) ⊆ aprε⊗ε

(
ρ (X)

)

Proof: In caseX is empty, in general, bothapr(X) = apr(ø) = ø andρ (apr(X)) =
ρ (apr(ø)) = ρ (ø) = ø. Therefore, in particular, bothρ

(
aprε(X)

)
and

aprε⊗ε
(
ρ (X)

)
are empty, and we are done immediately. Hence, for the remainder

of the proof we may assumeX to be non-empty.
Assume(x, x′) ∈ ρ (aprε(X)). If also (x, x′) ∈ ρ (X), then(x, x′) ∈ aprε⊗ε(ρ (X))

follows immediately. So, assume that(x, x′) /∈ ρ (X). Then x ∈ X and x′ /∈ X.
Hence,x ∈ aprε(X), and having assumed that(x, x′) ∈ ρ (aprε(X)), alsox′ ∈ aprε(X).
Consequently there is anx′′ ∈ X such thatx′ ∼ε x′′. Then also(x, x′′) ∈ ρ (X). Since,
bothx ∼ x andx′ ∼ x′′, that(x, x′) ∈ aprε⊗ε(ρ (X)) follows, and we are done. a
The opposite inclusion, however, does not hold in general. For a counterexample,
consider a situation as pictured in Figure 8.8, in which there is a subsetX of Sand an
equivalence relationε such that there are some elementsx andy of Ssuch that neither
x nor y are inX. Let there further be an equivalence relationε with (x, z) ∈ ε for some
z in X and(y, z) ∈ ε for no zin X. Accordingly,x ∈ aprε(X) andY /∈ aprε(X). Then,
(x, y) ∈ aprε⊗ε(ρ (X)), because(x, y) ∈ ρ (X) andε ⊗ ε is reflexive. However,x is in
aprε(X), whereasy is not and, therefore,(x, y) /∈ ρ (aprε(X)).

We say a relationρ on 2A is of finite characterif and only if ρ is a fixed point
of the operationaprX on relations for somefinite subsetX of A, i.e., if there is some
finite X ⊆ A such thatρ = aprX(ρ) .We find that the bisective relations of finite charac-
ter on the set of valuations of a classical propositional languageL(A) coincide with the
relationsρ (ϕ), for formulasϕ of L(A). In analogy with Theorem 2.4.1 on page 53 we
have the following theorem. Recall thatR (A) denotes

{
ρ (ϕ) : ϕ a formula inL(A)

}
.
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Theorem 8.5.9 Let L(A) be a propositional language with A as propositional vari-
ables and S denote2A. For each finite subset B⊆ω A, let further Fix(aprB) be defined
as the set

{
ρ ∈ S× S : ρ is bisective andρ = aprB(ρ)

}
. Then:

R (A) =
⋃

B⊆ωA

Fix (aprB) .

Proof: First consider an arbitrary relationρ in R (A). Then there is some for-
mula ϕ of L(A) such thatρ = ρ (ϕ). By Proposition 8.5.7,ρ (ϕ) is bisective; we
show thataprA(ϕ)

(
ρ (ϕ)

)
= ρ (ϕ) proving that it is of finite character as well. As

ρ (ϕ) ⊆ aprA(ϕ)

(
ρ (ϕ)

)
is immediate, assume(x, y) ∈ aprA(ϕ)

(
ρ (ϕ)

)
. Then, there

arex′, y′ ∈ 2A such thatx ∼A(ϕ) x′, y ∼A(ϕ) y′ and (x′, y′) ∈ ρ (ϕ). Now assume
x ∈ [[ϕ]]. Then,x′ ∈ aprA(ϕ)([[ϕ]]) = [[ϕ]]. It follows thaty′ ∈ [[ϕ]] as well, and, hence,
y ∈ aprA(ϕ)([[ϕ]]) = [[ϕ]]. Therefore,(x, y) ∈ ρ (ϕ).

For the opposite direction, consider an arbitrary bisective relationρ of finite char-
acter. We may thus assume there to be a finite subsetB ⊆ω A such thatρ = aprB(ρ)
as well as a subsetX ⊆ 2A such thatρ = ρ (X). If X is empty, we haveρ = ρ (ø) =
ø = ρ (⊥). So, for the remainder of the proof, we may assumeX to be non-empty.
We prove thatX = aprB(X). Thenρ (X) = ρ (aprB(X)). In virtue of Corollary 2.4.2
on page 54 andB being finite, there is also a formulaϕ such that[[ϕ]] = aprB(X) and,
hence,ρ (X) = ρ (aprB(X)) = ρ (ϕ).

BecauseX ⊆ aprB(X) is immediate, we assumes ∈ aprB(X), for an arbitrarys
and prove thats ∈ X. Then there is somes′ such thats ∼B s′ ands′ ∈ X. It follows
that(s, s′) ∈ ρ (X). Moreover, sinces ∼B s′ and, trivially, boths′ ∼B s′ and(s′, s′) ∈
ρ (X), also(s′, s) ∈ aprB(ρ (X)). By the initial assumptions,aprB(ρ (X)) = ρ (X) and
therefore(s′, s) ∈ ρ (X). With s′ ∈ X, finally, we may conclude thats∈ X as well. a

The following corollary has a certain likeness with Corollary 2.4.2 on page 54
above, which characterized the extensions of the formulas ofL(A) in a much similar
way.

Corollary 8.5.10 Let L(A) be a classical propositional language. ThenR (A) coin-
cides with the set of bisective relations of finite character on2A, the set of valuations,
i.e.:

R (A) =
{

aprB(ρ (X)) : X ⊆ 2A and B⊆ω A
}
.

Proof: The inclusion ofR (A) in
{

aprB(ρ (X)) : X ⊆ 2A and B ⊆ω A
}

follows
immediate from Theorem 8.5.9. The inclusion in the opposite direction is an immediate
consequence ofaprB(ρ (X)) = aprB(aprB(ρ (X))), which is an instance of a rough set
law, and again Theorem 8.5.9. a
As another corollary we find that, for propositional languagesL(A) on afinite set of
propositional variables,R (A) is complete with respect to all bisective relations on 2A.

Corollary 8.5.11 Let A be a finite set of propositional variables on which L(A) is
defined. Then,R (A) is complete with respect to the bisective relations on2A.
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Proof: Immediate Theorem 8.5.10. a
The relation atheorydefines over the valuations, however, can be characterized as

the limit of thefinite approximations of a proto-order (i.e., an empty or reflexive and
transitive relation) over the valuations. With a finite approximation of a relation over
the valuations we mean here the approximation of that relation relative to the equiva-
lence relation defined over the valuations by a finite set of propositional variables, ie,
relative to the coordinate square of a relationεB whereB is a finite subset of proposi-
tional variables. First, we prove two preliminary facts.

Fact 8.5.12 Letρ be a relation over S. Assumeρ to be either reflexive and transitive
or empty. Then:

ρ = ρ
({↑ρ x : x ∈ S

})
.

Proof: First assume thatρ be empty. Then,↑ρ x = ø, for eachx ∈ S. Hence,
ρ

({↑ρ x : x ∈ S
})

= {ø} andρ ({ø}) = ρ (ø) = ø. So, for the remainder of the
proof we may assumeρ to be both reflexive and transitive.

First assume that(y, y′) ∈ ρ ({↑ x : x ∈ S}), for arbitraryy, y′ ∈ S. Then,y ∈ ↑ x
implies y′ ∈ ↑ x, for all x ∈ S. By reflexivity of ρ, we have(y, y) ∈ ρ, i.e., y ∈ ↑ y.
With y ∈ S, then alsoy′ ∈ ↑ y, i.e., (y, y′) ∈ ρ.

For the opposite direction, assume that(y, y′) ∈ ρ as well as thaty ∈ ↑ x, for an
arbitrary x ∈ S. Then, (x, y) ∈ ρ. By transitivity then also(x, y′) ∈ ρ, i.e., y′ ∈
↑ x. Therefore,(y, y′) ∈ ρ (↑ x), and withx having been chosen arbitrarily, eventually,
(y, y′) ∈ ρ ({↑ x : x ∈ S}). a

This fact has the following corollary, which says that the class consisting of the
reflexive and transitive relations over a set together with the empty relation can be
characterized as intersections of bisective relations.

Corollary 8.5.13 Letρ be a relation over some set S. Then:

ρ is either transitive and reflexive or empty iff for someX ⊆ 2S, ρ = ρ (X) .

Proof: The left-to-right direction is immediate by Fact 8.5.12. For the opposite direc-
tion, assumeρ = ρ (X), for someX ⊆ 2S. If X contains the empty setø, then

{
ρ (X) :

X ∈ X
}

containsρ (ø), i.e., the empty relation. Hence,ρ (X) =
⋂

X∈X ρ (X) = ø
and by the initial assumption,ρ is empty as well. So, henceforthX may be assumed
not to contain the empty set. By Fact 8.5.6,ρ (X) is both reflexive and transitive, for
eachX ∈ X. An easy check then establishes thatρ (X) =

⋂
X∈X ρ (X) is reflexive and

transitive as well. a
This result has as an immediate corollary that for a languageL(A) on afinite set of
propositional variables, the class consisting of the relationsρ (Γ ) for all theoriesΓ
in L(A) is also complete with respect to the reflexive and transitive and otherwise empty
relations over the valuations.
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Corollary 8.5.14 Let L(A) be propositional language on a finite set A of propositional
variables. Then:

ρ is either transitive and reflexive or empty iff for someΓ of L(A), ρ = ρ (Γ ) .

Proof: Immediately by the Corollaries 8.5.11 and 8.5.14. a
The relationsρ (Γ ), as defined by the theories of a languageL(A), however fail

to exhaust the set of reflexive and transitive, or otherwise empty relations over the
valuations ofL(A), if the setA of propositional variables is infinite. For, in any such
case, the subsets of valuations of languageL(A) outnumber its formulas and for some
X ⊆ 2A there is no formulaϕ in L(A) such that[[ϕ]] = X. We find that for any suchX,
there is no theoryΓ of L(A) such that relationρ ({X}) equals the relationρ (Γ ). To
appreciate this observe thatρ ({X}) = ρ (X) and assume for areductio ad absurdum
that there be someΓ such thatρ (X) = ρ (Γ ). Consider an arbitraryγ ∈ Γ . By choice
of X, thenX 6= [[γ]]. Moreover,ρ (X) ⊆ ρ (γ), for otherwiseρ (X) * ρ (γ), which
would be absurd becauseρ (Γ ) ⊆ ρ (γ). By Fact 8.5.4, then eitherX = ø or [[γ]] = 2A.
Since[[⊥]] = ø and⊥ is a formula ofL(A), the former cannot obtain by choice ofX.
Hence,[[γ]] = 2A and, consequently,ρ (γ) is the universal relation over the valuations.
With γ having been chosen arbitrarily and the initial assumption, it follows bothρ (Γ )
andρ (X) coincide with the universal relation as well. Hence,ρ (X) = ρ (>). This
however yields a contradiction, because, by Fact 8.5.1,X = [[>]] would follow, which
is absurd with> being a formula ofL(A).

As the next best thing, the following theorem characterizes the set of relations de-
fined over the valuations by the theories of a propositional language in the general
case.

Theorem 8.5.15 Letρ be a reflexive and transitive relation or the empty relation over
S, with S= 2A and A a set of propositional variables. Then:

ρ =
⋂

B⊆ωA

aprB(ρ) iff for some theoryΓ in L(A): ρ = ρ (Γ ).

Proof: If ρ is the empty relation, then so is any relationapr(ρ). Hence,ρ = ø =⋂
B⊆ωA aprB(ρ). Now observe that for the theory{⊥}, the relationρ ({⊥}) is empty

as well. Thus, for the remainder of the proof, we may assumeρ to be transitive and
reflexive.

For the left-to-right direction, assumeρ =
⋂

B⊆ωA aprB(ρ) and letX =df.
{↑ρ s :

s ∈ S
}

. (Henceforth in this proof we omit the subscriptρ in ↑ρ s.) By Corollary 2.4.2
on page 54 above, there is a formulaϕ such that[[ϕ]] = aprB(X), for eachX ∈ X and
each finiteB ⊆ω A. Now let:

Γ ∗ =df.

⋃
X∈X

{
ϕ : for someB ⊆ω A, [[ϕ]] = aprB(X)

}
.
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We prove thatρ = ρ (Γ ∗).
For the⊇-direction, assume an arbitrary pair(s, s′) to be inρ (Γ ). Consider an

arbitrary finite subsetB of A; we show that(s, s′) ∈ aprB(ρ). Also consider↑ρ s. Then,
there is someγ in Γ ∗ such that[[γ]] = aprB(↑ s). Since(s, s′) ∈ ρ (Θ), in particular
(s, s′) ∈ ρ (γ) and sos ∈ [[γ]] impliess′ ∈ [[γ]]. By reflexivity of ρ, trivially, s ∈ ↑ s
anda fortiori s ∈ aprB(↑ s) = [[γ]]. Hence, alsos′ ∈ [[γ]] = aprB(↑ s). I.e., for some
s′′ ∈ S, boths′ ∼B s′′ ands′′ ∈ ↑ s, i.e., (s, s′′) ∈ ρ. As trivially, s ∼B s, we may
conclude that(s, s′) ∈ aprB(ρ).

For the⊆-direction, observe that withρ reflexive and transitive and Fact 8.5.12 we
haveρ = ρ

({↑ s : s∈ S
})

. Hence:

ρ =
⋂

B⊆ωA

aprB(ρ) =
⋂

B⊆ωA

aprB
(
ρ

({↑ s : s∈ S
}))

.

Assume for arbitrary valuationss and s′ that (s, s′) /∈ ρ (Γ ∗). Hence, for some
γ ∈ Γ ∗, both s ∈ [[γ]] and s′ /∈ [[γ]]. By definition of Γ ∗, there is some finite
subsetB ⊆ω A and somes0 in S such that[[γ]] = aprB(↑ s0). Then, for all val-
uationss′′ such thats′ ∼B s′′, s′′ /∈ ↑ s0. Also, by transitivity ofεB, s′′′ ∈ ↑ s0,
for all valuationss′′′ with s ∼B s′′′. Hence, (s, s′) /∈ aprB(ρ (↑ s0)). Since
ρ

({↑ s : s∈ S
}) ⊆ ρ ({↑ s0}), we obtain(s, s′) /∈ aprB

(
ρ

({↑ s : s∈ S
}))

. Ac-
cordingly,(s, s′) /∈ ⋂

B⊆ωA aprB
(
ρ

({↑ s : s∈ S
}))

, i.e., (s, s′) /∈ ρ.
For the opposite direction assumeρ = ρ (Γ ) for some theoryΓ of L(A). Then

ρ ⊆ ⋂
B⊆ωA aprB(ρ) is immediate. Assume that(s, s′) /∈ ρ; we prove that(s, s′) /∈⋂

B⊆ωA aprB(ρ). In virtue of the assumption, there is someγ such thats ∈ [[γ]]
and s′ /∈ [[γ]]. Now consider the finite setA(γ). For arbitrary valuationss′′ and
s′′′ such thats ∼A(γ) s′′ and s′ ∼A(γ) s′′′, we haves′′ ∈ aprA(γ)([[γ]]) = [[γ]]
and s′′′ /∈ aprA(γ)([[γ]]) = [[γ]]. Therefore,(s′′, s′′′) /∈ ρ (γ). It follows that
(s, s′) /∈ aprA(γ)(ρ (γ)). As ρ (Γ ) ⊆ ρ (γ), alsoaprA(γ)(ρ (Γ )) ⊆ aprA(γ)(ρ (γ)).
Therefore,(s, s′) /∈ aprA(γ)(ρ (Γ )) anda fortiori (s, s′) /∈ ⋂

B⊆ωA aprB(ρ (Γ )). Hav-
ing assumed thatρ = ρ (Γ ), eventually(s, s′) /∈ ⋂

B⊆ωA aprB(ρ). a
Thus we find that the class of relations induced by theories of a propositional language
contains the empty relation as well as those partial preorders over the valuations that
can be considered the limit of their own finite approximations. Theorem 8.5.15 sets a
bound on the preference relations that can be expressed as a relationρ (Γ ) for some
propositional theoryΓ and, indirectly, demarcates the class of distributed evaluation
games from the more general class of games with 2A as set of strategy profiles.

Closure Conditions for Set-Induced Relations

In classical logic a theory may be closed under its consequences without affecting its
deductive properties. At a semantical level, this fact is reflected in that the extension of
a theoryΓ is identical to the extension of its closure under logical consequence,i.e., in
general[[Γ ]] = [[Cn(Γ )]].
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Figure 8.9. Three intersecting sets,X, Y andZ. A pair (x, y) is in the relationρ ({X,Y,Z})
the set of sets{X,Y,Z} defines over the universeS whenever one can reachy from y without
ever moving from an area to an area that is colored lighter.E.g., (x, y) ∈ ρ ({X,Y,Z}), for all
elementsx in area 1 andy in the darker colored area 5. But any element in area 2 and any element
in area 5 are incomparable with respect toρ ({X,Y,Z}). Some reflection reveals that closing the
set{X,Y,Z} under intersections and unions would not distort this relation.

The relations over the valuations induced by theories, however, are more sensi-
tive in this respect. In particular, it is not in general the case that the relationsρ (Γ )
and ρ (Cn(Γ )) are identical. For an easy counterexample consider a propositional
language containing the propositional variablesa and b. Obviously we havea ∨
b ∈ Cn({a}). For the valuationsø and {b} clearly ({b} ,ø) ∈ ρ ({a}). How-
ever, ({b} ,ø) /∈ ρ ({a,a∨ b}), because{b} ° a ∨ b but ø 1 a ∨ b. Hence,
({b} ,ø) /∈ ρ (a∨ b). The same argument holds forρ0. It is obvious, however, that a
theoryΓ may generally be closed under formulas that arelogically equivalentin the
classical sense without affectingρ (Γ ).

At a set-theoretic level, a set of setsX cannot in general be closed under supersets
without affecting the relationρ (X). On the other hand, different sets of sets may very
well induce the same relation on a universe,i.e., ρ (X) andρ (Y) may be identical even
if X andY are distinct. This subsection aims at making precise the conditions on sets
of setsX andY that have to be satisfied for the relationsρ (X) andρ (Y) to be identical.
Closure conditions on theories that preserve relations induced by theories then follow
as a matter of course. We find that relationsρ0 (X) are slightly better behaved than
relationsρ (X) and, therefore, we will focus on the former first.

As an example of monotonicity,ρ0 ({X,Y}) includesρ0 ({X,Y,X ∩ Y,X ∪ Y}).
The opposite inclusion, however, also holds in general. For a generalization of this
fact, define forX a set of subsets of a setS:

X∪ =df.
{ ⋃

X′ : X′ ⊆ X
}

X∩ =df.
{ ⋂

X′ : X′ ⊆ X
}
.

The following proposition says in effect that, for any set of setsX, relationρ0 (X) is
invariant under taking arbitrary intersections as well as under taking arbitrary unions.

Proposition 8.5.16 Let X and Y be sets of subsets of a set S such thatX ⊆ Y ⊆
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X∪ ∪ X∩. Thenρ0 (X) = ρ0 (Y).

Proof: By monotonicity immediatelyρ0 (Y) ⊆ ρ0 (X). Therefore, it suffices to prove
thatρ0 (X) ⊆ ρ0 (Y). Consider arbitraryx, x′ ∈ Ssuch that(x, x′) ∈ ρ0 (X). Consider,
furthermore, an arbitraryY ∈ Y and assume thatx ∈ Y. We prove thatx′ ∈ Y.
EitherY =

⋂
X′ or Y =

⋃
X′, for someX′ ⊆ X. Consider thisX′. In the former case,

consider an arbitraryX ∈ X′. Then bothX ∈ X andx ∈ X. Since(x, x′) ∈ ρ0 (X), in
particular(x, x′) ∈ ρ0(X). Hence,x′ ∈ X. With X having been chosen as an arbitrary
element ofX′, finally x ∈ ⋂

X′, and we may conclude thatx ∈ Y.
In the latter case —i.e., if Y =

⋃
X′ — we havex ∈ X, for someX ∈ X′.

As X′ ⊆ X, alsoX ∈ X and with(x, x′) ∈ ρ0 (X), in particular(x, x′) ∈ ρ0(X). It
follows thatx′ ∈ X and, subsequently,x′ ∈ ⋃

X′, i.e., x′ ∈ Y. a

Corollary 8.5.17 Let X and Y be sets of subsets of a set S. ThenX ⊆ Y ⊆ X∪∩

impliesρ0 (X) = ρ0 (Y). Similarly, if X ⊆ Y ⊆ X∩∪ thenρ0 (X) = ρ0 (Y).

Proof: In virtue of monotonicity it suffices to show thatρ0 (X) = ρ0 (X∪∩) and
that ρ0 (X) = ρ0 (X∩∪). Evidently, X ⊆ X∩ as well asX∩ ⊆ X∩∪. With
Proposition 8.5.16,ρ0 (X) = ρ0 (X∩). And again with Proposition 8.5.16, also,
ρ0 (X∩) = ρ0 (X∩∪). Hence,ρ0 (X) = ρ0 (X∩∪). The proof forρ0 (X) = ρ0 (X∩∪)
is fully analogous. a
For relations induced by a theory over a set of valuations, this corollary means that a
theoryΓ may be closed under arbitrary conjunctions and disjunctions without affecting
the relationρ0(Γ ).

The ground has now been cleared to formulate exact conditions under which the
relationsρ0 (X) andρ0 (Y) are identical, for possibly distinct sets of setsX andY.

Proposition 8.5.18 LetX andY be sets of subsets of a set S. Then:

ρ0 (X) = ρ0 (Y) iff X∩∪ = Y∩∪.

Proof: For the right-to-left direction, observe thatX∩∪ = Y∩∪ immediately im-
plies ρ0 (X∩∪) = ρ0 (Y∩∪). Since, by Corollary 8.5.17, bothρ0 (X∩∪) = ρ0 (X)
andρ0 (X∩∪) = ρ0 (X), we are done.

The left-to-right direction is less straightforward. Assume the contrapositive
X∩∪ 6= Y∩∪. Without loss of generality we may assume there be anX ⊆ S such
that X ∈ X∩∪ and X /∈ Y∩∪. Consider thisX. Observe that triviallyø ⊆ Y∩

and
⋃

ø = ø. Hence,ø ∈ Y∩∪. Moreover, sinceø ⊆ Y and
⋂

ø = S, bothS∈ Y∩

and{S} ⊆ Y∩. Since
⋃ {S} = S, alsoS ∈ Y∩∪. It follows thatX 6= ø andX 6= S.

Now consider the setY∗, defined as:

Y∗ =df.
{

Y ∈ Y∩ : Y ⊆ X
}
.
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Clearly,
⋃

Y∗ ∈ Y∩∪ and
⋃

Y∗ ⊆ X. Due to the assumption thatX /∈ Y∩∪, how-
ever,X 6= ⋃

Y∗. Hence, there is somex∗ ∈ X such thatx∗ /∈ ⋃
Y∗. Consider thisx∗.

We prove that anx in Sexists such that is not contained inX and for which it is more-
over the case that, for allY ∈ Y, x ∈ Y, if x∗ ∈ Y as well.I.e.:

(∗) there is ax /∈ X such that for allY ∈ Y : x∗ ∈ Y impliesx ∈ Y.

This suffices because, withx∗ ∈ X then(x∗, x) /∈ ρ0(X). Then(x∗, x) /∈ ρ0 (X∩∪), be-
causeX had been assumed to be inρ0 (X∩∪). With Corollary 8.5.17, thenρ0 (X∩∪) =
ρ0 (X) and (x∗, x) /∈ ρ0 (X) follows. Moreover, also(x∗, x) ∈ ρ0(Y), for eachY ∈ X.
Hence(x∗, x) ∈ ρ0 (Y), which would prove the proposition.

We prove(∗) by areductio ad absurdum. So assume:

(∗∗) for all x /∈ X there is aY ∈ Y such that bothx /∈ Y andx∗ ∈ Y.

Then, consider the setY∗∗, defined as:

Y∗∗ =df.

⋃
x/∈X

{
Y ∈ Y : x /∈ Y andx∗ ∈ Y

}
.

By (∗∗) and the fact thatX 6= S, we haveY∗∗ 6= ø. Obviously,Y∗∗ ⊆ Y and so⋂
Y∗∗ ∈ Y∩. By construction,x∗ ∈ ⋂

Y∗∗. Moreover, by construction and (∗∗), also⋂
Z∗∗ ⊆ X. It would follow that

⋂
Y∗∗ ∈ Y∗ as well as thatx∗ ∈ ⋃

Y∗, quod non. a
Corollary 8.5.17 has as a special case thatρ0 (X) = ρ0 (X∩∪), which signifies that

closing a set of subsetsX under arbitrary intersections and then arbitrary unions does
not affect the relation induced on the universe. As a corollary of Proposition 8.5.18 we
now find, moreover, thatX∩∪ is also maximal in this respect,i.e., thatX can not be
extended beyondX∩∪ without distorting the relationρ0 (X).

Corollary 8.5.19 Let X andY be sets of subsets of S. Then:

ρ0 (X∩∪) = ρ0 (X∩∪ ∪ Y) iff Y ⊆ X∩∪.

Proof: From right to left the proof is trivial. So assume thatρ0 (X∩∪) =
ρ0 (X∩∪ ∪ Y). It can easily be verified thatX ∪ Y ⊆ X∩∪ ∪ Y ⊆ (X ∪ Y) ∩∪. By
Proposition 8.5.16, then,ρ0 (X ∪ Y) = ρ0 (X∩∪ ∪ Y). In virtue of the same propo-
sition, alsoρ0 (X) = ρ0 (X∩∪). With the initial assumption then it follows that
ρ0 (X) = ρ0 (X ∪ Y). Proposition 8.5.18 then givesX∩∪ = (X ∪ Y) ∩∪. Because,
X∩∪ ∪ Y ⊆ (X ∪ Y) ∩∪, thenX∩∪ ∪ Y ⊆ X∩∪. We may conclude thatY ⊆ X∩∪. a

Similar results can be obtained for relationsρ (X) induced by sets of setsX. Un-
fortunately, things are not as neat as forρ0 (X). Becauseρ (X) andρ0 (X) are distinct
only if X contains the empty set (Proposition 8.5.2), Proposition 8.5.18 also has the
following corollary forρ (X).

Corollary 8.5.20 Let X andY be sets of subsets of a set S. Then:

ρ (X) = ρ (Y) iff X∩∪ = Y∩∪ or ø ∈ X ∩ Y.
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Proof: Immediately by the Facts 8.5.2 and 8.5.3 together with Proposition 8.5.18.

It is, however, not in general the case that forX not containing the empty set the rela-
tionsρ (X) andρ (X∩∪) coincide. Observe in this respect thatX∩ always contains the
empty set, since

⋃
ø = ø andø ⊆ X. Moreover,ρ (X) need not be the empty relation,

not even ifX contains disjoint sets. In any such case, however,X∩ will contain the
empty set andρ (X∩) will also end up empty. In order to obtain the desired closure
properties, define forX a set of subsets of a setS:

Xt =df.
{ ⋃

X′ : X′ ⊆ X andX′ 6= ø
}

Xu =df. X ∪ { ⋂
X′ : X′ ⊆ X and

⋂
X′ 6= ø

}
.

The idea behind these definitions is essentially the same as those ofX∪ andX∩, be it
that they prevent the empty set to be included inXt or Yu if, and only if, X does not
conclude the empty set. It is therefore not surprising thatXt andXu are in extension
very similar to X∪ andX∩, respectively.

Fact 8.5.21 For X a set of subsets of some set S:

Xt =

{
X∪ − {ø} if ø /∈ X,

X∪ otherwise
Xu =

{
X∩ − {ø} if ø /∈ X,

X∩ otherwise.

Proof: For the first case, first assumeø /∈ X. Observe thatø /∈ Xt. For, assuming
otherwise would thatø =

⋃
X′ for some non-emptyX′ ⊆ X. This would imply

thatX′ = {ø} and henceø ∈ X, quod non. Hence,Xt ⊆ X∪ − {ø} and it suffices to
prove the opposite inclusion. Consider an arbitraryX ∈ X∪ − {ø}. Then,X 6= ø and
X =

⋃
X′ for someX′ ⊆ X. Moreover,X′ 6= ø by assumption, and so

⋂
X′ = X ∈ Xt.

Second, assume thatø ∈ X. Observe that trivially,Xt ⊆ X∪. Hence it suffices to prove
the opposite inclusion. Consider an arbitraryX ∈ X∪. If X = ø, observe that by the
assumption{ø} ⊆ X. Since{ø} 6= ø, it follows that

⋃ {ø} = ø ∈ Xt. In caseX 6= ø
the proof is like the case in whichø /∈ X.

For the second case, first assume thatø /∈ X. Some reflection on the definitions
reveals that thenø /∈ Xu and alsoXu ⊆ X∩ − {ø}. Proving the opposite inclusion,
consider an arbitraryX ∈ X∩ − {ø}. Then,X =

⋂
X′ for someX′ ⊆ X. It follows

that
⋂

X′ 6= ø and so
⋂

X′ = X ∈ Xu. Finally, letø ∈ X and observe thatXu ⊆ X∩.
Hence, consider an arbitraryX ∈ X∩. If X = ø, we are done immediately by the
assumption thatø ∈ X. Otherwise, the reasoning is like the case in whichø /∈ X. a
On basis of this fact and employing Proposition 8.5.16 the following closure properties
for ρ (X) are obtained.

Proposition 8.5.22 Let X and Y be sets of subsets of a set S such thatX ⊆ Y ⊆
Xt ∪ Xu. Then,ρ (X) = ρ (Y).
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Proof: First assumeø ∈ Y. Then,ø ∈ Xu or ø ∈ Xt. In either case,ø ∈ X, by
Fact 8.5.21. Then,ρ (X) = ø = ρ (Y). So, for the remainder of the proof we may
assume thatø /∈ Y. Then,ø /∈ X and in virtue of Fact 8.5.21 bothXt = X∪ and
Xu = X∩. HenceX ⊆ Y ⊆ X∪∪X∩ and by Proposition 8.5.16, thenρ0 (X) = ρ0 (Y).
With the assumption thatø /∈ X and Fact 8.5.2,ρ (X) = ρ0 (X) andρ (Y) = ρ0 (Y)
and we may conclude thatρ (Y) = ρ (X). a
As corollaries of Proposition 8.5.22 we find that a theoryΓ may be closed under dis-
junctions andconsistentconjunctions without this having consequences for the relation
induced on the valuations.

Corollary 8.5.23 Let Γ be a theory in a propositional language L(A) Let ϕ andψ
be formulas inΓ . Then,ρ (Γ ) = ρ (Γ ∪ {ϕ ∨ ψ}) . Moreover, if{ϕ,ψ} is classically
satisfiable, then alsoρ (Γ ) = ρ

(
Γ ∪ {

ϕ ∧ ψ})
.

Proof: Immediately by Proposition 8.5.22. a

8.6 Conclusion

It becomes natural to conceive of the valuations of a propositional language as strategy
profiles of some strategic game, if the control over the values of the propositional vari-
ables is distributed over different agents. From a game-theoretical perspective, there
seems little reason to confine one’s attention merely to games involving two antago-
nists. In the general case, control over the propositional variables may be distributed
over any number of players.

Holding on to the principle of players as verifiers of a theory, the notion of relative
logical strength can be invoked to fix the preferences of the players over the valua-
tions. The general idea is that a player prefers a valuation to another if it satisfies
a logically stronger subtheory of the theory he aims to verify than the other. Thus
the players’ preferences acquire a more gradated structure than those of the previous
chapter. There they merely distinguished valuations that satisfy the whole theory from
those that do not. The additional structure afforded thus, moreover, sustains the use of
game-theoretical solution concepts in the selection of socially conspicuous valuations.

These considerations were the makings of the concept of a distributed evaluation
game in this chapter. The next chapter they will be put to work. The issue we will be
concerned with can informally be formulated as follows.Which conclusions to draw
from a family of theories, given that for each of these theories there is a player with
control over a set of propositional variables who seeks to satisfy his theory as well as he
can by choosing appropriate values for the variables in his control?This is a logical
problem phrased in game-theoretical terms and distributed evaluation games provide
the game-theoretical structure needed for our proposal as to its resolution.





Chapter 9

Game-theoretical Consequence

9.1 Introduction

In their Theory of Games and Economic Behaviorvon Neumann and Morgenstern ar-
gued that situations of conflicting interests present a problem that had been “nowhere
dealt with in classical mathematics” (von Neumann and Morgenstern (1944), p. 11).
They maintained that, due to its interactive nature, a conflict situation could not be
analyzed as a traditional optimization or decision problem. Rather, it is a “peculiar
and disconcerting mixture of several maximum problems” (ibid., p. 11). An opti-
mization or decision problem for an individual can be represented formally as a func-
tion f (x̂0, . . . , x̂n). The individual’s predicament is then to choose values for the vari-
ablesx0, . . . , xn so as to maximize the value off (x̂0, . . . , x̂n). The variables on which
the function depends are regarded as decision variables that are in the control of the in-
dividual. Pursuing this conceptualization, a situation of conflict could in similar terms
be understood as acollectionof functionsgi (x̂0, . . . , x̂n), each one of which one of the
participants tries to maximize by choosing suitable values for the variables in a way
that furthers his idiosyncratic interests. Moreover, the variables on which these func-
tions depend may overlap and the parties involved may have control over only some
of the relevant variables. This makes that the optimal choices for an individual’s vari-
ables, from his perspective, may be dependent on the very choices the other participants
make in their effort to maximize their functions from their respective points of view.
The issue may thus evoke a sense of immanent circularity.

The variety of interests as well as their interdependence make that there is no uni-
vocal principle as to what to consider a reasonable solution of a situation of conflict.
Traditional notions of optimality were thought to be no longer adequate for such prob-
lems and new mathematical notions —viz., game-theoretical solution concepts — had
to be developed to take over their role (ibid., page 39, also compare the introduction to
this thesis). In non-cooperative settings Nash equilibrium is archetypical in this respect.

Having distinguished optimization problems and game-theoretical problems thus,

215
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the satisfiability problem for Classical Propositional Logic (CPC) could be classified as
an optimization problem with respect to truth. A formula — or a theory, for that matter
— is thought of as a function in the propositional variables that can take one of two
values, true or false. The issue is then to choose values for the propositional variables, if
that is possible, so as to satisfy the formula in question. Classical logical consequence
can be understood in similar deliberative terms: a formulaϕ follows from a collection
of premissesΓ if and only if, each choice for the truth values of the propositional
variables (henceforth avaluation) that succeeds in satisfying all formulas inΓ , is a
choice that makesϕ hold as well.

As in this formulation there is present a definite element of choice with respect to
the possible truth-assignments, we come to think of propositional variables as binary
decision variables that are somehow controllable. The accompanying image of a log-
ical possibility is that of a situation that obtains as the result of the decisions of an
individual, rather than that of an unalterable state of affairs. This is the very view that
was taken in the previous chapters of this thesis. In line with this, it also becomes nat-
ural to consider the case in which control over the propositional variables is distributed
over multiple agents. Logical space then assumes a game-theoretical aspect with the
valuations as strategy profiles. Pursuing this line of thought, each of the agents could
be bestowed his own satisfiability problem,i.e., a theory to satisfy.

In analogy with the relation between optimization and game-theoretical problems,
these considerations give rise to the following issue, which can be regarded as the
game-theoretical counterpart of the classical problem of logical consequence.Which
conclusions is one to draw from a family of theories, given that, for each of these
theories, there is a player who controls a (disjoint) set of propositional variables and
who seeks to satisfy his theory as well as he can by choosing appropriate values for
the variables in his control?This is a logical question, at the basis of which there is a
game-theoretical problem. For its resolution we resort to the game-theoretical notion
of amaximum equilibrium, introduced on page 28 of this thesis.

In the previous chapter we saw how each particular distribution of the propositional
variablesπ and each particular familyΓπ of theories define a unique strategic game,
viz., the correspondingdistributed evaluation gamegiven byG(Γπ). We propose to
consider as the consequences of the family and the distribution, those formulas that
are satisfied in maximum equilibria of the accompanying game. This defines a game-
theoretical concept of consequence, which conservatively extends to a concept of con-
sequence that relates pairs of families of theories. The following example illustrates
the intuitions behind these considerations.

Example 9.1.1 Consider a situation involving the propositional languageL({a,b})
with only two variables,a and b. Let π be the partition

{{a} , {b}} of this set of
variables. Suppose further that the player with control overb wishes to satisfya∧ ¬b
and that the player with control overb desires the formula¬(a ∨ b) to be true. The
matrix of the ensuing distributed evaluation game is depicted in Figure 9.1. There
are two maximum equilibria,viz., the valuations{a} and {a,b}. Sincea satisfied
by both equilibria,i.e., in both the valuations{a} and{a,b}, we find that,e.g., a is
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ø {b}
1 0

ø
0 0

0 0
{a}

1 0

Figure 9.1. The row player has control overa, and the column player assigns values tob. The
numerical values merely represent theordinal structure of the players’ preferences. The two
maximum equilibria are in boldface. Both satisfya.

a game-theoretical consequence of
{{a∧ ¬b}{a} , {¬(a∨ b)}{b}

}
. However,b does

not follow game-theoretically because it not satisfied by the valuation{a}, although
the latter is an equilibrium.

The distributed evaluation game imposes a game-theoretical structure on logical
space for game-theoretical consequence in a similar way as the set of extensions of the
formulas a theory consists of imposes a set-theoretical structure on the set of valua-
tions in a classical setting. By means of a solution concept particular valuations can
then be distinguished from others and investigated with respect to the formulas and
theories they satisfy. The function of the solution concept, here maximum equilibrium,
can thus be compared to that of the set-theoretic operation of intersection: singling
out particular valuations on the basis of the structures induced by theories on logical
space (cf., Figure 9.2). The image these reflections are meant to evoke is that of a com-
mon pattern in which theories define a structure over the set of valuations and relative
to which particular valuations are singled out as the more significant ones and stud-
ied with respect to,e.g., the formulas and theories they satisfy. Commonly, it is the
valuations that are in, a specified sense, optimal with respect to this structure that are
semantically relevant in this way.E.g., the extension[[Γ ]] or the maximum valuations
in the relationρ (Γ ) for classical logic, the most normal worlds within the information
set relative to an expectation pattern for Veltman’s update semantics for defaults (cf.,
Section 8.3), and the maximum equilibria for game-theoretical consequence.

The additional structure of distributed evaluation games makes that the logical con-
cept of game-theoretical consequence does sufficient justice to the interactive and in-
terdependent nature of the underlying game-theoretical issues. In a conflict situation,
a player may have to decide in the face of the possibility that whether he can achieve
a most preferred outcome may depend on the choices of the other players. This con-
tingency need not leave the player at a loss — nor the game-theorist examining the
game from the outside. A particular choice of action may thus guarantee a player an
optimal outcome relative to each possible choice of action of the opponents, without
guaranteeing a most preferred outcome in all cases. For each course of action a player’s
opponents may decide upon, there is a set of outcomes that are still possible. The out-
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X

[[ϕ]]

Figure 9.2. Let X be a set of valuations. IfX coincides with[[Γ ]] the formulaϕ is a classical
consequence ofΓ , because of the inclusion ofX in [[ϕ]]. If, however, the valuations are looked
upon as the strategy profiles of some game,X could,e.g., have been singled out the set of the
maximum equilibria of a distributed evaluation gameG

`{Γi}i∈π

´
. Then,ϕ is said to be agame-

theoretical consequenceof {Γi}i∈π.

comes relevant for determining the maximum equilibria of a game are those that are
optimal relative to the player’s preferences within any such set, rather than those most
preferred by a player within the whole set of outcomes.

9.2 Defining Game-Theoretical Consequence

The purport of the previous section is that game-theoretical consequence can be re-
garded as the game-theoretical counterpart of classical logical consequence, if the lat-
ter is understood in decision theoretical terms. We suggested to consider as game-
theoretical consequences of a family of theoriesΓπ indexed by a partitionπ of the
propositional variables those formulas that hold in all maximum equilibria of the dis-
tributed evaluation gameG(Γπ). In this section we give a precise definition.

Just as the notion of classical consequence that relates theories and formulas ex-
tends to a relation between theories, the concept of game-theoretical consequence can
conservatively be extended to a relation that connects families of theories. On a se-
mantical level this extended relation of game-theoretical consequence compares the
maximum equilibria of two distributed evaluation games. With each family of the-
ories Γπ we associatetwo games:G(Γπ) as well asG(Γπ). Recall that the latter
game is basically identical to the former, be it that the preferences of each playeri
are given byρ̄ (Γ i) — i.e., by the relationρ ({¬γ : γ ∈ Γi}) — rather than byρ (Γ i)
(cf., page 193, above). This provides us with the appropriate dual notions to define
game-theoretical consequence. Throughout this chapter, we will assume that the set of
propositional variables of the propositional languages considered is not empty.

Definition 9.2.1 (Game-theoretical consequence)For partitionsπ andπ′ of a set of
propositional variablesA and families of theoriesΓπ andΘπ′ of a propositional lan-
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guageL(A), define:

Γπ ² Θπ′

iff

no maximum equilibrium ofG(Γπ) is a maximum equilibrium ofG(Θπ′).

For any pairπ andπ′ of partitions ofA, we denote byΛπ,π′ the binary relation defined
as

{
(Γπ,Θπ′) : Γπ ² Θπ′

}
. The set{Λπ,π′ : π, π′ ∈ Part(A)} we denote byΛA,

omitting the subscript when clear from the context.

Observe that this definition is quite in line with the truth-theoretical characterization of
classical consequence. The standard semantics for classical propositional logic com-
pares the intersection of the extensions of the formulas in the one theory with the union
of the extensions of the formulas in the other theory with respect to set inclusion. Due
to the duality of union and intersection, this warrants a well balanced and symmetric
system as exemplified by its sound and complete sequent calculi. In the definition of
game-theoretic consequence duality is likewise the guiding principle. Observe that a
theoryΘ follows classically from a theoryΓ if and only if no valuation that is in the
extension ofΓ is in the extension of

{¬ϑ : ϑ ∈ Θ
}

, witness the following equalities:

〈〈Θ 〉〉 =
⋃ {

[[ϑ]] : ϑ ∈ Θ
}

=
⋂ {

[[ϑ]] : ϑ ∈ Θ
}

=
[[{¬ϑ : ϑ ∈ Θ

}]]
,

Hence, also:

[[Γ ]] ⊆ 〈〈Θ 〉〉 iff [[Γ ]] ⊆ [[ {¬ϑ : ϑ ∈ Θ} ]]
iff [[Γ ]] ∩ [[ {¬ϑ : ϑ ∈ Θ} ]]

= ø.

However cumbersome, this paraphrasis of the semantical characterizition of classi-
cal consequence exposes its structural similarity with the formal definition of game-
theoretical consequence.

For an example of the workings of this definition the reader consult Figure 7.1
on page 159, which shows that

{ {a}{a} , {a∧ b}{b}
}

²
{ {a∧ b}{a} , {a}{b}

}
, as

well as
{ {a}{a} , {a∧ b}{b}

}
²

{ {b → a}{a} , {a∧ ¬b}{b}
}

. Figure 9.3 provides
a slightly more complicated example, in which two distributed evaluation games are
compared that differ in the assignment of the propositional variables to the players.

In the remainder this chapter concerns this game-theoretical consequence relation
as based on maximum equilibrium. In the next section we will investigate how it be-
haves with respect to various structural and logical properties such as monotony, re-
flexivity and cut. In this context its relation with classical propositional logic will
come to be scrutinized as well. We also give a set-theoretical characterization of game-
theoretical consequence using the machinery provided by rough sets.

9.3 Structural Properties

In Section 2.3, above, we introduced a propositional logic as a pair consisting of a lan-
guageL(A) on a set of propositional variablesA and a consequence relation connecting
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Figure 9.3. In the game on the left the preferences of the row player has control overa andb
and entertains preferences that are captured by the formulasa ↔ c andb ∧ d. The preferences
of the column player, who has control overc andd, are summarized by the formulas(a∨ b)∧ c
andb ↔ d. The payoff entries indicate the ordinal preferences assuming the product order-
ing over the strings00, 01, 10 and11, i.e., 11 and00 are top and bottom, respectively, and01
and10 mutually incomparable. The matrix on the right depicts the distributed evaluation game
G

`˘ {a ↔ b, c∧ d}{a,c} , {¬ (a∨ c) ∧ b, c ↔ d}{b,d}
¯´

. The valuation{a, c} (indicated by
the number six in the right-bottom corner) is a maximum equilibrium in both games, and there-
fore

˘ {a ↔ b, c∧ d}{a,c} , {¬ (a∨ c) ∧ b, c ↔ d}{b,d}
¯

does not follow game-theoretically

from
˘ {a ↔ c, b∧ d}{a,b} , {(a∨ b) ∧ c, b ↔ d}{c,d}

¯
.

theories ofL(A). Game-theoretical consequence, by contrast, is defined between fam-
ilies of theories. This reflects exactly the disparity in the distributed and interactive
nature of the problem underlying game-theoretical consequence and the decision theo-
retical character of the one at the basis of classical consequence.

We propose to extend the formal notion of a propositional logic for a propositional
languageL(A) as consequence relation defined over the families of theories ofL(A)
indexed by partitions ofA. Although this might seem a radical departure from the
original notion of a propositional logic, it is rather meant to conservatively extend it.
Made explicit in this manner, the concept of control over propositional variables is
rendered amenable to logical analysis.

Classical propositional logic reappears under a guise. The following proposition es-
tablishes game-theoretical consequence as a conservative extension of classical propo-
sitional logic. Intuitively, it says that the game-theoretical problem of consequence
reduces to that of classical consequence if there is only one player who wields control
over all propositional variables.
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Proposition 9.3.1 LetΓ andΘ be theories of a propositional language L(A). Then:

{ΓA} ² {ΘA} iff Γ `CPCΘ.

Proof: Since, in bothG({ΓA}) andG({ΘA}) in either game there is one player, here
denoted byA, who has control over the full set of propositional variables. Accordingly,
the set of maximum responses of playerA is identical to the set of maximum equilibria
in both games. Hence, in virtue of Proposition 8.2.3, it suffices to prove that the set of
maximum responses of these players inG({ΓA}) and those inG({ΘA}) coincide with
the sets of maximum elements ofρ (ΓA) andρ̄ (ΘA), respectively. First observe that
for any two valuationssands′:

(s−A, s
′
A) =

(
s∩ A

) ∪ (s′ ∩ A) = ø ∪ s′ = s′.

Consequently, for any valuationswe may reason as follows:

s∈ max(ρ (ΓA)) iff for all s′ : (s′, s) ∈ ρ (ΓA)

iff for all s′ :
(
(s−A, s′A), s

) ∈ ρ (ΓA)

iff s is a maximum response forA in G({ΓA}).
In a similar fashion we can demonstrate thats ∈ max(ρ̄ (ΘA)) if and only if s is a
maximum response forA in G({ΘA}). a
The next proposition also connects game-theoretical consequence and classical propo-
sitional logic. It guarantees the extrapolation of negative facts about the former to the
latter.

Proposition 9.3.2 Letπ andπ′ be partitions of a set of propositional variables A and
let Γπ andΘπ′ be families of theories in L(A). Then:

Γπ ² Θπ′ implies
⋃
i∈π

Γ i `CPC
⋃
i∈π′

Θi .

Proof: It suffices to show that
⋂

i∈π [[Γi ]] is included in the set of maximum equilibria
of G(Γπ) and that the every valuations that isnot a maximum equilibrium inG(Θπ′)
is included in

⋃
i∈π′ 〈〈Θi 〉〉 . Both claims follow from Proposition 8.4.5, the former im-

mediately, the latter by some additional but straightforward set-theoretical reasoning.
a

In the opposite direction, the proposition does not hold in general. If some trivializing
requirements are met, however, it does. The idea behind the next result is that if each
of the players have control over all propositional variables on which the formulas of
the theories representing their respective preferences depend, then the they can each
achieve their individual ends independently of the decisions the other players make.
In any such case there is no interesting interaction between the players. Each of them
lives and acts as it were in his own compartment of the world demarcated by the propo-
sitional variables he controls.
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Proposition 9.3.3 Letπ andπ′ be partitions of a set of propositional variables A and
let Γπ andΘπ′ be families of theories in L(A). Assume thatA(γ) ⊆ i, for all πi ∈ π
and allγ ∈ Γ i , and thatA(ϑ) ⊆ πi , for all i ∈ π′ and allϑ ∈ Θi . Then:⋃

i∈π
Γ i `CPC

⋃
i∈π′

Θi iff Γπ ² Θπ′ .

Proof: The right-to-left direction is dealt with by Proposition 9.3.2. For the opposite
direction, we reason as follows.

If
⋃

i∈π Γ i contains a contradiction,
⋃

i∈π Γ i `CPC ⋃
i∈π′ Θi holds trivially.

In this case it is equally trivial that the gameG(Γπ) has no maximum equilib-
ria, as

⋂
i∈π ρ (Γ i) = ø. Similarly, if

⋃
i∈π′ Θi contains a tautology, then also⋃

i∈π Γ i `CPC ⋃
i∈π′ Θi . Observe that̄ρ (ϕ) is the empty relation for tautologiesϕ,

and hence the gameG(Θπ′) has no maximum equilibria. Accordingly, also in this
case,Γπ ² Θπ′ . So, for the remainder of the proof we may assume

⋃
i∈π Γ i to contain

no contradictions and
⋃

i∈π′ Θi no tautologies.
Assume

⋃
i∈π Γ i `CPC ⋃

i∈π′ Θi . Assume further an arbitrary valuations to be
a maximum equilibrium ofG(Γπ). First observe that nows ° γ for all γ ∈ Γ i for
all i ∈ π. To appreciate this consider an arbitraryi ∈ π and an equally arbitraryγ ∈ Γ i .
In virtue of the opening remarks of this proof we may assume there to be a valuations′

such thats′ ° γ. Now consider the valuation(s−i , s′i ). By definition(s−i , s′i ) ∼i s′ and
with A(γ) ⊆ πi , we also have that(s−i , s′i ) ° γ. Moreover, withs being a maximum
equilibrium, in particular

(
(s−i , s′i ), s

) ∈ ρ (γ). Hence,s ° γ, and withi andγ having
been chosen arbitrarily, alsos °

⋃
i∈π Γ i .

By the assumption, then, there is ani ∈ π′ as well as aϑ ∈ Θi such thats ° ϑ.
Since we could assumeϑ to be no tautology, there is some valuations′ such thats′ 1 ϑ.
Now consider the valuation(s−i , s′i ). Recall that we had assumed thatA(ϑ) ⊆ πi , and
observing that(s−i , s′i ) ∼i s′ gives us(s−i , s′i ) 1 ϑ. Hence,

(
(s−i , s′i ), s

)
/∈ ρ̄ (ϑ).

Eventually, we may conclude thats is no maximum equilibrium of the gameG(Θπ′)
and withshaving been chosen as an arbitrary maximum equilibrium inG(Γπ), we are
done. a
Observe that since the setA(ϕ) of propositional variables on which the interpretation
of the formulaϕ depends is trivially a subset of the set of all propositional variables,
Proposition 9.3.1 can also be obtained as a special case of Proposition 9.3.3.

Proposition 9.3.1, above, has as an immediate consequence that game-theoretical
consequence is consistent in the sense that not every family of theories follows from
any other. For one, since classicallyø 0CPC ø, we have game-theoretically{øA} 2
{øA}. In a similar fashion Proposition 9.3.2 implies that each of the relationsΛπ,π′ is
consistent as well.

Proposition 9.3.4 (Consistency) For L(A) a propositional language, letπ andπ′ be
partitions of A and letΓπ andΘπ′ be families of theories in L(A). ThenΓπ 2 Θπ′ , if
Γi = ø andΘi = ø, for each i∈ π and each i∈ π′.
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Proof: Merely observe that
⋃

i∈π Γi = ø and
⋃

i∈π′ Θi = ø as well. Since classi-
cally ø 0CPC ø, the claim follows immediately from Proposition 9.3.2 above. a

Game-theoretical consequence as introduced in this chapter is based on the notion
of maximum equilibrium rather than maximal equilibrium. In virtue of this choice
game-theoretical consequence is monotonic. Adding more formulas to the theories
constituting a family renders the preference relations in the corresponding games to
be more refined. This observation together with Proposition 2.1.1 on page 28 secures
monotonicity for game-theoretical consequence.

Proposition 9.3.5 (Monotonicity) LetΓπ and Θπ′ be families of theories in a lan-
guage L(A), indexed by the partitionsπ andπ′ of A. Let, furthermore,Γ ′

π and Θ′
π

also be theories such thatΓ i ⊆ Γ ′
i , for each i∈ π, andΘi ⊆ Θ′

i , for each i∈ π′.
Then:

Γπ ² Θπ′ implies Γ ′
π ² Θ′

π′ .

Proof: For eachi ∈ π, Γi ⊆ Γ ′
i , implies ρ

(
Γ ′

i

) ⊆ ρ (Γi). Similarly, ρ̄
(
Θ′

i

) ⊆
ρ̄ (Θi), for eachi ∈ π′. By Proposition 2.1.1 on page 28, it follows that the maximum
equilibria of G

(
Γ ′
π

)
are included in those ofG(Γπ), and the maximum equilibria of

G
(
Θ′
π′

)
in those ofG(Θπ′). Now assume for contraposition thatΓ ′

π 2 Θ′
π′ . Then

there is a strategy profiles that is a maximum equilibrium in bothG
(
Γ ′
π

)
andG

(
Θ′
π′

)
.

Consequently,s is also a maximum equilibrium in bothG(Γπ) andG(Θπ′) and so
Γπ 2 Θπ′ . a

As a consequence of the Propositions 9.3.3 and 9.3.5 we have thatΘπ′ follows
game-theoretically fromΓπ, if the family of theoriesΓπ contains a contradiction or
if the family of theoriesΘπ′ contains a tautology. The following proposition captures
this point.

Proposition 9.3.6 Letπ andπ′ be partitions of a set of propositional variables A and
let Γπ and Θπ′ be families of theories in L(A). Then,Γπ ² Θπ′ , if either

⋃
i∈π Γi

contains a contradiction or
⋃

i∈π′ Θi contains a tautology.

Proof: First assume that for somei ∈ π, the theoryΓi contains a contradictionγ∗.
Then classicallyγ∗ `CPC ø. Observe thatA(γ∗) = ø, and so, trivially,A(γ∗) ⊆ πi .
By Proposition 9.3.3, thenΓ ∗

π ² Θ∗
π′ , where Θ∗

j = ø for eachj ∈ π′, Γ ∗
j = ø

for eachj ∈ π distinct from i andΓ ∗
i = {γ∗}. By monotonicity of game-theoretical

consequence (Proposition 9.3.5) thenΓπ ² Θπ′ . If Θi contains a tautologyϑ∗ for
somei ∈ π′, the argument runs along similar lines. a

In stark contrast with these reassuring results, which point at important similarities
between the classical and the game-theoretical notion of consequence, we find that di-
agonality of the consequence relation is no longer guaranteed. Diagonality is important
property of classical consequence,i.e., ϕ ` ϕ, for all formulasϕ. However, for game-
theoretical consequence it is not in general the case thatΓπ ² Γπ, as the following
example demonstrates.
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ø {b}
0 0

ø
0 0

0 1
{a}

0 1

ø {b}
1 1

ø
1 1

1 0
{a}

1 0

Figure 9.4. For Γπ given by
˘{a∧ b}{a} , {a∧ b}{b}

¯
, the matrix on the left represents the

extensive gameG(Γπ) and the one to right the gameG(Γπ).

Example 9.3.7 Again consider the classical propositional language containinga
andb as only propositional variables. Let

{{a} , {b}} be the partitionπ and letΓπ
denote

{{a∧ b}{a} , {a∧ b}{b}
}

. The matrices of the gamesG(Γπ) andG(Γπ) are
represented in Figure 9.4. Observe that the valuationø is a maximum equilibrium in
bothG(Γπ) andG(Γπ). Hence,

{{a∧ b}{a} , {a∧ b}{b}
}

2
{{a∧ b}{a} , {a∧ b}{b}

}
.

However, it may still be the case thatΓπ ² Γπ for some partitionπ and family of
theoriesΓπ. Similarly, for any partitionsπ andπ′ there may be formulasϕ such that
Γπ ² Θπ′ , if Γπ andΘπ′ are such thatΓi = Θj = {ϕ} for all i ∈ π and j ∈ π′.
Whenever this is the case we say that thatΛπ,π′ is diagonal with respect toϕ.

Some form of reflexivity can, of course, be rescued by imposing the trivializing
restrictions on the families of theories of Proposition 9.3.3. This gives rise to the fol-
lowing proposition.

Proposition 9.3.8 (Modified overlap) Letπ andπ′ be partitions of a set of proposi-
tional variables A and letΓπ and Θ′

π′ be families of theories in L(A). Assume that
A(γ) ⊆ πi , for all i ∈ π and allγ ∈ Γ i , andA(γ) ⊆ πi , for all i ∈ π′ and allγ ∈ Θi .
Then,Γπ ² Θπ′ , if

⋃
i∈π Γi ∩

⋃
i∈π′ Θi 6= ø.

Proof: Immediate consequence of the Propositions 9.3.2 and 9.3.3, above and the fact
thatoverlapholds for classical propositional logic. a

9.4 Control, Consequence, and Coalitions

A characteristic feature of game-theoretical consequence is the distribution of control
over the propositional variables. The families of theories game-theoretical consequence
connects may be indexed by different partitions of the propositional variables. A formal
topic that suggests itself is how the set of game-theoretical consequences of a family
of theories indexed by one partition relates to the set of game-theoretical consequences
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of a family of theories indexed by another partition. In order to assay this issue with
some success, we need some understanding of the ways theories can systematically be
combined into one theory and how a theory can be distributed over various theories. In
Section 8.4 we have already touched upon this issue, addressing one particular way of
combining theories,viz., by simply taking their union.

Game-theoretical consequence brings within the scope of logic the notion of dis-
tributed control over the propositional variables. Classical consequence is the border-
line case in which all control is concentrated in one player. A singleton collection of
theories{Γ} will invariably be indexed by the whole set of propositional variables. In
general, however, a family of theories can be indexed by various partitions in a variety
of ways. Moreover, a game-theoretical validityΓπ ² Θπ′ depends both on the theories
in Γπ andΘπ′ and on the way they are indexed by the partitionsπ andπ′. An alter-
native indexing of the the same collection of theories by the same partition may have
repercussions with respect to what follows game-theoretically from that collection of
theories.

In the definition of classical consequence we distinguished a subrelationΛπ,π′ , for
each pair of partitionsπ andπ′ of the propositional variables. Together these relations
make up the setΛA and this section concerns its internal structure,i.e., how the various
relationsΛπ,π′ relate to one another.

Proposition 9.3.2 says that, in some some sense, the relationΛ({A},{A}) is stronger
than any other relationΛ(π,π′). Some caution is here in place as we have not made clear
yet what ‘in some sense’ signifies in this context. Obviously, it is not in general the case
thatΛ({A},{A}) containsΛ(π,π′) in the set-theoretical sense, as they relate families of
theories indexed by different partitions. Still, every validity inΛ(π,π′) has a counterpart
in Λ({A},{A}) involving the same formulas. As the main result of this section, we find
that this observation can be generalized as to hold between any two relationsΛ(π,π′)
andΛ(π′′,π′′′) such thatπ 6 π′′ andπ′ 6 π′′′. To this end we associate with each
Λπ,π′ in ΛA, the proper logicΛ∗

π,π′ — i.e., a relation between theories ofL(A) — as
follows:

Λ∗
π,π′ =df.

{( ⋃
i∈π Γi ,

⋃
j∈π′ Θj

)
: Γπ ² Θπ′

}
.

Then defineΛπ,π′ 6 Λπ′′,π′′′ asΛ∗
π,π′ ⊆ Λ∗

π′′,π′′′ . Recall that the partitions over a
set of propositional variablesA possess a definite order-theoretic structure, as they are
ordered as a complete lattice with respect to their coarseness as follows.

π 6 π′ iff for all x ∈ π, there is ay ∈ π′ such thatx ⊆ y.

Intuitively, π 6 π′ denotes thatπ is at least as fine asπ′. Since, ordered thus, the
set of partitionsPart(A) overA constitutes a complete lattice, so does the direct prod-
uct Part(A) × Part(A).

In section 8.4 we argued that each block in a partition represents the control over the
propositional variables a coalition obtains some of players represented by the blocks of
a finer partition decide to collaborate. If, moreover, the coalitional preference relation
is given by the intersection of the preference relations of its members, then Proposi-
tion 2.1.8 on page 35 guarantees that there will be no increase of maximum equilibria as
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a result of this move. This phenomenon is the foundation of the following proposition
about game-theoretical consequence.

Proposition 9.4.1 Let π, π′, π′′ and π′′′ be partitions of some set of propositional
variables A such thatπ 6 π′′ andπ′ 6 π′′′. Let furtherΓπ andΘπ′ be families of
theories in L(A). Define the families of theoriesΓ ∗

π′′ andΘ∗
π′′′ , such that for all j∈ π′′

and k∈ π′′′:
Γ ∗

j =df.

⋃
i∈π
i⊆j

Γi and Θ∗
k =df.

⋃
i∈π′
i⊆k

Θi .

Then,Γπ ² Θπ′ implies Γ ∗
π′′ ² Θ∗

π′′′ .

Proof: Immediately from Proposition 2.1.8 on page 35 and Fact 8.4.6 on page 198.a
In the previous section we found that game-theoretical consequence does not in

general satisfy reflexivity; neither is eachΛ[,π, π
′] diagonal with respect to all formulas.

The following lemma and theorem show that nevertheless the latter property plays an
important structural role in the anatomy ofΛA.

Lemma 9.4.2 Let L(A) be a propositional language andπ, π′, π′′ andπ′′′ be parti-
tions of A. Then,

π 6 π′′ andπ′ 6 π′′′

iff

for each formulaϕ :
{{ϕ}i

}
i∈π ²

{{ϕ}j

}
j∈π′ implies

{{ϕ}i

}
i∈π′′ ²

{{ϕ}j

}
j∈π′′′ .

Proof: The left-to-right direction follows from Proposition 9.4.1. Merely observe that⋃
i∈π
i⊆j

{ϕ}i = {ϕ} for eachj ∈ π′ and, similarly,
⋃

i∈π′
i⊆j

{ϕ}i = {ϕ}, for eachj ∈ π′′′.

The opposite direction is by contraposition. Assume that eitherπ ­ π′′ or π′ ­ π′′′.
As the proof for both cases runs along analogous lines, we only give that of the former.

Let π ­ π′′. Then,π′′ is different from the trivial partition{A} andA 6= ø. It
also follows that there is some blockπ0 of π for which there are two distinct blocksπ′′

0
andπ′′

1 of π′′ such that bothπ0 ∩ π′′
0 6= ø andπ0 ∩ π′′

1 6= ø. So we may assume
the existence of two propositional variablesa0 and a1 such thata0 ∈ π0 ∩ π′′

0 and
a1 ∈ π0 ∩ π′′

1 . Consider these along with the formulaa0 ∧ a1. First we prove the
following two claims, of which

{{a0 ∧ a1}i

}
i∈π ²

{{a0 ∧ a1}j

}
j∈π′ is an immediate

consequence:

s is a maximum equilibrium inG
({ {a0 ∧ a1}i

}
i∈π

)
iff s∈ [[a0 ∧ a1]]

s is a maximum equilibrium inG
({ {a0 ∧ a1}j

}
j∈π′

)
iff s /∈ [[a0 ∧ a1]].

From right-to-left these claims hold in virtue of Proposition 8.4.5. For the opposite
direction, first consider a valuation such thats /∈ [[a0 ∧ a1]]; we know that such ans
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exists. Defines∗ =df. s∪ {a0,a1}. Then, obviously,s∗ ∈ [[a0 ∧ a1]]. Hence,(s∗, s) /∈
ρ ({a0 ∧ a1}). Consequently,s∗ ­i s, for each playeri of G

({ {a0 ∧ a1}i

}
i∈π

)
. More-

over, witha0,a1 ∈ πi , alsos∗ = (s−i , s∗i ) ands fails as a maximum response for any
player i and, the set of players never being empty, also as a maximum equilibrium of
G

({ {a0 ∧ a1}i

}
i∈π

)
. This proves the first claim.

Now consider a valuations such thats ∈ [[a0 ∧ a1]] as well as the uniquej ∈ π′

such thata0 ∈ π′
j . Defines∗∗ =df. s− {a0}; then,s∗∗ /∈ [[a0 ∧ a1]]. Moreover,s∗∗ =(

s−j , s∗∗j

)
, having assumed thata0 ∈ π′

j . Hence,(s∗∗, s) /∈ ρ̄ ({a0 ∧ a1}) ands∗∗ ­j s
for all playersj of G

({ {a0 ∧ a1}j

}
j∈π′

)
and in particular forj as above. Therefore,s

is no maximum equilibrium inG
({ {a0 ∧ a1}j

}
j∈π′

)
either.

An argument analogous to that for the second claim above shows that also:

s is a maximum equilibrium inG
({ {a0 ∧ a1}j

}
j∈π′′′

)
iff s /∈ [[a0 ∧ a1]].

Hence, in particular, the valuationø is a maximum equilibrium in
G

({ {a0 ∧ a1}j

}
j∈π′′′

)
.

We complete the proof by showing that the valuationø is also a maximum equi-
librium in G

({ {a0 ∧ a1}i

}
i∈π′′

)
, for then it also holds that

{{a0 ∧ a1}i

}
i∈π′′ 2{{a0 ∧ a1}j

}
j∈π′′′ .

Consider an arbitrary playerk ∈ π′′. Then, not botha0 ∈ π′′
k anda1 ∈ π′′

k . Now
consider an arbitrary valuations. Then not botha0 ∈ (ø−k, sk) anda1 ∈ (ø−k, sk).
Hence,(ø−k, sk) /∈ [[a0 ∧ a1]]. Becauseø /∈ [[a0 ∧ a1]] it follows that

(
(ø−k, sk),ø

) ∈
ρ ({a0 ∧ a1}). With s having been chosen arbitrarily,ø is a maximum response fork.
And with k having been chosen arbitrarily as well, it follows that the valuationø is a
maximum equilibrium inG

({ {a0 ∧ a1}j

}
j∈π′′

)
. a

We conclude this section with the following theorem, which, in effect, says that the
ordering on the setΛA of subrelations of game-theoretical consequence forL(A) can
be derived from the complete latticePart(A) × Part(A).

Theorem 9.4.3 (Characterization ofΛπ,π′ 6 Λπ′′,π′′′) For L(A) a propositional lan-
guage andπ, π′, π′′ andπ′′′ partitions over A:

Λπ,π′ 6 Λπ′′,π′′′ iff π 6 π′′ and π′ 6 π′′′.

Proof: For the right-to-left direction assume thatπ 6 π′′ andπ′ 6 π′′′ and consider
an arbitrary(Γ,Θ) ∈ Λ∗

π,π′ . Then,Γ =
⋃

i∈π Γi andΘ =
⋃

j∈π′ Θj , for some families
of theoriesΓπ andΘπ′ such thatΓπ ² Θπ′ . Now letΓ ∗

k =df.
⋃

i∈π
i⊆k

Γi , for eachk ∈ π′′,

andΘ∗
k =df.

⋃
j∈π′
j⊆k

Θi , for eachk ∈ π′′′. By the assumption thatπ 6 π′′ andπ′ 6

π′′′, then obviously,
⋃

i∈π Γi =
⋃

k∈π′′ Γ ∗
k and

⋃
j∈π′ Θi =

⋃
k∈π′′′ Θ∗

k . Accordingly,⋃
k∈π′′ Γ ∗

k = Γ and
⋃

k∈π′′′ Θ∗
k = Θ. Moreover, in virtue of Proposition 9.4.1, also

Γ ∗
π′′ ² Θ∗

π′′′ . Hence,(Γ,Θ) ∈ Λ∗
π′′,π′′′ .
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The opposite direction follows from Proposition 9.3.5 and Lemma 9.4.2. Assume,
for contraposition, that eitherπ ­ π′′ or π′ ­ π′′′. By Lemma 9.4.2, there is a
formulaϕ such that

{{ϕ}i

}
i∈π ²

{{ϕ}i

}
i∈π′ but

{{ϕ}i

}
i∈π′′ 2

{{ϕ}i

}
i∈π′′′ . Then,

({ϕ} , {ϕ}) ∈ Λ∗
π,π′ . Now consider arbitrary families of theoriesΓ ∗

π′′ andΘ∗
π′′′ such

that
⋃

i∈π′′ Γ ∗
i =

⋃
i∈π {ϕ}i = {ϕ} and

⋃
i∈π′′′ Θ∗

i =
⋃

i∈π′ {ϕ}i = {ϕ}. Then,
Γ ∗

i ⊆ {ϕ}, for eachi ∈ π′′, andΘ∗
i ⊆ {ϕ} eachi ∈ π′′′. By Proposition 9.3.5,

stating the monotonicity of game-theoretical consequence, it then follows thatΓ ∗
π′′ 2

Θ∗
π′′′ . Therefore, we may conclude the proof observing that({ϕ} , {ϕ}) ∈ Λ∗

π,π′ but
({ϕ} , {ϕ}) /∈ Λ∗

π′′,π′′′ . a
As an immediate consequence, the following corollary also holds. It says thatΛπ,π′ 6
Λπ′′,π′′′ if and only ifΛπ′′,π′′′ preserves diagonality for all formulasϕ for whichΛπ,π′

is diagonal.

Corollary 9.4.4 Let L(A) be a propositional language andπ, π′, π′′ and π′′′ be
partitions of A. Then,Λ(π,π′) 6 Λ(π′′,π′′′) if and only ifΛ(π′′,π′′′) is diagonal with
respect to all formulas with respect to whichΛ(π,π′) is diagonal as well.

Proof: Immediately from Lemma 9.4.2 and Theorem 9.4.3. a

9.5 Rough Set Characterization

In this section we show how game-theoretical consequence can be given a set-theoretical
semantics. Employing the machinery of rough set theory, it is demonstrated how each
family of theoriesΓπ can be associated with a set of sets of valuations that precisely
coincides with the maximum equilibria of the distributed evaluation gameG(Γπ). The
significance of this result is that it forges a strong link with classical logic, facilitating
the logical analysis of game-theoretical consequence.

The intuition behind this essentially technical result derives from the understanding
of a maximum equilibrium as the intersection of the players’ maximum responses.
Each player has control over a subset of propositional variables and his opponents over
the remaining ones. Each set of propositional variables partitions the valuations and
this is in particular the case for the propositional variables controlled by the opponents
of a particular player.I.e., let π be partition of the propositional variables and letπ−i

be the set of variables controlled by the opponents of playeri. With this setπ−i is
associated the equivalence relationεπ−i , which in turn induces the partitionππ−i over
the valuations. A maximum response for playeri is then a valuation that is a maximum
with respect to his preferences within each block of this partition.

Let now the preference of playeri be given by a relationρ (X), whereX is a set of
subsets of valuations. We show that then the approximation operatorsapr

∆
andapr∆

on sets of valuations — where∆ is a subset of propositional variables — are available
to single out playeri’s maximum responses on the basis of the setX alone. In particular,
we invoke the approximation operations with respect to the empty set and with respect
to the set of propositional variables controlled by the opponents of a playeri.
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Formally, we have the following definition.

Definition 9.5.1 Let π be a partition of the propositional variables of some proposi-
tional languageL(A). Let furtherX be a family{Xi}i∈π of subsets of 22

A
, i.e., a family

of sets of subsets of valuations. Define for eachi ∈ π:

N(Xi) =df.

⋂
X∈Xi

(
aprø(X) ∩ (

X ∪ apr
π−i

(
X
) ))

,

N(X) =df.

⋂
i∈π

N(Xi) .

We introduce dual concepts of these notions as follows:

N(Xi) =df. N
({

X : X ∈ Xi
})

N(X) =df.

⋃
i∈π

N(Xi)

Let Γπ a family of theories in a languageL(A) indexed by a partitionπ of A. For
eachi ∈ π, we writeN(Γ ) for N({[[γ]] : γ ∈ Γ}) and we haveN(Γπ) denote

⋂
i∈π N(Γi).

Similarly, N(Γ ) abbreviates N({[[γ]] : γ ∈ Γ}) and N(Γπ) represents
⋃

i∈π N(Γi).

The intuition underlying these definitions is as follows. Assuming that the prefer-
ences of the playeri are given byρ (Xi), the setN(Xi) is meant to collect the max-
imum elements of the relationρ (Xi) within each block of the partitionππ−i . The
relationρ (Xi) is given by

⋂
X∈Xi

ρ (X), i.e., for eachX ∈ X, the relationρ (X) deter-
mines in part the relationρ (X). In caseX contains the empty set, the relationρ (X)
is empty as well (cf., Fact 8.5.3 on page 200). Then the set of maximum responses of
playeri is empty as well. Observe thataprø(X) is empty ifX is empty, and the whole
set of valuations, otherwise. As such,aprø(X) constitutes, as it were, a test forX being
non-empty. Thus we have:

aprø(X) ∩ (
X ∪ apr

π−i

(
X
))

=




X ∪ apr
π−i

(
X
)

if X 6= ø

ø otherwise.

Accordingly, in caseXi contains the empty set, the set of maximum responses for
playeri is empty as well. It is, however, equally true that in that case for someX ∈ Xi ,
the setaprø(X) ∩ (

X ∪ apr
π−i

(
X
))

is empty, and with that so isN(Xi).
Now consider the case in whichX does not contain the empty set. For eachX ∈ Xi

the relationρ (X) distinguishes the valuations contained inX from those that are not,
intuitively ranking the former higher than the latter. Construed as part of the preference
relationρ (Xi) of playeri, the relationρ (X) excludes as maximum responses fori those
valuations that are inferior in this sensewithin a block of the partitionππ−i , a block of
valuations in which all values for the propositional variables are fixed but those for
those controlled byi. I.e., if X has a non-empty intersection with a blockY of ππ−i
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[[ϕ]] [[ψ]]

[[χ]]

Figure 9.5. Let the preferences of a playeri be given by three sets, say by[[ϕ]], [[ψ]] and[[χ]] as
in Figure 8.1, on page 182. Each block represents a particular choice of strategy byi’s opponents.
The upper left, upper right and lower left figure then representaprø([[ϕ]])∩`

[[ϕ]]∪apr
π−i

([[ϕ]])
´
,

aprø([[ψ]]) ∩ `
[[ψ]] ∪ apr

π−i
([[ψ]])

´
andaprø([[χ]]) ∩ `

[[χ]] ∪ apr
π−i

([[χ]])
´
, respectively. The

bottom right figure depictsN({ϕ,ψ, χ}), i.e., the maximum responses of playeri. Also compare
Figure 8.2, on page 187.

then all valuations outsideX ∩ Y are disqualified as a maximum response fori. If a
blockY of ππ−i andX are disjoint, however,ρ (X) does not exclude any valuations inY
as a maximum response for playeri. This is precisely whatX ∪ apr

π−i

(
X
)

achieves

for non-empty subsetsX of valuations. Doing this for eachX ∈ Xi and intersecting
the results delivers precisely the maximum responses fori. Also compare Figure 9.5
for further illustration of this point and consider the following proposition for a formal
proof.

Proposition 9.5.2 establishesN(Xi) as precisely the set of maximum responses for
playeri in a game

(
π, {2Ai}i∈π, {ρ (Xi)}i∈π

)
. By taking the intersection of the maxi-

mum responses of all players, the set of maximum equilibria is obtained. In this manner
we arrive at the characterization of maximum equilibria in rough set theory we were
after.

Proposition 9.5.2 Let A be a set,π a partition of A andX a family{Xi}i∈π of subsets

of 22A
. Let the game

(
π, {2Ai}i∈π, {ρ (Xi)}i∈π

)
be denoted by G. Then:

N(Xi) is the set of maximum responses for i in G(X).

Proof: First assumeXi contain the empty set. Then,ρ (Xi) = ø, by Fact 8.5.2 on
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page 200. Accordingly the set of maximum responses fori is empty as well. Also,
aprø(ø) = ø and henceaprø(ø) ∩ (

ø ∪ apr
π−i

(ø)
)

= ø. It follows thatN(Xi) = ø

as well. So, for the remainder of the proof we may assume thatXi does not contain the
empty set.

Assume for some valuations thats /∈ N(Xi). Then,s /∈ aprø(X)∩(
X∪apr

π−i

(
X
))

,

for someX ∈ Xi . Having assumed thatX is not empty,aprø(X) = 2A, and it follows
that boths /∈ X and s /∈ apr

π−i

(
X
)
. Then,s ∈ aprπ−i

(X) and hence there exists

somes′ ∈ X such thats ∼π−i s′. It follows that (s′, s) /∈ ρ (X) and, subsequently,
that(s′, s) /∈ ρ (Xi). Observing thats′ = (s−i , s′i ), we may conclude thats contains no
maximum response fori in G.

For the opposite direction assume that somes in 2A be no maximum response fori
in G. Hence, there is somes′ in 2A such that

(
(s−i , s′i ), s

)
/∈ ρ (Xi). Accordingly,

for someX ∈ Xi we have(s−i , s′i ) ∈ X but s /∈ X. Since,(s−i , s′i ) ∼π−i s, alsos ∈
aprπ−i

(X) and sos /∈ apr
π−i

(
X
)
. Hences /∈ aprø(X) ∩ (

X ∪ apr
π−i

(
X
))

and so

s /∈ N(X). We may conclude thats /∈ N(Xi), and we are done. a
This proposition has as an immediate consequence thatN(X) precisely includes the
maximum equilibria of the game

(
π, {2Ai}i∈π, {ρ (Xi)}i∈π

)
.

Corollary 9.5.3 Let A be a set,π a partition of A andX a family{Xi}i∈π of subsets

of 22A
. Let the game

(
π, {2Ai}i∈π, {ρ (Xi)}i∈π

)
be denoted by G. Then:

N(X) is the set of maximum equilibria in
(
π, {2Ai}i∈π, {ρ (Xi)}i∈π

)
.

Proof: Immediately from Proposition 9.5.2 and the definition of a maximum equilib-
rium as the intersection of the players maximum responses. a
By straightforwardly applying the definitions we can also derive the corresponding
clauses for the dual conceptsN(Xi) and N(X). Let, furthermore, the gameG be given
by

(
π, {2Ai}i∈π, {ρ̄ (Xi)}i∈π

)
. Then:

N(Xi) is the set of strategy profilesnot containing a best response fori in G(X),

N(X) is the set of strategy profiles that arenomaximum equilibrium inG(X).

These observations prepare the ground for the following theorem.

Theorem 9.5.4 Letπ andπ′ be partitions of A. Let furtherΓπ andΘπ′ be theories
in the language L(A). Then:

Γπ ² Θπ′ iff N(Γπ) ⊆ N(Θπ′) .

Proof: Immediately from Proposition 9.5.3 and the subsequent remarks in the text.a
Theorem 9.5.4 has an important consequence concerning the relation between clas-

sical propositional logic and game-theoretical consequence. On page 55 we found that



232 GAME-THEORETICAL CONSEQUENCE

each approximation by a subset of propositional variables of the extension of a formula
in a languageL(A), is also the extension of a formula inL(A). I.e., propositional logic
has expressive power with respect to approximations of extensions of formulas. This
makes that for each family of theoriesΓπ, a theoryΓ ∗ in L(A) can be found such that
the extension[[Γ ∗]] andN(Γπ) are identical sets. Similarly, it is possible to find for
each family of theoriesΘπ′ , a theoryΘ∗ such that〈〈Θ∗ 〉〉 = N(Θπ′).

To prove this, we define for each subsetX ⊆ A two injective functionsfX andgX

mapping formulas ofL(A) onto formulas ofL(A).

fX (ϕ) =df. 〈ø〉ϕ ∧ ( 〈
X
〉
ϕ→ ϕ

)
,

gX (ϕ) =df. ¬fX (¬ϕ) .

Observe that, forϕ a formula,fX (ϕ) andgX (ϕ) are one another’s duals. For any the-
ory Γ and anyX ⊆ A, let fX (Γ ) andgX (Γ ) stand for, respectively,{fX (γ) : γ ∈ Γ}
and{gX (γ) : γ ∈ Γ}. For any family of theoriesΓπ indexed by a partitionπ of A,
we havef (Γπ) andg (Γπ) denote the theories

⋃
i∈π fπi (Γi) and

⋃
i∈π gπi (Γi), respec-

tively. We have the following fact.

Fact 9.5.5 Letϕ be a formula of a propositional language L(A) let all X and Y subsets
of A. Then:

[[gX (ϕ)]] ⊆ [[ϕ]] ⊆ [[fY (ϕ)]].

Proof: Since [[〈ø〉ϕ]] = aprø([[ϕ]]), clearly [[ϕ]] ⊆ [[〈ø〉ϕ]] because of the rough
set law thatZ ⊆ apr(Z). Obviously also[[ϕ]] ⊆ [[

〈
Y
〉
ϕ→ ϕ]]. Hence,[[ϕ]] ⊆

[[fY (ϕ)]]. For the inclusion of[[gX (ϕ)]] in [[ϕ]], observe thatgX (ϕ) is equivalent
to [ø]ϕ ∨ (

ϕ ∧ ¬ [
X
]
ϕ
)
. Because in generalapr(Z) ⊆ Z, for any setZ, also

aprø([[ϕ]]) ⊆ [[ϕ]] anda fortiori [[[ø]ϕ]] ⊆ [[ϕ]]. Clearly also[[ϕ ∧ ¬ [
X
]
ϕ]] ⊆ [[ϕ]].

It follows that[[gX (ϕ)]] ⊆ [[ϕ]]. a
We then find that each valid instance of game-theoretical consequence has a coun-

terpart in classical propositional logic (CPC).

Proposition 9.5.6 Letπ andπ′ be partitions of some set A of propositional variables.
Let furtherΓπ andΘπ′ be families of theories. Then:

Γπ ² Θπ′ iff f (Γπ) `CPC g (Θπ′)

Proof: Observe that in general
[[ 〈ø〉ϕ ∧ ( 〈

X
〉
ϕ → ϕ

)]]
= aprø([[ϕ]]) ∩ (

[[ϕ]] ∪
apr

X

(
[[ϕ]]

))
. Then the following equalities hold:

[[ ⋃
i∈π

{
fi (γ) : γ ∈ Γi

}]]
=

⋂
i∈π

⋂
γ∈Γi

[[ 〈ø〉ϕ ∧ ( 〈
X
〉
ϕ→ ϕ

)]]
=

⋂
i∈π

⋂
γ∈Γi

(
aprø([[γ]]) ∩ (

[[γ]] ∪ apr−i

(
[[γ]]

)))
= N(Γπ) .
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Using this result, the following equalities hold as well:

〈〈 ⋃
i∈π′

{
gi (ϑ) : ϑ ∈ Θi

}〉〉
=

⋃
i∈π′

⋃
ϑ∈Θi

[[
fi (¬ϑ)

]]
=

⋃
i∈π′

⋂
ϑ∈Θi

[[
fi (¬ϑ)

]]
=

⋃
i∈π′

N
({

[[ϑ]] : ϑ ∈ Θi
})

= N(Θπ′) .

Hence, we have the following equivalences:

Γπ ² Θπ′ iff Prop. 9.5.4 N(Γπ) ⊆ N(Θπ′)

iff
[[ ⋃

i∈π

{
fi (γ) : γ ∈ Γi

}]]
⊆

〈〈 ⋃
i∈π′

{
gi (ϑ) : ϑ ∈ Θi

}〉〉

iff
⋃
i∈π

{
fi (γ) : γ ∈ Γi

} `CPC
⋃
i∈π′

{
gi (ϑ) : ϑ ∈ Θi

}
iff f (Γπ) `CPC g (Θπ′)

This concludes the proof. a
Proposition 9.5.6 has many corollaries, as it enables one to extrapolate results from
classical propositional logic to game-theoretical consequence. Perhaps the most im-
portant is that game-theoretical consequence is decidable.

Corollary 9.5.7 Let L(A) be propositional language with A finite and letπ andπ′ be
partitions of A. Let furtherΓπ andΘπ′ be finite families of theories of L(A). Then, the
problem whetherΓπ ² Θπ′ is decidable.

Sketch of proof: Immediately from Proposition 9.5.6 and the decidability of CPC.
For eachi ∈ π and eachj ∈ π′, the functionsfπi and gπ′

j
make that the problem

Γπ ² Θπ′ can be translated into the equivalent problemf (Γπ) `CPC g (Θπ′), which
we know is decidable. Observe in this respect that, since the functionsfπi andgπ′

j
map

formulas on formulas, the theoriesf (Γπ) andg (Θπ′) are finite. So it suffices to prove
that the functionsfπi andgπ′

j
are decidable. That this is indeed the case is revealed by

some reflection on their definition and the fact that[∆]ϕ and〈∆〉ϕ may be taken to
abbreviate the formulas

∧
σ∈Σ∆

σ (ϕ) and
∨
σ∈Σ∆

σ (ϕ), respectively (cf., page 2.4)
and it, moveover, being given thatA is finite. a

An important property of classical propositional logic that has so far been conspic-
uously absent from our analysis of game-theoretical consequence is that it satisfiescut
(cf., page 45, above). The principle of cut, however, needs some slight rephrasing
before it sensibly said to hold for game-theoretical consequence. To illustrate this
point consider the version of cut in whichΓ ∪ {ϕ} ` Θ andΓ ′ ` Θ′ ∪ {ϕ} imply
Γ ∪ Γ ′ ` Θ ∪ Θ′. Cut, as it were, sets conditions for the ‘removal’ of a formulaϕ
from theories if it occurs on the left of the turnstile in one validity statements and on
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the right in another. With game-theoretical consequence, however, it is families of the-
ories rather than theories that flank the turnstile. For the game-theoretical consequence
relation, we find that a formula may be removed in a similar fashion if it occurs in a
theory in the family to the left of the turnstile in a validity statement and in a formula
in another theory in the family to the right of the turnstile in another validity statement.

Proposition 9.5.8 (Cut) Letϕ be a formula in L(A) and let π andπ′ be partitions
of a set of propositional variables A. Let furtherΓ, Γ ′, Θ andΘ′ be theories andΓ
and Γ ′ be families of theories indexed byπ an d Θ and Θ′ be families of theories
indexed byπ′. LetΓ ′′ andΘ′′ be families of theories indexed byπ andπ′ respectively
such thatΓ ′′

i = Γ i ∪ Γ ′
i , for each i∈ π, andΘ′′

j = Θj ∪ Θ′
j , for each j∈ π′. Then:

(Γ−i , Γi)π ²
(
Θ−j , (Θ ∪ {ϕ})j

)
π′ and

(
Γ ′−i , (Γ ′ ∪ {ϕ})i

)
π

²
(
Θ′−j , Θ

′
j

)
π′

imply(
Γ ′′−i , (Γ ∪ Γ ′)i

)
π

²
(
Θ′′−j , (Θ ∪Θ′)j

)
π′ .

Proof: Assume that (Γ−i , Γi)π ²
(
Θ−j , (Θ ∪ {ϕ})j

)
π′ along with(

Γ ′−i , (Γ ′ ∪ {ϕ})i
)
π

²
(
Θ′−j , Θ

′
j

)
π′ . In virtue of Proposition 9.5.6 then both:

f ((Γ−i , Γi)π) `CPC g
(
(Θ−j , Θj)π′

) ∪ {
gj (ϕ)

}
f
((

Γ ′−i , Γ
′
i

)
π

) ∪ {
fi (ϕ)

} `CPC g
((

Θ′−j , Θ
′
j

)
π′

)
.

In virtue of Fact 9.5.5, alsogj (ϕ) `CPC fi (ϕ). Proposition 2.3.1 on page 46 then yields:

f ((Γ−i , Γi)π) ∪ f
((

Γ ′−i , Γ
′
i

)
π

) `CPC g
(
(Θ−j , Θj)π′

) ∪ g
((

Θ′−j , Θ
′
j

)
π′

)
.

We obtain
(
Γ ′′−i , Γ ∪ Γ ′

i

)
π

²
(
Θ′′−j , Θ ∪Θ′

j

)
π′ through another application of Propo-

sition 9.5.6, which concludes the proof. a
Proposition 9.5.6 established that every problem of game-theoretical consequence

has an equivalent problem in classical propositional logic. The converse of this claim
is of course also trivially true because of the congruence ofΛ{A},{A} and CPC, wit-
ness Proposition 9.3.1. We conclude this section with a stronger result, stating that
every problem of classical propositional logic has its counterpart inΛπ,π′ in ΛA. The
following lemma gives a preliminary result.

Lemma 9.5.9 Let ϕ be a formula in L(A) and π a partition of A. Then there are
families of theoriesΓπ andΘπ, with Γi andΘi finite for each i∈ π, such that:

[[ϕ]] =
[[

f (Γπ)
]]

=
〈〈

g (Θπ)
〉〉
.

Proof: SinceA(ϕ) is finite, there is also a finite setZ of blocks inπ such thatA(ϕ) ⊆⋃
Z. Let X =df.

{ ⋃
Y : Y ⊆ Z

}
. Obviously,X can be ordered as a lattice by set

inclusion, withø as bottom and
⋃

Z as top. DefineΓπ andΘπ such that for eachi ∈ π:

Γi =df.
{ 〈X〉ϕ : X ∈ X

}
and Θi =df.

{
[X]ϕ : X ∈ X

}
.
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Clearly, withZ finite, so areX andΓi , for eachi ∈ π. We prove that[[ϕ]] =
[[

f (Γπ)
]]

,
as the claim that[[ϕ]] = 〈〈g (Θπ) 〉〉 follows by a similar argument.

For the inclusion of[[ϕ]] in [[f (Γπ)]], merely observe that for eachπi ∈ π and
eachX ∈ X, for eachX ∈ X, we have that[[ϕ]] ⊆ [[〈X〉ϕ]] ⊆ [[fπi (〈X〉ϕ)]]. The last
inclusion is in virtue of Fact 9.5.5.

For the inclusion of of[[f (Γπ)]] in [[ϕ]], first consider the case in whichϕ is a contra-
diction, i.e., if [[ϕ]] = ø. Then, subsequentlyaprX([[ϕ]]) = ø andaprø(aprX([[ϕ]])) =
ø, for eachX ∈ X. This is because of the rough set law thatapr(ø) = ø. It follows that
both [[〈X〉ϕ]] = ø and[[〈ø〉 〈X〉ϕ]] = ø. Hence,[[fπi (〈X〉ϕ)]] = ø, for eachπi ∈ π,
and, therefore,[[f (Γπ)]] = ø, as well. So, for the remainder of the proof we may
assume[[ϕ]] to be inhabited.

Assume there be a valuations such thats /∈ [[ϕ]]. As we could assume[[ϕ]] to be
non-empty, with Fact 2.2.10 on page 43, above, and the definition of〈ø〉ϕ, it follows
that [[〈ø〉ϕ]] = 2A. Thus, in particular,s ∈ [[〈ø〉ϕ]]. With, A(ϕ) ⊆ ⋃

Z, however,
[[ϕ]] = aprS Z([[ϕ]]) = [[〈⋃ Z〉ϕ]], by Fact 2.3.10 on page 51, and sos /∈ [[〈⋃ Z〉ϕ]].
BecauseX is finite, there is anX ∈ X such thats /∈ [[〈X〉ϕ]] and for which it is
moreover the case thats ∈ [[〈X′〉ϕ]], for all X′ ∈ X with X′ ( X. We may moreover
assume thatX is not empty. Hence,πi ⊆ X, for someπi ∈ Z. DefineX∗ =df. X − πi ;
obviouslyX∗ ∈ X andX∗ = π−i ∩ X∗. Then,s∈ [[〈X∗〉ϕ]], i.e., s∈ aprX∗([[ϕ]]). Now
consider the following equalities:

aprX∗([[ϕ]]) = aprπ−i∩X∗([[ϕ]]) =Fact 2.2.8 aprπ−i
(aprX∗([[ϕ]])) = [[〈π−i〉 〈X∗〉ϕ]].

Hences∈ [[〈π−i〉 〈X∗〉ϕ]]. It follows thats /∈ [[〈π−i〉 〈X∗〉ϕ→ 〈X∗〉ϕ]]. Accordingly,
s /∈ [[fi (〈X∗〉ϕ)]] and,a fortiori, s /∈ [[f (Γπ)]]. a
The following theorem can now be established.

Theorem 9.5.10 LetΓ andΘ be theories in L(A) and letπ andπ′ be partitions of A.
Then there are families of theoriesΓπ andΘπ′ such that:

Γ `CPCΘ iff Γπ ² Θπ′ .

Proof: Almost immediately from Proposition 9.5.6 and Lemma 9.5.9 a
Hence, for every classical statementΓ `CPCΘ there is an equivalent game-theoretical
statementΓπ ² Θπ in Λπ,π′ . Proposition 9.5.6 established that this claim also holds
in the opposite direction. Hence, we obtain the following corollary, which states that
for any partitionsπ, π′, π′′ andπ′′′ the statements of anyΛπ,π′ have their counterparts
in Λπ′′,π′′′ .

Corollary 9.5.11 Let π, π′, π′′ and π′′′ be partitions of A and letΓπ and Θπ′ be
families of theories in L(A). Then there are families of theoriesΓ ′

π′′ and Θ′
π′′′ such

that:
Γπ ² Θπ′ iff Γ ′

π′′ ² Θ′
π′′′ .

Proof: Almost immediately from Proposition 9.5.6 and Theorem 9.5.10. a
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9.6 Conclusion

In this chapter we advanced a concept of logical consequence based on the game-
theoretical notion of maximum equilibrium. For the notion of game-theoretical con-
sequence there are various possible definitions, involving different game-theoretical
solution concepts. We have chosen for the option that is closest to classical logic, as
to assure that the idiosyncratic features of the framework can indeed be ascribed to the
game-theoretical angle we adopted and not so much to non-standard features of the
underlying propositional logic. Other choices are, however, quite possible and worth
investigating. In particular, one could define a game-theoretical notion of consequence
using the solution concept ofmaximalequilibrium, instead ofmaximumequilibrium.
This would give rise to a non-monotonic framework.

Classical consequence was proved to be a special case of game-theoretical con-
sequence. From this perspective, it stands to reason to investigate game-theoretical
consequence using the standard logical techniques and concepts. The issue of sound,
complete and elegant formal systems for it is still very much open in this respect.

Game-theoretical consequence, however, also raises some issues of its own, for the
proper treatment of which it would seem that concepts from other sciences should be
employed. We have already mentioned social choice theory as a possible conceptual
source to get a firm grasp of how to combine and distribute theories, if the latter are
looked upon as representing preference orders.

In distributed evaluation games the players were identified with the variables they
control. So far the emphasis has been on the set maximum equilibria given different
theories defining the preferences of the players. We could also invert this image, and
take the preferences of players as fixed and investigate the sets of maximum equilibria
for varying assignments of the variables to the players. Game theory may here provide
the apposite concepts.

Another issue is that of the existence of maximum equilibria in distributed evalu-
ation games. This is the game-theoretical counterpart of the issue of satisfiability in
classical logic. Maximum equilibria in pure strategies do not in general exist, and only
pure strategies we considered. Lattice theoretic restrictions may be imposed on the
strategies and preferences of players such that the existence of equilibria is guaranteed
(cf. Topkis (1998), Fudenberg and Tirole (1991)). An example is the lattice-theoretic
concept of (quasi-)supermodularity, which is closely related to economic notion of
complementarity. These reflections, however, raise the question what these concepts
correspond to on a logical level.

Game-theoretical consequence provides a generalization of classical logic, in the
study of which we argued concepts from game-theory, economics and social choice
theory become relevant and apposite.
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Logica in conflict

(samenvatting in het Nederlands)

Speltheorie biedt een formeel raamwerk voor de strategische analyse van situaties van
sociale interactie, verder ook wel conflictsituaties of spelen genoemd. Kenmerkend
voor conflictsituaties is dat de uitkomst afhangt van de beslissingen die verschillende
actoren kunnen maken ten aanzien van een individueel te volgen strategie en dat voor
ieder individu de raadzaamheid van een bepaalde keuze essentieel kan afhangen van
de beslissingen die de andere individuen nemen. Zo bezien is conflict een natuurlijk
sociaal verschijnsel.

Naast haar voor de hand liggende relevantie voor de sociale, economische en po-
litieke wetenschappen, heeft de speltheorie ook belangrijke toepassingen binnen zulke
uiteenlopende disciplines als de evolutionaire biologie, wiskundige logica en verzame-
lingenleer. De afgelopen jaren heeft de speltheorie zich ook kunnen verheugen op een
toegenomen interesse vanuit de informatica en de (gedistribueerde)Artificiële Intelli-
gentie.

Binnen de informatica wordt formele logica toegepast bij de specificatie en veri-
ficatie van computerprogramma’s en computationele systemen. Het gedrag van een
complex en gedistribueerd systeem kan in sommige gevallen worden gezien als het re-
sultaat van een interactie tussen verschillende (tot op zekere hoogte) autonome proces-
sen. Bij het redeneren over dergelijke computersystemen wordt met succes een beroep
gedaan op concepten die afkomstig zijn uit de sociale en economische wetenschappen,
waaronder de speltheorie. Deze ontwikkeling vormt de achtergrond van het onderzoek
waarvan in deze dissertatie verslag wordt gedaan, een logische verkenning waarbij het
speltheoretische begripstrategisch equilibriumcentraal staat. De aanpak behelst zo-
wel een logische analyse van speltheoretische concepten (Deel I) als het gebruik van
speltheoretische concepten om logische analyses te verrijken (Delen II en III).

Speltheorie

Speltheoretisch onderzoek betreft situaties waarin meerdere actieve elementen (spe-
lers) kunnen worden onderscheiden die ieder de keuze hebben tussen verschillende
wijzen van handelen (strategiëen). Een combinatie van keuzes waarbij iedere speler
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zijn strategie bepaalt (eenstrategieprofiel) resulteert in een unieke uitkomst van het
spel. Iedere speler wordt bovendien geacht bepaalde voorkeuren te hebben ten aanzien
van de mogelijke uitkomsten. Merk in dit verband op dat de individuen in een con-
flictsituatie zowel gemeenschappelijke als tegengestelde belangen kunnen hebben en
dat puur antagonisme eerder uitzondering dan regel is. Het speltheoretisch vraagstuk
betreft welke beslissing iedere speler het best kan nemen in het licht van zijn indivi-
duele belangen. Het punt is dat de optimaliteit van een bepaalde beslissing voor een
speler kan afhangen van de beslissingen die de andere spelers nemen en een zekere
circulariteit dient zich aan.

In het inleidende hoofdstuk van hun baanbrekende werkTheory of Games and Eco-
nomic Behavior, dat in 1944 zijn eerste editie beleefde, betogen von Neumann en Mor-
genstern dat het speltheoretisch vraagstuk de wiskundige voor een nieuw probleem stelt
waarvan niet op voorhand mag worden aangenomen dat traditionele wiskundige con-
cepten volstaan voor een bevredigende analyse. In het bijzonder beargumenteerden zij
dat een speltheoretische situatie niet zonder meer gerepresenteerd kan worden als een
optimaliseringsvraagstuk, waarbij waarden voor variabelenx0, . . . , xn gevonden moe-
ten worden teneinde de waarde van een functief (x̂0, . . . , x̂n) te maximaliseren. Een
speltheoretische situatie zou beter voorgesteld kunnen worden als een verzameling van
functiesgi(x̂0, . . . , x̂n), waarvan iedere speler eréén tracht te maximaliseren, met dien
verstande dat de variabelen waarvan de verschillende functies afhankelijk zijn kunnen
overlappen en iedere speler controle heeft over slechts een deel van die variabelen. De
traditionele noties van optimaliteit zouden te kort schieten voor de analyse van derge-
lijke problemen en hun rol dient overgenomen te worden door concepten die specifiek
zijn toegesneden op het interactieve en latent circulaire karakter van de materie.

Ter illustratie diene het volgende voorbeeld. Beschouw de situatie waarin twee
spelers,Rij enKol, ieder de keuze hebben tussen twee mogelijk in te nemen houdingen:
een agressieve, als een havik, en een inschikkelijke, als een vredesduif. Hierbij zij
aangetekend dat iedere speler er het meeste baat bij heeft zich als een duif op te stellen
wanneer hij zich geconfronteerd ziet met een havik, terwijl het beter is een havik te zijn
ten opzichte van een duif. De minst nastrevenswaardige uitkomst voor beide spelers
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resulteert indien zowel déeén als de ander zich agressief opstelt; voor beide zou het dan
beter zijn geweest zich inschikkelijk te tonen. De situatie is samengevat in Figuur 1,
waarRij de keuze heeft tussen de rijen enKol tussen de kolommen. De preferenties van
de spelersKol enRij worden aangeduid door, respectievelijk, de getallen rechts boven
en linksonder in iedere cel. Voor beide spelers is het afhankelijk van welke strategie de
ander kiest of het beter is een inschikkelijke dan wel een agressieve koers te varen.

Speltheoretische oplossingsconcepten dienen ertoe wiskundig vat te krijgen op der-
gelijke conflictsituaties. Éen van de bekendste oplossingsconcepten is hetNash equi-
librium, dat uitdrukking geeft aan een intuı̈tieve notie van strategisch evenwicht. Er is
sprake van een Nash equilibrium indien geen van de spelers er voordeel bij heeft een-
zijdig af te wijken van zijn gekozen strategie. In het voorbeeld zijn de Nash equilibria
gegeven door die keuzes waarbijéén zich als een duif en de ander zich als een havik
opstelt.

In bepaalde klassen van spelen blijkt de notie van Nash equilibrium nauw verbon-
den te zijn met een andere belangrijke speltheoretische notie, namelijk dewinnende
strategie. Een handelingswijze geldt als een winnende strategie voor een speler, indien
deze een overwinning garandeert ongeacht de handelwijze van eventuele tegenstan-
ders. Beschouw de specifieke klasse van spelen waarin twee antagonisten figureren en
iedere uitkomst kan worden geclassificeerd als een overwinning voor de ene dan wel
een overwinning voor de andere speler. Het kan eenvoudig worden aangetoond dat
een strategieprofiel een Nash equilibrium is dan en slechts dan als het een winnende
strategie voorschrijft aańeén van de twee spelers.

Voor speltheoretische analyses kunnen ook andere aspecten van een conflictsituatie
in beschouwing worden genomen dan enkel de spelers, de hun ter beschikking staan-
de strategiëen en hun preferenties over de mogelijke uitkomsten. Zo kan bijvoorbeeld
de sequentiële structuur van een spel — d.w.z. de volgorde waarin de verschillende
spelers hun keuzes maken — expliciet worden gemaakt in de zogenaamdeextensie-
ve vorm. Formeel kan een spel dan worden gerepresenteerd als een gelabelde boom,
waarbij de wortel, de interne knopen en de bladeren respectievelijk de begintoestand,
de beslismomenten voor de spelers en de eindtoestanden vertegenwoordigen. De tak-
ken staan voor de keuzes die spelers kunnen maken op een bepaald beslismoment. De
linker boom in Figuur 2 geeft de extensieve vorm van het spel van ons voorbeeld waar-
bij we als additioneel gegeven hebben dat eerstRij en danKol hun opstelling in het
conflict bepalen. Merk op datKol hier de beschikking heeft overvier strategiëen: voor
beide beslismomenten waarKol een keuze moet maken heeft hij twee opties. Hierdoor
kan Kol zijn handelingswijze af laten hangen van de beslissing dieRij neemt op een
eerder moment.

In sommige gevallen is het evenwel onrealistisch aan te nemen dat een speler zijn
handelswijze afhankelijk kan maken van eerder gemaakte keuzes, bijvoorbeeld indien
de informatiestructuur van het spel zodanig is dat hij in het ongewisse blijft wat betreft
de eerder genomen beslissingen. Hierdoor kan het voor een speler onmogelijk blijken
om op basis van de hem ter beschikking staande informatie een onderscheid te ma-
ken tussen verschillende mogelijke toestanden waarin hij zijn keuze moet maken, hier
gerepresenteerd door de beslisknopen. Aldus wordt het hem onmogelijk een strategie
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te spelen die verschillende acties voorschrijft op ononderscheidbare beslisknopen. Dit
epistemische aspect van spelsituaties wordt gerepresenteerd door equivalentieklassen
van beslisknopen,informatieverzamelingen, aan de structuur van een extensief spel toe
te voegen en te postuleren dat op alle beslisknopen in dezelfde informatieverzameling
een speler dezelfde keuze dient te maken. In ons voorbeeld zouden aldus voorKol de
strategiëen die verschillende handelswijzen voorschrijven op zijn twee beslisknopen
uitgesloten worden, indienKol wordt geacht onwetend te zijn wat betreft de eerder ge-
maakte strategiekeuze vanRij. Grafisch wordt een informatieverzameling gerepresen-
teerd als een stippellijn die precies die beslismomenten verbindt die de informatiever-
zameling bevat, zoals in de rechter boom in Figuur 2. Een extensief spel heet een spel
van volledige infomatieindien iedere informatieverzameling slechtséén beslisknoop
bevat, en anders een spel vanonvolledige informatie.

Deel I: Modale karakterisering van Nash equilibrium

De formele talen van modale logica’s zijn bij uitstek geschikt om over relationele struc-
turen te redeneren. Met hun onderliggende boomstructuur lenen extensieve spelen zich
bij uitstek voor een modaal logische analyse. Met dit oogmerk wordt in Deel I van
deze dissertatie een klasse van multi-modale talen voorgesteld — de klasse van de
multi-modale matrixtalen. De semantiek van een dergelijke taal is beperkt tot de klasse
van de zogenaamde spelframes. Ieder spelframe kan op een systematische manier ge-
associeerd worden met een extensief spel van volledige informatie en met een eindige
horizon.

Het blijkt dat, indien een strategieprofiel van een spel een Nash equilibrium is, dit
zijn weerslag vindt in een structurele eigenschap van het spelframe dat met het spel
geassocieerd is. Wat meer zij, we tonen aan dat deze structurele eigenschap van frames
gekarakteriseerd kan worden middels een formuleschema van de betreffende multi-
modale taal. Dat wil zeggen dat er een formuleschemaϑ (s) is, met een parameters
die varieert over strategieprofielen, zodanig dat voor ieder extensief spelE en haar
geassocieerde frameFE geldt dat:

FE ° ϑ (s) dan en slechts dan alsseen Nash equilibrium is van het spelE is.
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Soortgelijke resultaten worden bewezen voor een verfijning van Nash equilibrium, na-
melijk het zogenaamde subspel-perfecte equilibrium. Ook tonen we aan dat de analyse
kan worden volvoerd gebruikmakend van Propositionele Dynamische Logica (PDL),
een bekende multi-modale logica specifiek ontwikkeld om over computer programma’s
te redeneren.

Deel I sluit af met een hoofdstuk dat geheel is gewijd aan de correctheid en volle-
digheid van een Hilbert-stijl axiomasysteem ten aanzien van de klasse van spelframes.

Deel II: Booleaanse Spelen

In de laatste twee delen wordt de aandacht verlegd naar speltheoretische analyses van
propositielogica. Een propositionele taal bevat formules die volgens bepaalde syn-
tactische regels zijn opgebouwd uit propositievariabelen en logische symbolen voor
conjunctie (∧), disjunctie (∨), negatie (¬) en materïele implicatie (→). Aan de basis
van de semantiek voor klassieke propositielogica ligt de notie van een valuatie, een
functie dieéén van de waarheidswaarden ‘waar’ of ‘onwaar’ toekent aan iedere propo-
sitievariabele en,via een inductieve definitie, eveneens aan iedere formule. Klassiek
logisch gevolg kan dan worden gekarakteriseerd als een relatie die bestaat tussen twee
verzamelingen formulesΓ enΘ in geval de waarheid van ten minsteéén formule uit
Θ afgedwongen wordt in alle valuaties waarin alle formules vanΓ waar zijn. Dit is
een conservatieve uitbreiding van het traditionele idee dat een conclusie logisch volgt
uit een verzameling premissen indien de waarheid van de premissen de waarheid van
de conclusie afdwingt. Een formule is logisch geldig, indien haar waarheid wordt af-
gedwongen in alle valuaties.

De bovenstaande informele presentatie kan de indruk wekken dat een valuatie de
waarheidswaarde van een propositievariabele bepaalt als ware het een soort van onaf-
hankelijk gegeven mogelijke stand van zaken. Een gedachte die aan de twee laatste
delen van deze dissertatie ten grondslag ligt is dat propositievariabelen ook als binaire
beslisvariabelen kunnen worden gezien waarvan de waarheidswaardes gecontroleerd
worden door spelers met individuele preferenties ten aanzien van de waarheid van be-
paalde formules. De valuaties, die tezamen de logische ruimte constitueren, kunnen
dan worden beschouwd als de mogelijke uitkomsten van een interactief beslisproces
dat geanalyseerd kan worden als een spel. Valuaties die voldoen aan speltheoretische
oplossingsconcepten, zoals Nash equilibrium en winnende strategie, verkrijgen zo een
logische significantie. Deel II en Deel III van deze dissertatie betreffen de logische
consequenties van deze voorstelling van zaken.

In hoofdstuk 5, het eerste hoofdstuk van Deel II, introduceren weBooleaanse spe-
lenals reprensentaties van de epistemische structuur van eindige extensieve spelen voor
twee antagonistische spelers, 1 and 0, waarvan er maaréén het spel kan winnen. Iedere
interne knoop van een Booleaanse spel is gelabeld met een binaire beslisvariabele en
wel zo dat twee knopen met dezelfde beslisvariabele worden gelabeld dan en slechts
dan als zij element zijn van dezelfde informatieverzameling. De controle over de be-
slisvariabelen is verdeeld over de twee spelers. Een strategie voor een speler is dan een
toewijzing van een binaire waarde aan iedere variabele in zijn beheer. Een strategiepro-
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Figuur 3. Een extensief spel met onvolledige informatie en haar representatie als een Boole-
aanse spel, waarbijRij controle heeft over de propositievariabelea enKol overb.

fiel is dus een toewijzing van binaire waarden aanalle beslisvariabelen en bepaalt aldus
een valuatie voor de propositievariabelen. Een Booleaans spel zonder de allocatie van
controle over de variabelen noemen we een Booleaanse vorm.

Op deze wijze kan met iedere verzameling beslisvariabelen een verzameling Boole-
aanse spelen worden geassocieerd. Merk op dat de strategieprofielen van ieder Boole-
aans spel in zo’n verzameling gelijk zijn. Dit maakt het mogelijk een notie van equi-
valentie tussen Booleaanse vormen te definiëren: twee Booleaanse vormen zijn equi-
valent indien ieder strategieprofiel in beide spelen dezelfde uitkomst bepaalt.

We definïeren ook een aantal operaties op Booleaanse vormen en tonen aan dat de
aldus gevormde algebra van Booleaanse vormen,modulode bovenstaande notie van
equivalentie, een Booleaanse algebra is. Deze algebra is bovendien isomorf met de
Lindenbaum algebra van de klassieke propositionele taal waarvan propositievariabelen
samenvallen met de beslisvariabelen die voorkomen in de Booleaanse vormen. Iedere
Booleaanse vorm kan aldus worden geassocieerd met een unieke propositionele for-
mule envice versa.

Het wordt zo mogelijk de speltheoretische eigenschappen van Booleaanse vormen
te vergelijken met de logische eigenschappen van de corresponderende propositionele
formules. Zo blijkt de logische notie van geldigheid gerelateerd aan het speltheoreti-
sche concept van een winnende strategie. De notie van een winnende strategie heeft
echter betrekking op Booleaanse spelen, waarbij de controle over beslisvariabelen is
gespecificeerd, en niet zozeer op Booleaanse vormen als zodanig, terwijl logische gel-
digheid een eigenschap van formules is. Op natuurlijke wijze kan evenwel de notie van
controle over variabelen verdisconteerd worden in de definitie van logische geldigheid.
Laat∆ een deelverzameling propositievariabelen zijn. Een formuleϕ is dan∆-geldig
indien het mogelijk is de waarheid vanϕ af te dwingen door een keuze te maken voor
de waarden voor de propositievariabelen in∆. Traditionele logische noties blijken
randgevallen van dit gerelativeerde concept; zo valt klassieke geldigheid samen met
ø-geldigheid, en klassieke vervulbaarheid metA-geldigheid, waarA de volledige ver-
zameling propositievariabelen is. Meer in het algemeen hebben we de volgende cor-
respondentie: een formule is∆-geldig dan en slechts dan als de speler met controle
over∆ een winnende strategie heeft in de corresponderende Booleaanse vorm.
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De notie van∆-geldigheid kan op natuurlijke wijze worden uitgebreid naar een
gerelativeerd concept van gevolg. Dan geldtΓ ²∆ Θ indien het mogelijk is door
waarheidswaarden aan de propositievariabelen in∆ toe te kennen, te garanderen dat
tenminsteéén formule inΘ waar is als alle formules inΓ waar zijn. In het zesde
hoofdstuk wordt deze gerelativeerde geldigheidsnotie bestudeerd, waarbij zich tenmin-
ste twee vragen aandienen. Enerzijds is er het probleem, voor welke theorieënΓ enΘ
het het geval is datΓ ²∆ Θ, gegeven een verzameling propositievariabelen∆. Voor
iedere deelverzameling van propositievariabelen∆ wordt de notie van∆-gevolg van
een correcte en volledige sequenten-calculus voorzien. Anderzijds wordt de vraag on-
der de loep genomen voor welke verzamelingen van propositievariabelen∆ het zo is
datΓ ²∆ Θ, voor gegeven theorieënΓ enΘ.

Deel III: Speltheoretisch gevolg

Deel III leidt tot een speltheoretische generalisering van de klassieke notie van logisch
gevolg. Net als in Deel II, staat hier staat de gedachte centraal dat valuaties kunnen
worden beschouwd als de uitkomsten van een strategisch spel, waarbij iedere speler
waarden toekent aan een apart deel van de propositievariabelen waarover hij controle
heeft. Het traditionele probleem van logisch gevolg betreft welke conclusies kunnen
worden getrokken gegeven de waarheid van bepaalde premissen. We beargumenteren
dat aan dit probleem een optimaliseringsprobleem ten grondslag ligt. De vraag is dan
wat het analoge speltheoretische probleem is. In ons voorstel wordt de waarheid van de
premissen bepaald door individuele keuzes van de spelers ten aanzien van de variabelen
die ze controleren. Dit geeft aanleiding het volgende probleem dat de kern vormt van
Deel III: welke conclusies mag men trekken ten aanzien van de uitkomst van een spel
waarbij iedere speler een individuele verzameling van premissen poogt waar te maken
door een strategische keuze te maken ten aanzien van de propositievariabelen waarover
hij controle heeft?Dit is een logische vraag waaraan een speltheoretisch probleem ten
grondslag ligt.

Bij het bepalen van de formules die klassiek volgen uit een theorieΓ zijn seman-
tisch gezien sommige valuaties van groter belang dan andere, namelijk die waarin alle
formules inΓ waar zijn. Dit beroep op waarheid is in overeenstemming met het beeld
van valuaties als mogelijke standen van zaken. Worden valuaties daarentegen voor-
gesteld als de uitkomsten van een strategisch spel dan ligt het meer voor de hand de
aandacht te richten op die valuaties die zich onderscheiden vanwege hun speltheoreti-
sche eigenschappen.

Hoofdstuk 7 is gewijd aan de logische analyse van een gevolgrelatie tussen theo-
rieën die gebaseerd is op de speltheoretische notie van een winnende strategie. Laat
voor iedere theorieΓ en voor iedere deelverzameling∆ van propositievariabelen,
G(Γ,∆) een spel zijn dat de speler met controle over de propositievariabelen in∆
wint indien de uitkomst een valuatie is die alle formules inΓ waar maakt. Met be-
trekking tot een verzameling∆ van propositievariabelen, geldt een formuleϕ dan als
een gevolg van een theorieΓ dan en slechts dan alsϕ het geval is in alle valuaties
die resulteren als de speler met controle over∆ een winnende strategie speelt in het
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spelG(Γ,∆). Deze notie van gevolg wordt onder meer voorzien van een bewijsthe-
oretische basis in de vorm van een sequentencalculus, waarvan we de correctheid en
volledigheid aantonen.

Ten einde meer recht te doen aan het speltheoretische karakter van de materie,
wordt in de laatste twee hoofdstukken de scope van de analyse verruimd door meer
expliciet spelen in beschouwing te nemen waarin meerdere spelers deelnemen die bo-
vendien zowel tegengestelde als gemeenschappelijke belangen kunnen hebben. De rol
van het concept van een winnende strategie wordt bovendien overgenomen door een
variant van het speltheoretische oplossingsconcept Nash equilibrium.

Dientenbehoeve worden in Hoofdstuk 8 de zogenaamdegedistribueerd evaluatie-
spelengëıntroduceerd. Een gedistribueerd evaluatiespel geeft formeel invulling aan de
notie van een spel waarin iedere speler de waarheid van een individuele theorie “zo-
veel mogelijk” poogt te bewerkstelligen door een strategische keuze te maken voor de
propositievariabelen die hij controleert. Wat het exact betekent meer of minder van een
theorie waar te maken, maken we formeel precies door iedere theorieΓ op eenduidige
wijze te assocïeren met een reflexieve en transitieve relatieρ (Γ ) op de valuaties. Voor
π een partitie van de propositievariabelen en{Γi}i∈π een familie van theoriëen metπ
als indexverzameling, isG

({Γi}i∈π
)

het gedistribueerde evaluatiespel waarbij iedere
speler controle heeft over precieséén blok vanπ en de preferenties van de speler met
controle over het bloki vanπ gegeven zijn door de relatieρ (Γi). Bij de evaluatie van
gedistribueerde evaluatie spelen hanteren wijmaximum equilibriumals oplossingscon-
cept. Maximum equilibrium is een conservatieve uitbreiding van Nash-equilibrium die
ook van toepassing is op partiële preferentierelaties.

Gedistribueerde evaluatiespelen vormen een omvangrijke doch stricte subklasse
van de volledige klasse van strategische spelen met valuaties als strategieprofielen.
Hoofdstuk 8 sluit af met een resultaat dat betrekking heeft op de formele karakterise-
ring van gedistribueerde evaluatiespelen in dit verband.

Hoofdstuk 9 staat in het teken van de een speltheoretische gevolgtrekkingsrela-
tie tussen families van theorieën die partities van de propositievariabelen als index-
verzameling hebben. Deze speltheoretische notie van speltheoretisch gevolg laat zich
evenwel het best begrijpen als een relatie tussen een familie theorieën{Γi}i∈π en een
formuleϕ. Dan geldtϕ als een speltheoretisch gevolg van{Γi}i∈π indienϕ het geval
is in alle valuaties die een maximum equilibrium zijn in het gedistribueerde evaluatie-
spelG

({Γi}i∈π
)
.

Voor een eenvoudig voorbeeld beschouwe men een propositionele taal met slechts
twee propositievariabelen,a en b, en de partitie

{{a} , {b}}. Stel dat de speler met
controle overa de waarheid van de formulea ∧ ¬b als doel heeft, terwijl de andere
speler, met controle overb, het liefst de formule¬ (a∨ b) waar ziet. De spelmatrix van
deze situatie is weergegeven in figuur 4. Er zijn twee equilibria in dit spel, namelijk de
valuaties{a} en{a,b}. Aangezien de formulea waar is in beide equilibria, geldta als
een speltheoretisch gevolg van de familie

{ {a ∧ ¬b}{a} , {¬(a ∨ b)}{b}
}

.
Klassiek logisch gevolg is het randgeval van speltheoretisch gevolg waarbijéén

speler controle heeft over alle propositievariabelen. Meer in het algemeen blijkt spel-
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ø {b}
1 0

ø
0 0

0 0
{a}

1 0

Figuur 4. De speler die rijen kiest heeft controle over de propositievariabelea; de andere spe-
ler, met de keuze tussen de kolommen, bepaalt de waarheidswaarde vanb. De dikgedrukte
uitkomsten zijn de maximum equilibria.

theoretisch gevolg inbedbaar in klassiek logisch gevolg envice versa. Deze resultaten
worden verkregen dankzij een verzamelingtheoretische karakterisering van speltheo-
retisch gevolg. Hierbij wordt een beroep gedaan op benaderingsoperaties die bekend
zijn uit de theorie van de zogenaamderough sets. Dit maakt dat speltheoretisch gevolg
formele eigenschappen als monotonie en beslisbaarheid overerft van klassiek gevolg.
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