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Preface

Game theory provides a framework for the mathematical analysis of interactive situa-
tions in which the individual expediency of each agent’s choice of action may essen-
tially depend on the choices the other agents make. For this reason it has sometimes
been suggested that game theory had perhaps better been called ‘interactive decision
theory’ or ‘the analysis of conflict’. We take it that conflict, thus conceived, is a com-
mon and natural phenomenon inherent in social interaction.

One of the concerns of formal logic, traditionally the study of valid reasoning, is
with formal languages and the extent to which they can be employed to describe and
reason about abstract structures in a mathematically precise way. Within computer
science logics are commonly used for the specification and verification of computer
programs. The behavior of a complex computer system can in some cases be under-
stood as the result of interaction between various autonomous processes and for its
precise description an appeal to the conceptual apparatus of the social and economic
science has proved to be fruitful.

This forms the background to this dissertation, which tells of an explorative in-
vestigation into logic and game theory. Central to its concerns is the game-theoretical
concept of strategic equilibrium, which intuitively reflects a state from which no one
wishes to deviate by unilaterally making another decision. In the first part of this thesis
we give a logical analysis of this notion, using modal logic for the purposes of game
theory. The second and third part a perspective is assumed in which game theory serves
the purposes of logic. We argue how game-theoretical concepts, in particular notions
of strategic equilibrium, can be invoked to enrich logical analyses. This leads up to a
proposal for game-theoretical concept of logical consequence.

This dissertation recounts the culmination of these investigations, which were per-
formed in the years 1999 to 2004 at the Institute of Information and Computing Sci-
ences (ICS) at Utrecht University in the Intelligent Systems group of Prof. Dr. John-
Jules Meyer. The research is part of by the Collective Agent Based Systems project
(CABS) of the Faculty of Electrical Engineering, Mathematics and Computer Sci-
ence (EEMCS) at the Delft University of Technology. The CABS project pursues
the development of specification methods and algorithmic techniques for large-scale
agent-based systems.

Numerous acknowledgements of support and encouragement during my writing
this thesis are in order. First and for most, my gratitude is due to my supervisors John-
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Jules Meyer, Wiebe van der Hoek and Cees Witteveen. John-Jules is rightly praised for
his effervescence and boundless enthusiasm. His encouragement remained unabated
even when, after a few months, my investigations led away from modal specification
languages for multi-agent systems — which had originally been envisaged as the sub-
ject of my thesis — into the field of game theory. In Wiebe | have always found a
person who always took great interest in my work. Our discussions on logic were
always laced with humor; we have had many a good laugh over a proof or a coun-
terexample together. | thank Cees for his confidence in my work — even if | could
not always redeem my promises to involve coalitions in it — and for him letting me
prepare a meal of escargots for his wife Marijke. | will not lightly forget the friendly
spirit in which the meetings with the four of us were held.

Special thanks go to Johan van Benthem, who through the years has always en-
couraged and inspired me. | also like to thank him, Albert Visser, Harrie de Swart and
Frank Veltman for their willingness to participate in the reading committee.

The text has also greatly benefitted from the exchange of ideas with colleagues
and friends at various times and occasions. | am therefore indebted to Huib Aldewe-
reld, Leon Aronson, Alexandru Baltag, Annette Bleeker, Frank de Boer,8\Bds,

Jan Broersen, Boudewijn de Bruin, Martin Caminada, Mehdi Dastani, Jurriaan van
Diggelen, Frank and Virginia Dignum, Hans van Ditmarsch, Paul Dunne, Francien
Deschesne, Rogier van Eijk, Jelle Gerbrandy, Robert Goijers, Davide Grossi, Remko
Helms, Koen Hindriks, Joris Hulstijn, the members and PhD students of the ICS, Ro-
salie lemhoff, Geert Jonker, Joost Joosten, Barteld Kooi, Meindert Kroese, Roman van
der Krogt, Willem Labuschagne, Jeroen Lamers, Henk Jan Lebbink, Alessio Lomus-
cio, Sieuwert van Otterloo, the PhD students in the Dutch Research School in Logic
(OzsL), Marc Pauly, Rohit Parikh, Cees Pierik, Henry Prakken, Roald Ramer, Birna
van Riemsdijk, Robert van Rooy, Merlijn Sevenster, the PhD students in the Dutch
Research School for Information and Knowledge Systems (SIKS), Richard Starmans,
Allard Tamminga, those whom | forgot to mention here, Leon van der Torre, Hans
Tonino, Jeroen Valk, Javier Vazquez Salceda, Yde Venema, Gerard Vreeswijk, Wieke
de Vries, Mathijs de Weerdt, Marco Wiering and Jonne Zutt. The people in the ICS,
in general and Intelligent Systems group in particular, made for a stimulating working
environment and lively conversation; | thank them all. Special thanks are due to Wilke
Schram, who secured me workplace in the Institute when my appointment expired and
the ICS for letting him do so. Lydia Franken always extended the lending period of my
books when they threatened to expire, thus making up for my habitual tardiness.

My friends in Amsterdam, Utrecht and elsewhere have played in their various ways
played an essential part in the finalization of this the§isy, Vanessa Dirksen was
great to share the PhD blues with, &€ Boor, Arthur Gerla and Job Smeltink were
incomparable as co-organizers of ttdhodommit Elena Brosio volunteered as my
occasional sidekick, and Piter de Weerd has been inimitable in his suggestions for
covers and mottos.

Finally I am most grateful to my parents and my sister Petra without whose love
and support this book would not be.

Utrecht, July 2004
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Chapter 1

Introduction

Conflict of interest is inherent in any social environment in which several volitional
individuals interact. Such disputes are nothing to worry about or to be ashamed of,
provided that no unseemly means are resorted to in resolving them. The obvious ques-
tion to ask is how to make the best of such situations and how their excesses can be
mitigated.

A situation of conflict may have various possible outcomes, with respect to which
the individuals entertain particular and possibly divergent preferences. Moreover, each
of the individuals exerts control over some of the variables that determine the even-
tual outcome and the individual decisions, taken together, determine the behavior of
the collective. The way each individual's preferences relate to the individual’'s powers
lends a formal structure to conflict situations that renders them amenable to mathemat-
ical investigation. Also other strategic aspects distinguishable in situations of conflict
— such asg.g, the order in which the individuals are to move and the individuals’
epistemic characteristics or their attitudes towards risk — allow for formalization. The
mathematical analysis of conflict and other situations of social interaction belongs to
the subject matter adhe theory of gamesr simplygame theory

Games of strategy — in contrast to games in which an element of skill is predom-
inant — present examples of conveniently delimitated conflict situations. Hence the
name “game theory” as well as the typical accompanying terminology featuring play-
ers, wins and losses, strategies and movestr#tegyis here understood as a complete
plan of playing a game, prescribing a move in every contingencgtrétegy profile
is a selection of strategies, for each player one, determining a unique outcome. These
notions will be given mathematically precise definitions presently.

An issue that immediately suggests itself in this context concerns the judiciousness
of the different courses of action that are open to the individuals in a particular conflict
situation. This is by no means a trivial question and in the present formulation not
a particularly clear one. There are various perspectives to take with respect to what
judiciousness exactly comes down to and which aspects of conflict situations are to
be taken into account. It is a well-known fact of everyday life that everyone pursuing
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4 INTRODUCTION

brazenly his own ends may result in a social state for which there exists another that is
more desirable for all. Th&ragedy of the Commoneriginally being the overgrazing

of communal pastures as a result of each farmer unostentatiously exploiting them more
intensively than his sustainable equal share permits, emblematizes a phenomenon that
is all too familiar in social contexts. In the more formal setting of the theory of games,
the incongruity of individual expediency and social desirability is concisely exempli-
fied by the infamoudPrisoner’s Dilemma(cf. Section 1.1 of this introduction). An
important task of the theory of games is to provide suitable and mathematically precise
concepts to appraise the issue of the various ways in which behavior on the individ-
ual and the collective level are interrelated and to study their formal properties. Among
these are the so-callsdlution conceptsvhich, drawing on its mathematical structure,
associate with each game a collection of outcomes that are optimal or formally salient
from a particular perspective of (individual) expediency.

When assessed from the formal point of view of game theory, conflict situations
evince a formal similarity with structures that may be reencountered in domains of
research that need not necessarily or exclusively corfzeémmaninteraction as such.
Conflict provides a fruitful metaphor for any situation that depends on various vari-
ables the control over which is distributed among different forces with individual ends
or among processes designed for different purposes. This makes for a wide applicabil-
ity of game theory also outside the social and economic sciences, for which it had orig-
inally been conceived. The employment of game-theoretical concepts and techniques
are appropriate for any situation that can be conceived of as a system consisting of
multiple active entities whose individually guided behavior determines, at least partly,
the behavior of the system as a whole. Thus, game theory has proved itself relevant
to such diverse areas of research as evolutionary biology, set theory, logic and, most
recently, also to computer science and artificial intelligence.

This thesis is an exponent of the broadening scope of game theory. It concerns both
logics designed to reason in a formally precise manner about games and the game-
theoretical analysis of propositional logic.

Central to our logical investigations will be the game-theoretical notioNash
equilibrium it being one of the best-known and most widely applied solution concepts.
In the most informal of terms, a strategy profile is a Nash equilibrium if no player
benefits relative to her individual preference order by unilaterally deviating from it.
As such Nash equilibrium captures a notion of stability for the possible outcomes of
a game, though its precise significance continues to be a much discussed and disputed
philosophical issue.

In Part I, we will argue that a strategy profile being a (subgame perfect) Nash
equilibrium in a particular game reflects in a structural property of a Kripke frame
associated with the game in question. We find that this structural property can be
characterized by formula schemes in suitably chosen multi-modal logics.

In the latter two parts we come to construe propositional variables of propositional
languages as decision variables, each one of which in the control of one of a number
of players. This makes that formulas and theories impagEnae-theoreticastructure
on logical spacd,e., the set of valuations for the respective language. Part Il concerns
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a class of strictly competitive games in which control over the propositional variables
is distributed over two antagonistic players and which we find constitutes a Boolean
algebramoduloa notion of strategic equivalence. In the final part, control over the
propositional variables may be distributed over a larger number of players. Logical
space then assumes the character of a non-strictly competitive multi-player game. A
notion of strategic equilibrium closely related to Nash equilibrium is then deployed to
formulate a game-theoretical concept of entailment, which generalizes classical conse-
guence.

These researches are ultimately inspired by developments within the fiBld-of
tributed Atrtificial Intelligencg(DAI), which concerns the design and study of environ-
ments in which automated intelligent systems or agents interact (multi-agent systems
or MAS). This interaction may be between different agents each designed to achieve an
individual goal or within a group of agents trying to solve a common problem together.
Such distributed environments instance typically the kind of strategic situation that the
theory of games is concerned with. Game theory provides Distributed Atrtificial Intel-
ligence with suitable notions to conceptualize and describe distributed computational
environments from a formal and strategic perspective. Reasoning about them formally,
however, requires logic.

Before entering upon our logical explorations, some further reflection on the theory
of games, the nature and role of its solution concepts and its relevance to logic and DAI
is in order.

1.1 Game Theory and Solution Concepts

In their pioneering workl heory of Games and Economic Behawon Neumann and
Morgenstern maintained that the development of classical mathematics had to a great
extent gone hand in hand with the modern advancement of the natural scieinees (
Neumann and Morgenstern (1944), pp. 6-7). In comparison, the formulation of proper
mathematical concepts for the social sciences had been paid only scant attention to.
Still, they claimed that the analysis of situations of conflict faces the mathematician
with a conceptually new problem that had been “nowhere dealt with in classical math-
ematics” (bid., p. 11). There is nprima faciereason to suppose that the mathematical
methods developed with a view on applications in the natural sciences would also be
suitable for the social sciences. The theory of games was to provide formal and precise
concepts to cope with this unfamiliar problem. Indeed, Luce and Raiffa state in their
classic introduction to the field that:

[Glame theory is one of the first examples of an elaborate mathematical devel-
opment centered solely in the social sciences. The conception derived from non-
physical problems, and the mathematics [...] was developed to deal with that con-
ception. (Luce and Raiffa (1957), p. 11)

In a situation of conflict, the individuals entertain idiosyncratic preferences as to
the possible outcomes of that situation. Still, the individuals exercise in general limited
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Figure 1.1. Sherlock Holmes and Watson at Canterbury statiofhia Final Problem

control over the variables that determine the eventual outcome. We refer to an individ-
ual player’s choice for the values of the variables in her controlsisategy If there is

only one individual — even if she is not in control of all variables and some of them are
left to chance — classical mathematics still provides the techniques to calculate which
(randomized or mixed) choice of values for the variables in her control guarantee her an
optimum outcome. This special case involving a single player only is studied by deci-
sion theory. However, things have been argued to change radically if there are multiple
players involved. The problem is then that for each individual it may also depend on the
strategies the other players adopt which outcome will come about. The best outcome
an individual can achieve relative to a particular choice of strategy by the opponents
may differ widely in desirability from the best he can achieve relative to another choice
of strategy by the opponents. Moreover, which strategy guarantees an individual the
best attainable outcome may depend on the strategies his opponents adopt. Waiting in
front of the bank may be your best strategy for meeting a person if that person adopts
the same strategy. Things, however, are quite different if the other person decides to
search for you in the lobby of the hotel. Thus, for each player the optimality of playing

a particular strategy may depend on the strategies his opponents choose. If, moreover,
we assume that there be some proportionate correlation between the optimality of a
player's strategy and that player adopting it, the optimality of the players’ strategies
may become mutually dependent and a circle becomes appaferntof Neumann
(1928), p. 295, and Luce and Raiffa (1957), p. 61).

Consider,e.g, the case of Sherlock Holmes, who, trainbound for the Continent,
finds himself being pursued by his murderous adversary Moriarty, who happens to be
on another train. If Moriarty gets off at Canterbury, Holmes’ optimal strategy is to
stay on the train. However, if Holmes acts accordingly, Moriarty’s optimal strategy is
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to remain on his train as well. If, on the other hand, Moriarty decides to remain on
the train, Holmes had better make an intermediate stop at Canterbury, jeopardizing the
expediency of Moriarty’s strategy. Which strategy is optimal for Holmes thus becomes
dependent on which strategy is optimal for Moriarty afe versat

Formally, a situation of conflict can be pictured as a collection of functions, one for
each individual caught in the situation. The values these functions take are, moreover,
dependent on the values of the same set of variables, the control over which has been
distributed over the individuals (and possibly chance). Each of the individual endeavors
to maximize his function with respect to his own preferericegon Neumann and
Morgenstern write:

Thus each participant attempts to maximize a function [...] of which he does not
control all variables. This is certainly no maximum problem, but a peculiar and
disconcerting mixture of several conflicting maximum problems. Every participant
is guided by another principle and neither determines all variables which affect his
interest. (von Neumann and Morgenstern (1944), p. 11)

Von Neumann and Morgenstern argue that, due to the mutual dependence of the op-
timality of the players’s strategies, no player can treat the variables controlled by his
opponents as statistical parameters, which assume values with a particular probabil-
ity:

Every participant can determine the variables which describe his own actions but
not those of the others. Nevertheless, those “alien” variables cannot, from his point
of view, be described by statistical assumptions. ibid(, p. 11)

New mathematical concepts had to be developed to deal with this kind of problem and
take over the role of the optimum, which was no longer thought to be feasible in this
context €f. ibid, p. 39). Because of the formal and structural similarities between
strategic parlour games and the more general situations of conflict, as studied by eco-
nomics and other social sciences, the mathematical theory that had to achieve this was
coined thetheory of gamesThe solution concepts of game theory are to take over the
role of the optimum in “solving” a game.

This view that the multi-player case is of an essentially different nature than the
single-player case has met considerable opposition in the past few decades. The point
von Neumann and Morgenstern make relies on their objective interpretation of proba-
bility. It has been argued that by reverting to a subjective conception of probabilities,
as advanced bye.g, Savage (1954) and Ramsey (1926), it is possible to model an
agent’s expectation about the variables controlled by his opponents as statistical vari-
ables. Then each individual can calculate his optimal strategy in a game as were it a
regular decision problem, with him in control of some variables and chance of the re-
maining ones. Conceived thus, decision theory and game theory are two manifestations

1The example is based on Conan Doyl@le Final Problem Also compare Schelling (1960), p.87.
Structurally the situation is much similar to the well-known gam#&latching Penniegcf., page 121 of this
thesis, below).

2In von Neumann (1928) Gesellschaftsspigbr parlour game, is expressly defined in these terms.
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of a single theory of rational choice. This point has been emphasized and elaborated
upon in Spohn (1982), Bernheim (1984), Pearce (1984), Brandenburger and Dekel
(1987) and Tan and da Costa Werlang (1988).

Notwithstanding the legitimacy and the technical and conceptual intricacies of this
criticism on von Neumann and Morgenstern’s exposition, there is a sense in which a
situation of conflictis a ‘disconcerting mixture of several conflicting maximum prob-
lems’ to which convolutions no justice is done if construed as a mere optimization
problem. Although each individual might be faced with the problem of optimizing a
function, there is conceptually no unique principle of maximization for the collection
of functions taken together. The fact that we are dealing with a collection of functions
in a strategic conflict, makes that there are at least two perspectives, a collective and
an individual one, from which to single out some outcomes as somehow optimal or
otherwise significant. From the collective perspective, one could try to find a common
principle of optimality for all individuals together, with respect to which the optimal
outcomes can then be distinguisfedirom the other, individual, point of view, the
optimal outcomes of the combined problem could be taken as those outcomes that
combine individually optimal strategies.

The two perspectives suggest different requirements for their respective notions of
optimality to comply with. An outcome is callefdareto efficientf there is no other
outcome in which all individuals are strictly better off. From the collective vantage
point, one may look for outcomes that at least comply with this requirement. It be
noted in passing that the notion of efficiency does not take into account the control of
the individuals over the various variables. On the other hand, an individual’s strategy
is said to(strictly) dominateanother of her strategies, if for each possible choice of
strategy by her opponents, adopting the former invariably leads to (or is expected to
lead to) an outcome that she values higher than the one that would result if she were to
adopt the latter strategy. From the individual point of view, the optimal outcomes are to
be sought among combinations of individuals’ strategies none of which are dominated.

Although the Pareto efficient outcomes and the undominated ones coincide if there
is only one individual, they may be even disjoint if there are multiple individuals in-
volved. The latter phenomenon is epitomized by the familiar but illustrative Prisoner’s
Dilemma, attributed to A.W. Tucker. The story that goes with it is equally well-known;
we give here the version of Luce and Raiffa.

Two suspects are taken into custody and separated. The district attorney is certain
that they are guilty of a specific crime, but he does not have adequate evidence to
convictthem at a trial. He points out to each prisoner that each has two alternatives:
to confess to the crime the police are sure they have done, or not to confess. If they

3Also compare Franssen (1997), especially Chapter 3.

4The problem of combining individual preferences into an acceptable social preference order is a notori-
ously difficult one, which is studied by social choice theory. One of the most perplexing results of this respect
is Arrow’s famous theorem, which states the impossibility of a procedure to derive a social preference order
from individual values, if the former is to satisfy certain intuitive properte#sArrow (1963)). Relaxing the
condition that a preference order, collective or individual, should be connected, as we will sometimes do in
this thesis, however, sidesteps this issue.
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Deny Confess
2 3

Deny

Confess

Figure 1.2. The game matrix of th€risoner's Dilemma The figures in the top right corners

of the cells indicate the ordinal preferences of the player who chooses columns. The figures in
the bottom left corners of the cells those of the player who chooses rows. The outcome that
would result if both players avoid playing dominated strategies is represented by the cell bottom
right. Yet, both players are better off if the outcome in the top left cell came about. This is a
manifestation of a vicious phenomenon inherent in social interaction.

will both do not confess, then the district attorney states he will book them on
some very minor trumped up charge such as petty larceny and illegal possession
of a weapon, and they will both receive minor punishment; if they both confess
they will be prosecuted, but he will recommend less than the most severe sentence;
but if one confesses and the other does not, then the confessor will receive lenient
treatment for turning state’s evidence whereas the latter will get “the book” slapped
on him. (Luce and Raiffa (1957), p. 95)

The awkward situation the prisoners are in is depicted in Figure 1.2, with the figures
in the top-right corner of each cell indicating the ordinal preferences of the one pris-
oner, Bonnie, say, and those in the lower-left corner those of the other, Clyde. Here,
all outcomes are Pareto efficient, except the one that results if they both confess. In
contrast, for each of them to confess is the dominant strategy. If the one remains silent,
other achieves a better outcome by confessing. Also if the one decides to squeal, the
other had better do so as well. Still, if the two of them refuse to betray his or her
partner in crime, and thus refrain from playing their dominant strategies, an outcome
is achieved that is preferred by both.

The Prisoners’ Dilemma shows that some outcomes may be salient from the col-
lective perspective and others from the individual and only when considered in unison
they may point at socially significant phenomena that would have escaped notice oth-
erwise. Much of the fascination of game theory, methinks, derives from this tension
between the collective and the individual level of analysis. Any scientific theory of
conflict should provide apposite concepts that do justice to this distinction. Suppose
that in the Prisoners’ Dilemma, Bonnie and Clyde somehow achieve a Pareto efficient
outcome. Any explanation of their behavior should also account for at least one of them
playing a dominated strategy. Similarly, if they both play their undominated strategies,
one should explain what there was in the situation that made them end up in an outcome
that fails to be Pareto efficient.
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LaTITUDE NORTH EQUATOR . . .
L The Bellman himself they all praised to the skies

Such a carriage, such ease and such grace!
Such solemnity too! One could see he was wise,
The moment one looked in his face!

ToRRID 20N
102 wiaos

He had bought a large map representing the sea,

Without the least vestige of land:

And the crew were much pleased when they found it to be
A map they could all understand.

MERIDIAN
xoxidx

Whats the good of Mercators North Poles and Equators,
Tropics, Zones, and Meridian Lines?

So the Bellman would cry: and the crew would reply,
They are merely conventional signs!

WEST
Isvd

Other maps are such shapes, with their islands and capes!
But weve got our brave Captain to thank

(So the crew would protest) that hes bought us the best—
A perfect and absolute blank!

This was charming, no doubt: but they shortly found out
That the Captain they trusted so well

Had only one notion for crossing the ocean,

And that was to tingle his bell.

NoRTH PoLE
Huwaz

NapiR
aanuoNoT

PR (from Lewis Caroll'sThe Hunting of the Snajk
Scale of Miles. Ocean chart

Figure 1.3. The Bellman’s ocean chart ithe Hunting of the Snark

Thus, the construal of a situation of conflict as a collection of functions each to
be maximized according to a different principle, gives rise to different mathematical
questions to be asked, depending on the perspective one takes. Appropriate concepts
are called for to get to grips with this type of problem and the interaction between the
collective and the individual level of analysis. Perhaps the situation can be compared
with the sea captain who is used to get his bearings from the stars but now finds him-
self lost in a heavily forested and mountainous region. Although the stars may be of
considerable help to him, he will also have to be proficient in the employment of such
concepts as peaks and passes, glaciers and valleys as well as with that of the tree line.

This simile chimes in well with a general image of science propounded by Aumann
(Aumann (1985)). What the sciences have in common is that ultimately they mean to
improve our understanding of particular phenomena of our world in their abstract and
concrete manifestations. At the most fundamental level, the sciences are to develop
concepts that help us organize, systematize and reason about the phenomena belonging
to a particular field of research and these concepts are to be judged by their success in
doing so. The fundamental concepts of a science are not isolated. Rather, the way they
are interconnected constitutes the scientific edifice. Moreover, if the concepts involved
are of a formal nature, their mutual relationships can be analyzed using mathematical
methods. By raising the analysis to a more abstract level, mathematical study of a
science’s concepts may bring to light expected or unexpected structural correlations
with other sciences and open up new fields of application. These remarks hold in
particular for the theory of games.

However sweeping these generalities may be, they point at a feature of the function
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of the game-theoretical solution concepts when actually put to use in a concrete field of
application. Game theory provides concepts that help us to get to grips with situations
in which a conflict of interests may arise. The various solution concepts facilitate this
endeavor by summarizing information present in the formal description of a conflict
situation as seen from a particular but strategic perspective. Each of them highlights
different specific features and abstracts from others. Without such delimitative con-
cepts we are lost like the Bellman'’s crew in the hunting for the SrefrlEigure 1.3).

On this conception, the primary task of game-theoretical solution concepts is not
the prediction or description of actual or idealized behavior. Neither is it their role
primarily of a normative nature, in the sense that they prescribe how people or rational
self-interested agenthouldact in conflictual situations. Rather, they andicators
each of them illuminating a situation from a particular angle and emphasizing some of
its characteristics at the expense of disregarding others. They should not primarily be
judged by their predictive or normative power but rather by how they help the scientist
to get a firm hold on and organize his subject matter. This holds for the social scientists
investigating human social behavior and the champions of DAI alike. Aumann puts it
as follows:

People ask, since game theory offers a multiplicity of solution concepts, what good
can it be? Which solution notion is the right one? How do people ‘truly’ behave?
[...] None of the solution notions tells us how people truly behave. [...] Rather,

a solution notion is the scientists’ way of organizing in a single framework many
disparate phenomena and many disparate ideas. (Aumann (1985), pp. 34-35)

In another article (Aumann (1997), especially pp. 10-12 and p. 25), Aumann makes
an apt comparison between game-theoretical solution concepts and statistical concepts
as different as the mean and the median. In virtue of their clear intuitive content, in
their own way, they help the statistician — or anybody employing statistical methods
for that matter — to attain some kind of hold on various kinds of distribution.

In a similar way, the various solution concepts throw light on the social situations
from different angles. The game-theorist develops appropriate solution concepts and
investigates their properties and interrelationships. As the concepts are largely of a
formal nature, game theory is to a great extent a mathematical affair and the methods
employed cannot be too rigorous.

The significance of these concepts for the sciences applying game theory, however,
should derive from somewhere else. A solution concept is significant if it helps the
working scientist in the field to understand situations of social interaction. Which
conclusions she is to draw from the way they are instantiated in a situation of conflict
is ultimately up to her own scientific judgement and integrity.

Formal solution concepts single out outcomes that stand out from the others in a
conflict situation in virtue of its mathematical description as a game. What conclu-
sions to draw from the way they are instantiated in a particular situation of conflict
is ultimately up to the scientist applying game theory. In particular, there nead be
intrinsic connection between solution concepts and prediction, description or prescrip-
tion of actual behaviorE.g, in the Prisoner’s Dilemma, the outcome with both Bonnie
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and Clyde speaking is the only outcome that is not Pareto efficient, still it is the only
combination of the players’ strategies that are not dominated. This says something
significant about the situation and may help the scientist to assess the situation. How-
ever, what conclusions to draw from these data is not univocal and may depend on the
application or kind of explanation the working scientist has in mind.

Game theory is often introduced as making particaEsumptionss to the ratio-
nality of the players. In this contex¢.g, expected utility maximization is presented
as an assumption that goes with a particular model of human behavior and the employ-
ment of a particular solution concept. This then raises the question as to the accuracy of
this model and to what extent people are in fact expected utility maximizers. Although
this question is interesting enough in itself, the significance of game theory does not
hang on its fulfilment. What is at issue are the insights in actual human conduct af-
forded by the way it relates to the idealized behavior of a perfectly rational expected
utility maximizer. This points at a considerably weaker connection. There is nothing
wrong with making explicit, say, the epistemological conditions that ideal expected
utility maximizing decision makers are to comply with if they are to arrive at an out-
come distinguished by a particular solution concept. It is possible to establish such a
relation betweene.g, common knowledge of all players being expected utility max-
imizers and iterated strict dominance. However, it should be borne in mind that this
says something about the perspective from which a solution concept assays a situation
of distributed decision making, rather than about the assumptions it makes with respect
to actual human behavior.

As indicators, the important thing for solution concepts is how they coherently
relate to one another in different games and how they relate to other solution concepts
in the same game. Moreover, their role in explanations requires there be some balance
in how much detail of a situation of conflict they should bring to the fore. On the one
hand, a solution concept should be able to make distinctions that are detailed enough to
be of interest for the working scientist. On the other hand, by taking into account too
many features that are specific to a situation, an explanation may becarbs@mum
per obscuriusexplaining the obscure by the even more obscure. After all, one of the
canons of explanation is to construe a particular phenomenon as a manifestation of a
phenomenon on a more general, more comprehensive and more abstract level.

Solution concepts, in short, chart particular formally remarkable features of a sit-
uation of conflict. In the various fields of application of game theory, situations and
environments are mathematically represented as games. Conceiving of solution con-
cepts as indicators, they are stripped to their bare mathematical essentials. Emancipated
thus from interpretations in terms of actual or ostensibly rational behavior sustains their
application also in fields of research other than the social sciences.

1.2 Nash Equilibrium

In the previous section we championed the view of solution concepts as indicators,
summarizing information about particular formally salient features of a game. It is,
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however, not easy to say how they achieve this apart from reiterating the definitions
from which they derive their intuitive content and plausibility.

The definition of the pivotal game-theoretical concept in this theéss,that of
Nash equilibrium, has a seemingly clear intuitive content. A Nash equilibrium is a
strategy profile from which none of the players of a game has an incentive to deviate
unilaterally. An equivalent characterization can be given in terms of a best response of
a player against a choice of strategies of his opponents. A Nash equilibrium is then a
combination of players’ strategies, each one of which constitutes a best response for
the respective player against the combination of the other players’ strategies it contains.
As such it captures a notion of stability or that of a self-enforcing agreement. This way
of articulating the perspective Nash equilibrium affords on conflict situations can be
refined by specifying the exact epistemic properties of the agents sufficient for the
outcome of the respective game to be a Nash equilibrafnBandenburger and Dekel
(1987) and Aumann and Brandenburger (1995)).

In spite of these intricate results, however, it is not inherent in its definition what
conclusions to draw from a particular strategy profile being a Nash equilibrium in a
particular application. In hi®hilosophical InvestigationdVittgenstein compared the
different uses of language with the diverse uses of the various tools in a toolbox:

11. Think of the tools in a toolbox: there is a hammer, pliers, a saw, a screw-driver,
a ruler, a glue-pot, glue, nails and screw.—The functions of words are as diverse
as the functions of these objects. [...] For their application is not presented to us so
clearly. [...]

14. Imagine someone’s saying: "All tools serve to modify something. Thus
the hammer modifies the position of the nail, the saw the shape of the board,
and so on."—And what is modified by the rule, the glue-pot, the nails?—"Our
knowledge of thing’s length, the temperature of the glue, and the solidity of
the box."—Would anything be gained by this assimilation of expressions?—

(Wittgenstein (1953))

Wittgenstein’s musings led him to a philosophy of language that could be sum-
marized by the slogan “meaning is use”. We could apply a similar rationale to the
game-theoretic solution concepts. Through experience we become conversant with
their employment and may gain insight in their significance in and for different situa-
tions. Rather than searching for a generic meaning of (a strategy profile being a) Nash
equilibrium — which may turn out to be quite spurious anyway — we had better in-
vestigate itconditions of applicationThe intuitive content of its definition may serve
as a guide in its employment in many contexts, though in some contexts it may be a
better guide than in others.

Keeping these remarks in mind, Nash equilibrium canammal circumstancebe
used as an indicator of rational behavior in situations in which self-interested and util-
ity maximizing agents interact. Especially in two-person strictly competitive games
— in which a player benefits only if it goes to the detriment of the other player in an
equal measure — Nash equilibrium could be taken to refer to “a kind of mathematical
morality, or at least frugality, which claims that the sensible object of the player is to
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gain as much from the game as he can, safely, in the face of a skillful opponent who
is pursuing an antithetical goal” (Williams (1954), p. 23). In the Nash equilibria of
such games, both players choose their strategies as to maximize their respective secu-
rity levels (cf. Osborne and Rubinstein (1994), Section 2.5). By the security level of a
player’s strategy we understand the level of preferability of the least payoff the player
can guarantee himself by playing the strategy in question. This so-called maximin so-
lution has got some particularly desirable formal properties. Its existence is guaranteed
if the players are allowed to mix their strategies,, to play each of their strategies with

a certain probability. Moreover, the equilibria are beftthangeablandequivalent

i.e, if (o, ) and(o’/, 8") are equilibria, with the first entry denoting the one player’s
strategy and the second that of the other player, s¢arg) and(«/, 5) and, for each
player, all equilibria are equally desirable.

In the more general setting in which multiple players interact who may have com-
mon as well as opposed interests, Nash equilibria in mixed strategies are still guar-
anteed to exists, but the other desirable properties no longer hold in general. It has
been claimed, and rightly so | daresay, that it is situations that allow for both mutual
dependence as well as reciprocal opposition that are of most interest to the student
of interactive behavior. In such situations one may encounter Nash equilibria that are
Pareto dominated by outcomes that are not in equilibrium. The following well-known
example demonstrates in a dramatic fashion this fascinating though perhaps slightly
disquieting phenomenon.

Consider the case of two players who are to divide a treasure of a number of gems
and jewels. Assume further that they have settled on the following protocol. Alter-
nately, each player has a choice to take either one or two gems. When a player opts
for the two gems, the game stops immediately and each player keeps all the gems he
has taken so far, with the remaining stones being lost forever. Otherwise, the game
continues with the other player making his choice. If the number of gems and jewels
is two, one may expect a self-interested player to take them both at the first opportu-
nity. A similar argument holds if there are three gems, for if the first player were to take
only one, the second also self-interested player is likely to take the two remaining ones,
leaving no jewels for the first player to grab. In contrast, if the treasure is large, consist-
ing of, say, ten thousand stones, one would expect players first to choose one gem for
a number of rounds before terminating the game by taking two at a strategic moment.
Nevertheless, in all Nash equilibria the first player to move takes two stones at his first
opportunity no matter whether the treasure is large or small (and the second player is
to take two jewels at his first opportunity). Observe that, no matter how many stones
involved, in any possible outcome other than the one ensuing if the second player takes
two stones at his first opportunity, both players are better off than when the first player
immediately grabs two stonés.

5The reason for this is that in any given strategy of the second player in which he takes one stone until his
n-th move and then takes two, the first player’s best response is to take one stone urttil meve and then
take two. Similarly, the second player’s best response to any strategy of the first player in which he takes
one stone until the-th move and then two, is to take one stone untilitkiest move and then take two. Of
course if the first player takes two at his first move, any choice of strategy will guarantee the second player



NASH EQUILIBRIUM 15

acd abcd abd

c 2X%cd d 16 7 8
acd
16 10 8
B%c Xbc 6Xod 10 9 10
abcd
7 9 7
a b 8 7 16
2Xab abd
8 10 16

Figure 1.4. A simplified case of the Braess paradox. The left figure depicts a graph along
which edges two players have to find a way frarto d. The labelsyx; with which each edge

is labelled denotes the cost incurred by each player travelling along itxyiieing the number

of players travelling along the edge In the matrix to the right the letter combinations indicate

the different routes the players can decide to take. It can easily be established that without the
edgebc equilibrium will ensue whenever one of the players takes the ractikand the other

abd, both players incurring a cost of 8. However, if the edigeés added, equilibrium results if

both players take ‘advantage’ of this new opportunity at the cost of 9.

The guiding principle in the use of Nash equilibrium as an indicator of rational self-
interested behavior seems to go awry in this example and the more so as the number of
stones increases. But rather than dismissing Nash equilibrium on this basis as a solution
concept, the question to ask here concerns its conditions of use and the idiosyncratic
properties of this situation that seem to be strained to their limits. Focussing on this
example only, however, will not do. Pareto dominated Nash equilibria pervade the
realm of social interaction. It rears its not so pretty heag, also in the field of traffic
control and operations research, where the Downs-Thomson and the Braess paradoxes
show how increasing the capacity of a link in an (abstract) road network or even adding
a new link may actuallyncreaseeach road user’s travel time in equilibriuct.(Braess
(1968), Arnott and Small (1994) and Figure 1.4). These abstract examples are thought
to explain concrete cases of traffic congestion.

A comprehensive survey of these phenomena is beyond the scope of this thesis.
There is, however, a trivial but remarkable detail to observe at this point. In situations
in which each action that benefits one player is to the detriment of at least one other, all
outcomes are Pareto efficient. This implies that the phenomenon of a Nash equilibrium
being Pareto dominated can only occur in situations in which the players have some
common interests. Moreover, the way the Nash equilibria relate to the Pareto efficient
outcomes constitutes a significant feature of the game and to be an important part of

the same number of stones and any of his strategies is just as good a response as the next one. This example
is an instance of the centipede garok €.g, Osborne and Rubinstein (1994), pp.106-107).
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the conditions of application of Nash equilibrium as a solution concept.

In the tradition of game theory, the preferences of the players over the possible out-
comes of a game are traditionally represented by numerical Vallieis. expedites the
lavish and fruitful employment of probability theory and the methods of calculus in the
interests of game theory. For the purposes of this thesis, however, we construe the play-
ers’ preferences more generally as relations over the outcomes that satisfy transitivity
and reflexivity. In Part I, these relations are moreover assumed to be connéeted (
they aretotal preordersor quasi-order3 and the traditional notion of Nash equilibrium
is still available. This is not the case for partial preorders, which we contemplate in
Part Ill. To cope with these we come to consider two obvious generalizations of Nash
equilibrium: maximumand maximal equilibrium(cf. page 28 for the definitions). In
Section 2.1 we find that maximal equilibrium and a similar generalization of Pareto
efficiency to partial preorders can be seen as two borderline cases of the same concept.

1.3 Solution Concepts in the Social Sciences

The remarks concerning solution concepts as indicators are especially importunate for
the social sciences. The connections and relations established between the events and
phenomena as investigated by the natural sciences are to a great extent of an exten-
sional naturej.e., these relations are to hold between the events independently of the
way these events are described. In contrast, the explanations the social sciences are
after pertain to the actions people perform. We argue that actions are a special kind
of event which require a kind of explanation different from the kind offered by the
natural sciences. The explanation of an action is typically in terms aetonshe

agent had or may have had for its performance; we say a reationalizesan ac-

tion. Whether a particular reason rationalizes a particular action, we claim, however,
depends essentially on the way the action is described. Thus, the relation between ac-
tions and their reasonse., that of rationalization, igntensional Davidson gives the
following example:

| flip the switch, turn on the light, and illuminate the room. Unbeknownst to me |
also alert a prowler to the fact that | am at home. Here | need not have four things,
but only one, of which four descriptions have been given. | flipped the switch
because | wanted to turn on the light and by saying that | wanted to turn on the
light | explain (give my reason for, rationalize) the flipping. But | do not, by giving
this reason, rationalize my alerting of the prowler nor my illuminating of the room.
(Davidson (1980), p.4-5)

What are the precise conditions for a reason to rationalize an action is — | presume
— still very much an open question and also falls outside the scope of this thesis.
This is not to say that social phenomena can impossibly be explained within a causal

6This is not to say that they are essentially quantitative in nature. The players’ preferences are usually
thought to ensue from their qualitative preferences over lotteries over the outocfimesy( von Neumann
and Morgenstern (1944), Myerson (1991) and Osborne and Rubinstein (1994)).
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framework, but this is actually abstracting away from the features that distinguish it
from a physical phenomenowiz., that actions can be described in terms of reasons.

On this view, an explanation of a particular course of action decided upon by an
agent or a group of agents involves making explicit reasons that agent or that group of
agents may have for that course of action. Due to the intensional nature of rationaliza-
tion, an explanation of this type also involves finding appropriate descriptions of the
actions. Yet, the adequacy of a description of an action may depend on its taking into
account elements that are lost in the mathematical description of a situation. This point
can even be put in slightly stronger terms, by stating that the reason rationalizing an
action may very well involve very specific features of a situation, the formalization of
which may be hard, arbitrary or even spurious. Schelling gives an example in which

[...] husband and wife, separated in a department store, gaily traipse off to the
Lost and Found by a tacit and jocular mutual appreciation that it is the “obvious”
place to meet, [whereas] two mathematicians in the same situation — each aware
that both are mathematicians — might look for a geometrically unique point rather
than one that depended on a play on words. (Schelling (1960), p.114)

Assume for the sake of argument that both husband and wife and the mathematicians
manage to meet at the supposed locations. Explanations of these occurrences should
involve the reasons those separated had for their actions. Moreover, the reasons the for-
mer pair had for their actions are no inferior to those of the latter and, yet, all depended
on specific peculiarities of the situation and the individuals. In a preceding paragraph
Schelling writes:

It is that the mathematical properties of a game, like the aesthetic properties, the
historical properties, the legal and moral properties, and all the other suggestive
and connotative details, can serve to focus the expectations of certain participants
on certain solutions. (Schelling (1960), p.113)

If game theory is seen as primarily an economic framework, Aumann is in an important
sense right in saying that “We must get used to the fact that economics is not astronomy,
and game theory is not physics” (Aumann (1985), p.37).

These considerations are by no means meant to attenuate the role of formal game
theory. They rather accentuate the role of the formal solution concepts as indicators,
instead of as predictors. Consider phenomena as threats and promises, deterrence and
inducement, coordination and commitment or relinquishing the initiative. If anything,
these are interesting issues from a game-theoretical perspective. Both promises and
threats are ways of an agent to conditionally commit herself to a particular course of
action. Interestingly, the success of a threat does not depend on its being fulfilled; if
a threat is efficacious, it deters the other party to take another course of action and
threatener is no longer committed to carry out the threat. Typically, a threat deters
“through its promise of mutual harm”. In contrast, if a promise produces the desired
behavior in the promisee, one remains committed to act in a particular way.



18 INTRODUCTION

Left Right Left Right Left Right
0 2 0 1 0 2
Top Top Top
1 3 1 3 3 1
1 3 3 2 1 3
Bottom Bottom Bottom
0 2 0 2 2 0

Figure 1.5. Formal conditions for promises and threats. In the left matrix the column player
may threaten to choose the left column, if the row player cho®sgs In the middle game, a
similar threat is only likely to deteRowfrom playingTop, if it is accompanied by a conditional
promise to playRightotherwise. In the situation on the right, neither playing can try to achieve
a better outcome by posing a threat or making a promise.

In some situations an individual may have good reason to make a threat or a promise
whereas in others it does not quite make so much sefike.reasonableness of posing
a threat or making a promise may very well depend on the mathematical structure of
the game and the mathematical structure of the game can in turn be assessed using
solution conceptsE.g, when asked why she made a promise rather than a threat in
a particular situation, an individual might reply that she expected, not knowing of an
ulterior motive for him to do otherwise, her opponent to play his dominant strategy, that
she could achieve a better outcome if he played another strategy and that, moreover, in
virtue the mathematical structure of the situation a promise, in contrast to a treat, could
be effective in this respect.

To illustrate this point consider the leftmost matrix in Figure 1.5. THeyg Right
is a combination of the players dominant strategies. Still, the individual choosing
columns,Col, could try to deter the other party from choosing the top row by threat-
ening to play the left column in that case. If the threat is yieldedCt,is no longer
committed to choose the left column and can thus achieve his best possible outcome,
viz,, Bottom-Right Observe that in this situation a promise would dissuade neither
player from playing his dominant strategy. In the middle game, a similar thre@bby
to choose the left column is likely to detBowfrom playingTop, only if it is accom-
panied by a conditiongdromiseto playRightotherwise. The cellop-Rightrepresents
the outcome that will result if both players play their dominant strategies. Yet, neither
promise nor threat will induce either player to play another strategy. In contrast, Bon-
nie and Clyde have no reason to threaten one another in the Prisoner’s Dilefama (
Figure 1.2, above). Yet, they may achieve the outcome that Pareto donmudtes-
Rightif either of them can make a credible promise to remain silent if the other does

"The following examples are from Schelling (1960), to which the reader is referred for a more elaborate
account of this kind of phenomenon.
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so as well. Finally, the formal structure of the situation depicted by the matrix on the
right in Figure 1.5 precludes the possibility of either player making an effective threat
or promise.

These examples illustrate how the formal notion of dominance may help one to
reason about such phenomena as threats and promises. In each case the argumenta-
tion points at thdormal basis — or the lack thereof — for posing threats or making
promises. Whether the agents actually do, will or should act accordingly, however,
is at least contingent on the extent in which they can make credible their conditional
commitment to a particular course of action. This, however, may very well depend on
characteristics of the situation which one cannot or would not wish to account for in
the mathematical structure of the game.

One of the aspects we have abstracted from in our exposition so far, however, is
that of the sequential order in which the players are to act. Of course, a conditional
threat is not likely to be effective if the threatener is to act first and the threatened party
after. A similar thing holds for promises. Moreover, the sequential structure of a game
could very well be accounted for in the mathematical representation of a game, giving
rise to the notion of a game xtensive formit is with this type of game the first part
of this thesis is concerned with.

1.4 Game Theory, Logic and Artificial Intelligence

In the previous section we argued that the explanation of human behavior requires
taking into account features of a situation that do not lend themselves for a sensible
formalization. These reflections are meant neither to dispute the usefulness of the for-
mal concepts of game theory to the social sciences nor to question the success of their
application there. Rather they are meant to contrast the use of game theory in the social
sciences with that in other fields of application that are amenable to a more complete
formalization, asg.g, distributed computing. Whereas in the social sciences game-
theoretical analyses reveal formal structures that may be invoked for a more compre-
hensive understanding of human behavior in conflict situations, there is a more direct
match between the concepts of game-theory and the interactive behavior of computer-
ized systems. The following quotation gives voice to this observétion:

Most economic models assume idealized, rational decision makers interacting
in narrow, precisely prescribed ways. These assumptions, while critical to the
tractable exposition and implementation of any theory, often fail the test of descrip-
tive adequacy. However, what may be unrealistic with respect to rich environments
populated by imperfectly understood interacting human agents, may often provide
adequate descriptions of restricted environments populated by formally specified
interacting computational agents.  (Boutilier, Shoham, and Wellman (1997), p.4)

8The passage also has an apparent critical undercurrent with respect to the employment of formal methods
in the social sciences from which the author dissents.
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Game-theoretical concepts may successfully be deployed in the design of autono-
mous computational systems that are to operate in interactive situations as well as in
fully fledged multi-agent systems. In the latter case the issue is to create environments
for multiple agents with given preferences to interact in such a way that one may expect
the outcome of the interaction to possess certain desirable featugebgnism design
The specification of auction protocols in which none of the agents has an incentive
to conceal the maximum price it is prepared to pay for a particular good is a case
in point. The design of such and similar systems involving multiple agents requires
suitable models of interaction. Moreover, their formal specification and verification
call for logical frameworks enabling precise mathematical analysis of these systems
with respect to their game-theoretical properties.

To illustrate this point considee.g, a glutton and a gobbler about to dispatch a
square cake that can be cut by them simultaneously. Both eat more cake rather than
less. As they both like to have a chance of obtaining a large piece and do not wish to
settle for half the cake from the outset, they agree to divide the cake according to the
following protocol. The glutton and the gobbler cut the cake simultaneously, the latter
vertically and the former horizontally. This results in the cake being divided in four,
not necessarily equal, pieces. The glutton obtains the left upper and the lower right part
of the cake and the gobbler whatever remains. The situation is depicted in Figure 1.6.
A Nash equilibrium results if both cake aficionados separately settle on a strategy that
may be expected to cut the cake in half. Both players may then look forward to half
a cake, and observe that this will not change if one of them deviates unilaterally. To
appreciate this, first observe that both of the two players can guarantee the cake to be
divided equally, by cutting himself the cake in two equal parts, no matter what strategy
his opponent adopts. Now suppose that one of the gorgers decides to play a strategy
that cannot be expected to divide the cake evenly. Then, his adversary obtains more
than half the cake if he also adopts a suitable strategy that divides the cake unequally.
Supposee.g, the gobbler cuts the cake vertically such that the left piece is larger than
the right piece. If the glutton adopts a strategy that results in the gobbler obtaining less
than half of the cake, the latter has reason to deviate unilaterally; he obtains a full half
of the cake by cutting the cake vertically in two equal pieces. If, on the other hand,
the gobbler’s division together with the cut of the glutton apportions the glutton half or
less of the cake, the glutton has good reason to deviate unilaterally. Given the gobbler’s
cut, he would have obtained a larger piece had he decided to make the upper part of
the cake larger. This argument can be generalized as to apply to all courses of action
in which one of the players fails to divide the cake evenly; in any such case no Nash
equilibrium ensues. We can prove that in all Nash equilibria of this protocol the cake
is divided equally and this can be taken as an indication that the protocol is fair.

A similar call for game-theoretical methods and concepts in Artificial Intelligence
emerges ifconstraint satisfaction problenare considered in which the control over
the relevant variables is distributed over multiple agents. In case the variables are bi-
nary, propositional logic can be employed to model such problem¥dkoo, Durfee,
Ishida, and Kuwabara (1998), Walsh, Yokoo, Hirayama, and Wellman (2001), Walsh
and Wellman (2000)). On this view, the distribution of propositional variables obtains
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to Glutton

i =53

Glutton’s cut /4
alternative cut A

\ Gobbler’s cut

Figure 1.6. Division of the cake according to protocol. the glutton obtains the upper left and
lower right pieces and th gobbler gets the remainder. Observe that given the gobbler’s cut slightly
off-center to the right, makes that the glutton had better make the alternative cut even though still
better alternatives are available.

a logical significance and game theory may be invoked for a proper grasp of this phe-
nomenon.

These reflections constitute background of the investigations presented in this the-
sis, in which both game theoretical concepts are subjected to logical analysis and logic
is subjected to game-theoretical analysis.

1.5 Logic and Game Theory

Connections with games are by no means alien to the history of symbolic logic nor to its
more recent developments. Pauly (2001) distinguishes two points of view in this line of
research: the use of game theory for the purposes of logic and the deployment of logic
for the purposes of game theory. The use of Ehrenfeuclis€rgames in model theory
(Hodges (1993, 1985); Doets (1996)) comes under the first heading. Lorenzen’s dia-
logue games in constructive proof theory (Lorenzen and Lorenz (1978) and Hintikka’s
game-theoretical semantics (Hintikka (1983)) have exposed the allegedly fundamental
interactive foundation of logic. Assuming the second perspective, modal logics have
been employed to formally characterize the epistemic requirements on the part of the
players for the outcome of the game to be guaranteed to satisfy a particular solution
concept. Dynamic epistemic logics have been used for the analysis of knowledge and
belief change in particular game settings (Baltag (2002); van Ditmarsch (2000)). In this
context should also be mentioned Pauly’s Coalitional Logic (Pauly (2001)), Parikh’s
Game Logic (Parikh (1984, 1985)) and Boudewijn de Bruin’s analysis of the epistemic
and rationality assumptions inherent in game-theoretical solution concepts (de Bruin
(in preparation)). Their work develops modal logics with expressive power with re-
spect to non-epistemic features of games. In the numerous papers by van Benthem
(cf., e.g, van Benthem (to appear, 2001a, 2002)) neither perspective takes precedence
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and logical and game-theoretical structures are compared and analyzed on an equal
footing ?

In this thesis both points of view are assumed. In the first part, we assume the first
perspective and argue that extensive gamdses-games in which the sequential order
of play has been made explicit — are relational structures and that modal languages
can be employed to describe and reason about them. The main results comprise a
modal characterization of Nash equilibrium (as well as that of a closely related solution
concept called subgame perfect Nash equilibrium) and the soundness and completeness
of an axiomatization of the accompanying logic.

The other point of view is predominant in the remaining two parts of this thesis.
Propositional logic is subjected to a game-theoretical analysis, in which extensive use
is made of equilibrium concepts. Here the underlying thought is to conceive of propo-
sitional variables as binary decision variables, the control over which is distributed
among various decision making entities. Logical spaeg,the set of valuations, then
assumes a game-theoretical and interactive character, spawning a number of logical is-
sues. On this basis, game-theoretical extensions of the classical notions of validity and
consequence are defined and studied.

In the second part, control over the propositional variables is distributed over two
antagonists. The one aims to verify a formula by choosing appropriate values for the
variables assigned to her, whereas the other endeavors to falsify the same formula by
choosing values for his variables. This gives rise to the concept of a Boolean game
and the related concept of relativized consequence. In this manner the concept of
trol is brought within the scope of (propositional) logic. These logical inquiries in this
part are the preamble to the third part, in which the idea of distributed control is ex-
trapolated to many-player environments. The reflections on distributed propositional
control eventually lead up to the issue Chapter 9 is concerned Witlich conclusions
is one to draw from a family of theories, given that, for each of these theories, there is a
player who controls a (disjoint) set of propositional variables and who seeks to satisfy
his theory as well as he can by choosing appropriate values for the variables in his con-
trol? To assess this problem, the game-theoretical concept@b@dmum equilibrium
— a generalization of Nash equilibrium to be introduced presently — is resorted to.
We propose an accompanying notion of consequeyeme-theoretical consequence
and study its formal properties in some detail. For the notion of game-theoretical con-
sequence there are various possible definitions, involving different game-theoretical
solution concepts. We have chosen for the option that is closest to classical logic, as
to assure that the features that are specific to the framework can indeed be ascribed to
the game-theoretical perspective taken and not so much to non-standard features of the
underlying propositional logic.

The emphasis in logical investigations relating to game theory has traditionally
been games in which only two antagonistic individuals figure, only one of which
can win. These games constitute a proper subclass of two-person strictly competi-

9For more extensive and comprehensive overviews, the reader be referred to van Benthem (2001b) and
Hintikka and Sandu (1997), Section 3.
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tive games. We observed that this type of game has some particularly elegant and
illuminating formal properties, granting them a prominent role in the development of
game theorydf., page 14, above). Nevertheless, the strategic problem derives much
of its significance and fascination from its ability to deal with situations in which the
individuals have both common and opposed interests. Accordingly, in this thesis our
logical studies will to focus largely on multi-player games and the accompanying solu-
tion concept of Nash equilibrium.

1.6 Overview

This dissertation is organized in three parts, in each of which logic and game theory
are related in a different way.

The first part concerns extensive games with perfect information and a finite hori-
zon, being a class of games that is associated with a proper subclass of Kripke structures
for a specially designed multi-modal language. The focus is on the logical analysis of
the notion of Nash equilibrium and its subgame perfect refinement. This part is a re-
organized version of Harrenstein, van der Hoek, Meyer, and Witteveen (2003). Many
of the underlying ideas stem from the earlier papers Harrenstein, van der Hoek, Meyer,
and Witteveen (2000) and Harrenstein, van der Hoek, Meyer, and Witteveen (2002).

In Chapter 3, we prove that a strategy profile being a (subgame perfect) Nash equi-
librium in a game is reflected by a particular structural property of the associated Kripke
frame. This property is characterized by a formula scheme of the multi-modal lan-
guage. We also show how this analysis can be executed using the language of proposi-
tional dynamic logic (PDL).

While Chapter 3 is mainly concerned with semantical issues related to the charac-
terization of (subgame perfect) Nash equilibrium, Chapter 4 is devoted the complete-
ness of an axiomatization for the ensuing multi-modal logic. A construction method is
employed in the proof of this result. The main problem encountered in the complete-
ness proof is to ensure that the model constructed belongs to the subclass of Kripke
structures corresponding to the class of extensive games.

In the second and third part, the emphasis is shifted to the game-theoretical anal-
ysis of logic and the logical issues elicited by the particular game-theoretical view on
logic taken. The thought underlying both parts is that the control over the values of
the propositional variables of a propositional language can be thought of as being dis-
tributed among various individuals. The different choices an individual can make with
respect to the variables in his control define a set of strategies he can choose from.
The different sets of valuations he can thus guarantee the outcome of the game to end
up in determine his manipulative powers. On this conception, the valuations used to
interpret the propositional variables are construed as the strategy profiles of a strategic
game. In other words, by distributing control over the variables logical space assumes
a game-theoretical aspect.

In Chapter 5 we introduce a class of strictly competitive two-person games in which
control over a set of binary decision variables is divided among two antagonistic play-
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ers. The outcomes of any of these games are of two kinds only: victories for one
player and victories for the other. Draws are not possible. Each set of binary decision
variables thus defines a set of Boolean games.

We argue that Boolean games can be seen as representing the information struc-
ture of finite games oiimperfect information A Boolean game consists of a Boolean
game and a distribution of the propositional variables over the two players, player 0
and player 1. We prove the Boolean forms to constitute a Boolean algebtiloa
suitable notion of strategic equivalence. This Boolean algebra, moreover, is isomor-
phic to the Lindenbaum algebra of the propositional language with the binary decision
variables as propositional variables. Each propositional formula then corresponds to a
Boolean form.

The correspondence between propositional formulas and Boolean forms makes that
control over propositional variables can be studied from a logical angle as well. This
consideration engenders the notion of relativized logical consequence as advanced in
Chapter 6, which defines a relation between propositional theories relative to each dis-
tribution of the propositional variables. This notion of relativized consequence gener-
alizes the relativized concept of validity, which is such that, for each subs#tthe
propositional variables, a formulais A-valid if and only if the player 1 has a winning
strategy in the Boolean game on the form correspondingpoovided she has control
over the propositional variables id. Moreover, we find that the relativized notion of
propositional consequence is a conservative extension of the classical notion of conse-
quence. The work in Part Il draws on material presented in Harrenstein, van der Hoek,
Meyer, and Witteveen (2001).

In the remaining three chapters we pursue the idea of distributed control over propo-
sitional variables as a concept that is amenable to logical analysis. Boolean games are
strategic games with the valuations of the respective propositional language as strat-
egy profiles. As such a Boolean form, which corresponds to a propositional formula,
and a distribution of the propositional variables impose a game-theoretical structure on
logical space. In Part Il the emphasis was on the logical properties of the formulas cor-
responding to the game-theoretical properties of the associated Boolean form, given a
particular distribution of the propositional variables. The perspective taken in Part Il is
slightly different. The game-theoretical structure imposed by a Boolean game on log-
ical space allows particular valuations to be singled out by means of game-theoretical
solution concepts and one can investigate which formulas hold in the valuations that
stand out in this way. In Chapter 7 it is argued that on this basis concepts of con-
sequence can be defined. As a first example, the notiomrofing consequencis
advanced to illustrate the underlying thoughts. We find that also this notion conserva-
tively extends classical consequence. Examining its formal properties in some detail,
we eventually present a sound and complete Gentzen-style system for this concept.

The conceptualization of winning consequence, however, lends itself for general-
ization. It will be argued that, given a distribution of control over the propositional
variables, theories and families of theories can be employed to define strategic games
that have the valuations as strategy profiles. Moreover, these games may involve multi-
ple players whose preferences need not be antagonistic. Then also more sophisticated
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game-theoretical solution concepts can be invoked to define consequence relations.

Chapter 8 initiates the notion ofdistributed evaluation gamevhich constitutes
the semantical basis for the concepaime-theoretical consequenadvanced in the
final chapter. A distributed evaluation game defines a strategic game on logical space
on the basis of a distribution of the propositional variables over a number of players
and a family of theories indexed by the set of players. The semantical ideas underlying
this definition evince, at an abstract level, particular similarities with some proposals
to formalize non-standard reasoning mechanisms in the field of philosophical logic
and Artificial Intelligence. Veltman’s proposal for an update semantics for defaults
(Veltman (1996)) serves as a particular good example, in this respect. In Section 8.5 an
effort is made to delimitate formally the class of distributed evaluation games within
the more comprehensive class of strategic games with the valuations of a propositional
language as strategy profiles. The material of this section, however, is inessential for a
proper understanding of the subsequent chapter on game-theoretical consequence.

By now the stage has been set for the final chapter, in which the notion of game-
theoretical consequence is introduced. Game-theoretical consequence relates families
of theories relative to a distribution of control over the propositional variables among a
number of individuals. The traditional problem of consequence can be understood
as pertaining to the conclusions one may reasonably draw from a theory. Game-
theoretical consequence bears on the more general issue which conclusions one may
reasonably draw from a family of theories, given that for each theory there is an in-
dividual who strives to satisfy it by choosing appropriate values for the propositional
variables he is assigned control over. Any such problem defines a strategic situation
that can be modelled and evaluated as a distributed evaluation game.

Chapter 9 presents game-theoretical consequence as the logical offshoot of one
of the possible ways to resolve this problewiz., the one by means of the game-
theoretical solution concept of maximum equilibrium. Then, this notion is subjected
to a formal analysis. Moreover, we find that game-theoretical consequence can be
embedded in classical consequence énd versa The proof of this result relies on a
semantical interpretation of game-theoretical consequence using the apparatus of rough
set theory. The material of this chapter has been presented in a condensed form at the
LOFT5 conference in 200Zf, Harrenstein (2002)). A compendious statement of its
main tenets can also be found in Harrenstein (to appear-a).

The three parts are largely self-contained and as such can be read independently of
one another. The next chapter constitutes the preliminaries to the main body of work.
They may be skipped on first reading and consulted when need be. Be that as it may,
the results presented in the preliminaries may conduce to a better understanding of,
in particular, the third part. After introducing the notions used in this thesis, strategic
games and related concepts are defined. It be observed that our notion of a strategic
game differs from tradition in that the players’ preferences are not required to be a
connected relation over the outcomes. This requires the generalization of the concept of
Nash equilibrium, giving rise to the definition of maximum and maximal equilibrium.

A similar remark concerns the concept of Pareto efficiency, which plays a lesser role
in this thesis. Section 2.2 presents some elementary definitions and results of rough set
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theory and Section 2.3 concerns some basic facts of propositional logics. Section 2.4
deals with a semantical analysis of propositional logic using rough sets.



Chapter 2

Preliminaries

The material in this chapter is basically for referential purposes and had perhaps better
be skipped on first reading. Unless otherwise stated, all proofs are by the author. Due
to their elementary character, however, no originality can be claimed by him.

2.1 Strategic Games and Maximum Equilibria

We define astrategic gameas a tuple(N, {S},cy , {pi}ien), WhereN is a countable
non-empty set of players and for each plaiyerN andS is a non-empty set of strate-
gies available ta. Accordingly, the generalized Cartesian product the variise.,
[Tien Sis is the set ofstrategy profileof the game, which we also denote By The
pair (N, {S};cy) We call theframeof the game(N, {S},cy . {pi }icn)- FOr each € N,

pi is the empty relation or, otherwise, a reflexive and transitive, but not necessarily con-
nected relation on the strategy profiedn this thesis, a relation that is either the empty
relation or both reflexive and transitive we will also refer to asato-order! We also
use< as the infix notion of;. Hence,S could considered to be giN||-dimensional
space with for each strategy profgdend each playerin N, § its i-th coordinate. We
will adopt the notatior{s_;, §) for the point that is likes except for the-th coordinate,
which is identical with thd-th coordinate of'. Intuitively, each(s_;,s) denotes a
strategy profile that playercan reach frons by unilaterally deviating.

At this point it should be emphasized that, although reflexive and transitive if not
empty, the preference orders as defined by theories are not in general connected. This
is at variance with the usual assumptions made in the theory of games. The game-
theoretical solution concepts are likewise defined for connected preference relations
and we see ourselves bound to generalize them in such a way that they apply to game

1Defined thus proto-orders satisfy transitivity and the condition(iiatnentvar,y) € pand(y, z) € p
imply (x,z) € p. Relations for which these two conditions hold are cafieeordersin Kuratowski and
Mostowski (1976). In this thesis, however, we will reserve the concept of preorder for reflexive and transitive
relations.

27
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with partial preference orders as well.

The notion of aNash-equilibriumin pure strategies is usually defined on games
in which the preferences of the players are total pre-orders over the strategy profiles.
Then, for a gaméN, {S};y , {ri}icn) @and any strategy profile

sis aNash-equilibrium iff forall i € N,foralls' € S: (s_i,§) <i s

A strategy profiles is, or containsa best response for a playeiififor all strategy
profiless’ ins, (s_j,§) <; s. Obviously, the set of strategy profiles that contain a best
response for each player coincides with the set of Nash-equilibria.

Since, however, our investigations concern games in which the players’ preference
relations are also allowed to be proto-orders over the strategy profiles, we are now
confronted with at least two obvious conservative extensions of the notion of a Nash-
equilibrium. On total pre-orders the notions of a maximal element (no other element
is greater) and a maximum element (greater than any other element) coincide, but on
partial pre-orders or the empty relation they may diverge. Similarly, we define for any
playeri and strategy profile:

sis amaximal response foriiff fornos € S: s<; (s_j,5),

sis amaximum response for iiff forall s € S: (s_j,5) <i s

Lacking connectivity, the set of maximal responses for a play@wever, may contain
elements ands' that are incomparable fo on thei-th coordinate) but which are such
thats = g, for eachj # i. This possibility is excluded for maximum response strate-
gies. Accordingly, we introduce the concepts ofiaximaland amaximumequilibrium

as the intersections of the players’ maximal and maximum response strategies, respec-
tively. Both are (conservative) extensions the original definition of a Nash-equilibrium.
Hence, fors a strategy profile in a gan@&, we define:

sis amaximal equilibriumin G iff sis a maximal response for all playérs

sis amaximum equilibriunin G iff sis a maximum response for all players

Observe that a strategy profile being a maximum equilibrium implies its being a
maximal equilibrium but not in general the other way round. Observe further that by
refining the preference orders of the playerd.e; if the preference relations become
smaller — the number of maximal equilibria may increase, this is impossible with
maximum equilibria. Hence we have the following monotonicity property only for
maximum equilibria.

Proposition 2.1.1 (Monotonicity of maximum equilibria) Let G and Be the games
(N, {S}ien > {ritien) and (N, {S}icn - {0/ }icn). respectively. Let, further, for each
player i, p{ C pi. Then:

s is a maximum equilibrium in'G implies s is a maximum equilibrium in G.
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Proof: Consider an arbitrary strategy profgevhich isnota maximum equilibrium
in G. Then for some playerand for some strategy profi, ((s_i,),s) & p;. Since
p; C pi, ((s-i,9),5) ¢ p}. Hencesis not a maximum equilibrium iG’ either.

Pareto Efficiency

Other important economic concepts are thos®areto efficiencyand strong Pareto
efficiency. Intuitively, a states, or strategy profile, i$areto efficientf it there is no
other state, or strategy profile, which every individual strictly prefers t statesis

strongly Pareto efficienif for every states’ that some player strictly prefers sdhere
is another player that strictly prefesso s'.

These notions are usually defined for individual preference orders thabtate
i.e., for every pair of states ands/, a player either valuesat least as high as, or
the other way round,e,, eithers' < sors <; . For such total individual orders it is
in general the case that<; s if and only if ' &; s. Accordingly the following two
definitions of Pareto efficiency are equivalent for total individual preference orders.

sis Paretg efficient iff fornos €S forallieN:s<; s,

sis Paretg efficient iff forall s € S forsomei € N: § < s.
A similar remark applies to the following definitions of strong Pareto efficiency.

sis strongly Paretg efficient iff forall s € S foralli € N:
s<; s implies forsomg € N, s¢; s,

sis strongly Paretg efficient iff forall s € S foralli € N:
s &; s implies forsomg € N, s¢; s,

sis strongly Paretg efficient iff forall S € S foralli € N:
s<; s implies forsomg € N, s’ <; s,

sis strongly Paretg efficient iff forall S € S foralli € N:
s &; s implies forsomg € N, s < s.

Having assumed the number of players to be greater than zero, it can easily be verified
that strong Pareto efficiency implies Parato efficiency.

If, however, the individual preference orders are allowed to be partiaé- it is
not in general the case thai<; s if and only if § §éi s — the various definitions of
Pareto efficiency diverge. Of all Pareto notions strong Paedfiency is the strongest
in the sense that any strategy being strongly Paedtaient implies that strategy to be
Pareto efficient in any of the other five ways as well. The implications are strict, strong
Paretq efficiency is not in general implied by any of the other notions. Strong Pareto
efficiency implies both strong Paretand strong Paretcefficiency, but not the other
way round. Strong Paret@and strong Paret@fficiency are equivalent and both strictly
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Paretq efficiency

strong Paretpefficiency,
strong Paretpefficiency

Parete efficienc

strong Paretpefficiency

strong Paretpefficiency

Figure 2.1. The interrelations between the various notions of Pareto efficiency for orders that
are not necessarily connected.

imply Paretaq efficiency. Finally, Paretoefficiency entails Pareicefficiency, but not
vice versa Moreover, Paretoefficiency entails none of the strong Pareto notions, and
is implied by strong Parejcefficiency only. How the various Pareto concepts relate is
depicted in Figure 2.1. The following facts establish these observations.

Fact2.1.2 Let s be a strategy profile for some strategic game G. Then:

s is strongly Paretpefficient iff s is strongly Paregoefficient

Proof: That strong Paretcefficiency entails strong Pargtefficiency is trivial, since
s <; s impliess’ £; s. So assume some strategy profil®® benot strongly Paretp
efficient. For some strategy profi#¢ and some player, then,s’ &; sand, moreover,
s<; g, for all players. Then in particulas <; s, and, therefore, als®<; s'. We may
conclude thasis not strongly Paretoefficient. o

Fact 2.1.3 For every strategy profile s of a game G:
0] strong Paretq efficiency implies strong Parefefficiency,
(i) strong Paretg efficiency implies strong Paretefficiency,
(i) strong Paretq efficiency implies Parefcefficiency,
(iv)  strong Paretq efficiency implies Paregoefficiency,
(v) Paretg efficiency implies Paregcefficiency.

Moreover, none of the implications (i) through (v) hold in the opposite direction.
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Proof: We prove each implication and its failure to hold in the opposite direction
subsequently.

ad. (i) : The proof of the implication is straightforward as in genesak; s
impliess’ &; s. As to the failure of the opposite direction, any game with more than
one strategy profile and each player’s preferences being defined by the identity relation
over the strategy profiles will do as a counterexample.

ad.(ii) : The implication itself is again immediate sinse<; simpliess &; §,
by definition. For a counterexample for the converse direction, consider a game with
at least two strategy profilessands’ and only two players 1 and 2. Let 2's preference
relation be given by the identity relation over the strategy profiles, and that of 1 the
universal relatiominusthe pair(s’, s). Then bottsands’ are strongly Pareicefficient.
However,sis not strongly Paretpefficient.

ad. (i) : We may assume thad is non-empty. Assume further some strategy
profile s not to be Paretoefficient. Then, there is some strategy pro§ilés such that
s <j § for alli in N. Hence, for alii in N alsos <; . With N not empty, it follows
there is somé&* such thas <« S'. Hencesis not strongly Paretoefficient either.

For an example refuting the opposite implication, consider a game with at least two
strategy profiles ands’ and at least two players. Assume the players’ preferences be
given by the universal relation, except for those of one player, which are given by the
universal relatiominus(s’, s). Thensis Paretg efficient, but not strongly so.

ad.(iv): Firstassume some strategy profite fail as a Paretpefficient outcome.

For some strategy profilg, thens' &; sfor all i in N. Then alscs’ #; sfor alli in N.
With N non-empty, there is, moreover, some playesuch thass’ £;- s. Hencesis
not strongly Paretpefficient either.

For a counterexample disproving the implication in the opposite direction to hold,
the same counterexample as im)(will do. The strategy profiles is there Pareto
efficient, but not strongly Parefefficient.

ad.(v) : The implication is almost trivial, since in general<; simpliess «; S
A counterexample witnessing the failure of the opposite direction is provided by the
same as that of ), =

Fact2.1.4 Let s be a strategy profile of a strategic game G. The following equiva-
lences daot hold in either direction:

strong Paretg efficiency iff Paretgefficiency,

strong Paretg efficiency iff Paretgefficiency,

Proof: We present a strategic game in which some strategy profile is strongly Pareto
efficient but not Paretoefficient, as well as a game in which some strategy profile is
Paretg efficient but not strongly Paret@fficient. The first counterexample is given by

a game in which all players have the identity relation over the strategy profiles as their
preferences and which has at least two strategy profiles. A game witnessing the second
possibility is given by any game with more than one player, all of which preferences are
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given by the universal relation, except for one playemwhose preferences are given
by the universal relatiominus(s, s).

Hence, strong Paref@fficiency does not in general imply Pargtefficiency and
Pareto efficiency does not in general imply strong Pagetdficiency. Now assume
for areductio ad absurdunthat strong Paretoefficiency implies Paretoefficiency.
By Fact 2.1.3, strong Paret@fficiency implies strong Paretefficiency. But then
strong Paret efficiency would also imply Paretcefficiency, quod non Similarly
assume that Paretefficiency implies strong Parejefficiency. By Fact 2.1.3, strong
Paretq efficiency implies strong Paret@fficiency and so Paretcefficiency would
imply strong Paretp efficiency. Against the latter claim, however, we had found a
counterexample. =

Equilibria, Pareto Properties and Partial Preferences

An interesting topic is coalition formation in strategic games. A coalition has, in gen-
eral, a greater enforcing power than each of its members on his own. The strategies of
a coalition could be assumed to be given by the possible combinations of the strategies
of its members. Intuitively, this corresponds to the assumption that the members of
a coalition can coordinate their choice of strategy and, thus, the coalition as a whole
gains greater control over the outcome of the game. This leaves the issue of how the
coalitional preferences depend on the individual preferences of the members.

How to derive a preference order for a coalition from the preferences of its con-
stituent members is a highly non-trivial issue and belongs to the field of social choice
theory. Arrow’s impossibility theoremc{., Arrow (1963)) states the impossibility of
a general method to define coalitional preferences from the individual preferences —
i.e,, of a social choice function — if this method is to comply with certain intuitive
restrictions for each possible collection of individual preferences. One of these restric-
tions is that the coalitional preference order is to be a total preorder over the possible
alternatives over which the individual preferences are defined.

In this thesis, however, we allow the individual preferences to be partial and the
same lenient attitude is taken towards coalitional preferences. A coalition is then said
to value one stateat least as much as another stifeand only if all players valus at
least as much as. Formally, the coalitional preferences are obtained by simply taking
the intersection of the preference relations of its constituent members. The coalitional
preferences are then guaranteed to be reflexive and transitive, if all the individual pref-
erences are. If one of the individual preference orders is empty, so is the coalitional
preference order. However, the coalitional preference relation is not in general a total
preorder, not even if all the individual preference relations are. This procedure com-
plies with with thestrong Pareto propertyi.e., if all coalition members value a state
at least as much as another state, so does the coalitrformally, for « a coalition
of players in a strategic gan@ a coalitional preference relatign complies with the
strong Pareto property if and only if for all strategy profigsnds’ of G:

if foralliex:s<;9d thens<,¥s.
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Let G be a strategic game. Each way in which coalitions can be formed fixes in a
unigue fashion another strategic game in which the coalitions are the players, whose
preferences and powers are defined as above. Assuming that each player is a member
of precisely one coalition, the possible ways in which coalition formation can take
place is exhausted by the possible partitions of the players of the original game. These
partitions of the players constitute a complete lattice, with as top the grand coalition,
of which all players are a member, and as bottom the trivial partition, in which each
coalition consists of exactly one player.

It now so happens that, in the game defined thus for the grand coalition, a strategy
profile is a maximal equilibrium if and only if that strategy profile is strongly Pareto
efficient. Similarly, a strategy profile is a maximal equilibrium in the game for the
trivial partition if and only if that strategy profile is also a maximal equilibrium in the
original game. This shows that the notion of a maximal equilibrium and that of strong
Paretq efficiency are in an important sense extreme instances of one and the same
concept.

The possibleoalition partitionsare given by the set of partitio&art (N) overN,
which constitutes a complete lattice under the refinement relationr Bad ' parti-
tions ofN let the refinement relatioq is formally defined as:

" iff forall x € 7 thereis ay € =’ such thak C y.

T
Intuitively, 7 < «’ denotes that at least as fine as’. As such< defines a partial order
onPart(S). Let k+ andk_ denote respectively the top and bottom of this coalition
lattice, i.e, kT =¢. {N} andk. =g {{i} : i € N}. We now define for each
strategic gam& each coalition partitiom: of its players, the strategic gar®,, which
intuitively is the game that results of the playerd®join in the coalitionss in a way
that complies with the requirements formulated in the remarks above.

Definition 2.1.5 Let G be a strategic game given 0¥, {S},.y , {ri}icn) and lets
be a coalition partition oN. Define:

G. =t ("‘"7 {Sﬂ}nen ) {pﬁ}nen )’

where for eachk € k:

S =a [[S and  po =a [ ;i

1ER =

For eachx € k, there is somé € N such that = {i} and(s_,,s,) = (s_i,5).
Similarly, we haveN as the only coalition inc+ and, consequently, for all € k-,
(5-4,S,) = (S-n,S\y) = S. More in general, we may assume a natural isomorphism
between[ ], ... s(x) and] [,y S of the original game. We now have the following
proposition.

Proposition 2.1.6 Let G be the strategic gan(®, {S};.y . {ri}icn) @nd s a strategy

ieN
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profile. Then:

s is a maximum equilibrium & iff s is a maximum equilibriumin G
s is a maximal equilibrium ¢ iff s is a maximal equilibrium in G

s is a maximal equilibrium G, iff sis strongly Paretg efficient in G

Proof: The firsttwo claims are trivial, given the remarks made in the text above. As to
the third claim, observe for all strategy profileands/, that(s_y, sy) = . Consider
the the following equivalences:

sis a maximal equilibriunG,,

iff forall i € kr: sisamaximal response for

iff sisamaximal response fot

iff forall s €S:s<n(s-n,S)

iff foralls €S:s<\s

iff forallseS:sgns ors <ys

iff forall s € S:forsomei e N, s s orforallieN, s'<;s

iff forall s e Sforalli e N:s ;s implies forsomg € N, s¥; s

iff sis strongly Paretpefficient

This ends the proof. -

It might seem that by appropriately defining coalitional preferences each Pareto
concept could be seen as a borderline case of maximal or maximum equilibrium. Con-
sider,e.g, the case in which,, had been defined in such a way that forssdinds’:

(s,8) €p. iff foralick:s & s

Then it can in fact be proved that a strategy prafile strongly Paretgefficient in a
gameG if and only if sis a maximal equilibrium irG,,-. However, defined thus, the
coalitional preferences are no longer in general guaranteed to be transitive.

We are now in a position to define the following conservative extensions of the
concepts of maximum and maximal equilibrium.

Definition 2.1.7 (Maximums-equilibrium and maximak-equilibrium) A strategy
profile s is amaximumk-equilibriumin a strategic gaméN, {S},.y . {pi }icn) if and
only if sis a maximum equilibrium in the gam(es, {S.},.c,. . {Px }.c\)- Similarly, a
strategy profilesis amaximalrk-equilibriumin a strategic gaméN, {S},y , {i}ien)

if and only if sis a maximal equilibrium in the gamies, {S.},.c,. » {Px } e )-
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G B G B
1 0 2 0
G 1 0 G 0 1
1 0 2 0
0 2 0 1
B 1 0 B 0 1
0 2 0 1
Matrix g Matrix b

Figure 2.2. TheGolden Heargame without coalition formation. Afard chooses rows, Bke
chooses columns and the little sister Spoiler chooses matrices. The Nash equilibria are in bold-
face.

In virtue of Proposition 2.1.6, we then find that maximal equilibrium and strong Rareto
efficiency are extreme cases of one and the same comizpiaximalx-equilibrium.

To conclude this section, we observe that coalition formation in a game results in
at most areductionof the maximum equilibria of a strategic game.

Proposition 2.1.8 Let G a strategic gaméN, {S},.y . {pi }icy) and letk andx’ be
coalition partitions of N such that < x’. Then the maximum equilibria in,G are
also maximum equilibria in G.

Proof: Letsbe a maximum equilibrium iG,., i.e, for all s € ' and all strategy
profiless’ we have(s_,,s.,) <. s. We prove for an arbitrary coalitionin x, an ar-
bitrary playeri in x and an arbitrary strategy profi¢ethat(s_,s.) <; s. Consider the
uniquex’ € k' such that; C «’ as well as the valuatiofs_,.., (s_,S,),.). Sincej

#’, then,(s_./, (s_x,S,.),,) <i s. Now observe thats_,,s.) = (S_«, (S_x,S,) )
and we are done. =

The inverse of Proposition 2.1.8, however, does not hold. Coalition formation may
result in a decrease of the number of maximum equilibria, as the following example
shows.

Example 2.1.9  Abélard and Elése are a young boy and girl very much in love and
Spoiler is Elase’s little sister. Aklard and Elgse plan to go for a romantic ramble
down town. The sister Spoiler would very much like to go as well, but she is allowed
to only if accompanied by her elder sister. The two lovers, of course, would prefer
to go just with the two of them and have the little sister stay behind. Nevertheless,
they would rather have the sister join them than all of them staying at home with their
parents. Moreover, both Atard and El¢se are indifferent between not going at all

on the one hand and the two sisters going into the city withowl#@d. The younger
sister just wants to join her sister on what promises to be an exciting trip. It now so
happens that if they are to go at all, they have to meet up with one another either in the
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{G,G} {B,G} {GB} {B,B}
1 0 0 2

Figure 2.3. Matrix of theGolden Heargame in which Alard en Eliése have teamed up. Now
the little sister Spoiler chooses rows andéfdrd and Elése jointly columns.

pubThe Golden Hearor in front of the bank. Still, they have not yet made a specific
appointment in this respect. If either the two sisters or the two lovers meet at the same
place, they go down town together. If they all meet up at the same place, they go with
the three of them. In any other case they will have to face a boring Saturday afternoon
at home.

Observe that Ablard’s and Eltse’s preferences coincide. The situation is summa-
rized as a game in Figure 2.2, whereé&drd chooses rows (G or B) Eé® chooses
columns G or B) and Spoiler matricesMatrix g or Matrix b). Abélard’s ordinal pref-
erences are represented by the figures bottom left in each box, thoseiss# €y
those top right and those of Spoiler’s by those in the middle. We find that there are two
maximum equilibria in this gameyiz., when they all meet at the same place and go
down town with the three of them.

Abélard and Elése, however, are quite likely to form a coalition in an effort to
withhold the little sister from spoiling all the romantic fun. As a coalition they can
make sure to meet at the same place, still they cannot preclude the sister turning up
there as well. The resulting situation is represented in Figure 2.3, this tiraaib
and Eldgse jointly choosing columns and Spoiler choosing rows. In this game there are
no maximum equilibria.

2.2 Rough Sets

In the last two parts, and then especially Part Ill, extensive use is made of the theory
of rough sets. In this section the elementary concepts of rough set ttvennthe
upper and lower approximations of a set, are introduced. In the next sections they are
employed for some results for propositional logics. As such our employment of rough
sets is divergent from normal use. First we will give some basic facts concerning upper
and lower approximations.

For Swe havePart (S) denote the set of partitions ov8r Moreover, forr a parti-
tion in Sand forx an element 0§, x| is the unique block ofr containingx.

2For a more extensive account the reader be referred to Pawlak (1991)
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B - apr_(X)
B X
B : apr, (X)

Figure 2.4. Rough sets in a s&partitioned byr. The oval represents the sét The colored
areas indicate the upper approximation and the darkly colored area the lower approximation.

Let Sbe a set and let be a partition ofS Obviously, it is not in general the
case that a subs#tof Sis identical to a union of a number of blocksn Still each
subset can be characterized by two sets which do have this property. Deflow/éne
approximation apTrr(X) and theupper approximatiorapr, (X) by:

apr (X) =a (J{Yer: YCOX},
apr, (X) =, U{Yew: YNX#0}.

Lete, be the equivalence relation ov@associated with the partition Then we also
have the following equivalent characterizations of the lower and upper approximation
of a subseX of S. For eaclk € S:

x €apr (X) iff forall s € Ssuchthas~,s:s €X,
x € apr (X) iff forsomes € S:s~,s ands €X.

Clearly,apr_ is a cylindrification operator on%2and apr_ its dual. As such they ex-
emplify a more general mathematical concept that is also instanced by quantification
and modality in logic. This observation has by no means escaped attention in the lit-
erature €f. e.g, Yao, Wong, and Lin (1997), imtsch (1999) and iintsch (no date)).
Figure 2.4 illustrates the lower and upper approximations of Zs&uppressing the
subscriptr, the approximation operatioagr andapr satisfy the following elementary
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properties for subset$ andY of a setS:3

apr(o) = o apr(o) = o
apr(s) = s apr(9 = S
apr(X) € X apr(X) 2 X
apr(X) C apr(apr(X)) apr(X) > apr(apr(X))
X C apr(apr(X)) X D apr (apr(X))
apr(X) < apr(@pr(X)) apr(X) 2 apr (apr (X))
apr (X) = apr(X) apr (X) = apr(X)
apr(XnY) = apr(X)napr(Y)  apr(xnY) C apr(X)napr(y)
apr(XUY) 2 apr(X)uapr(Y)  apr(XuY) = apr(X)uapr(Y)
As two obvious consequences of these properties alsodptfapr (X)) = apr(X)

andapr (apr (X)) = apr (X). Moreover, the latter four inequalities can be generalized
to infinite sets of sets. Let C 25, then:

apr(NX) = () apr(X) apr (NX) € () apr(X)
XeX XeX

apr(Ux) 2 Japr(x) apr(UX) = [Japrx)
XeX XeX

Both apr andapr satisfy upward monotonicity:
XCY implies apr(X) Capr(Y),
Capr(Y).

We also have the following fact, which says that, given a partition, the fixed points of
the upper and lower approximations coincide.

Fact2.2.1 LetS beaset, X S andr € Part(S). Then:
X=apr.(X) iff X=apr (X).

X CY implies apr(X)

Proof: First assumeX = apr(X). Observe that botl@pr(X) < apr(apr(X)
and apr (apr (X)) < apr(X) are instances of rough set laws. Hem‘m‘( ) =

apr (apr (X)) and we may reason as follows:

X =ass. @pr(X) = apr(@pr(X)) =x-apr(x) apr(x).
The reasoning in the opposite direction is analogous. -
As a generalization of this fact, we also have the following.

3These inequalities are taken from Yao, Wong, and Lin (1997).
4For this elegant proof | am indebted to Boudewijn de Bruin.
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Fact2.2.2 Letn be a partition of a set S. Let furthet a set of subsets of S such that
X C «. Then:

apr.(UX) = apr (UX) = UX

Proof: Straightforward. -

The partitions by means of which sets are approximated may be finer or coarser.
The facts that follow concern the behavior of the approximation operations with respect
to partitions of various degrees of coarseness. s~and ' partitions of a sef§ i.e,

m, ' € Part(9), letw < 7’ be formally defined as:

7 <« iff forall xe = thereisa € 7’ such thak C y.

Intuitively, = < #’ denotes thatr at least as fine as’. As such< defines a partial
order onPart(S). Then< defines a partial order dPart (S). Rather,Part(S) consti-
tutes a complete lattice if ordered thus. We now also have the following monotonicity
properties for the lower and upper approximation operations:

Fact 2.2.3 Letw and=’ be partitions of some set S. Then for alExS:

™ s

<7 implies apr (X) 2 apr_(X),
m <7 implies apr (X) C apr.(X).
Proof: Both cases are analogous; here we prove only the first. Assumer’ and
consider an arbitrarx € apr_,(X). Consider the blocky of =; then, [x|.» C X.
By the assumption there is a blodkof 7’ such that[x], C Y. Then,x € Y and,
therefore)Y = [X].-. Hence [ C [X],» C X. Sincex € [X], we may conclude that
x € apr (X). o
In words, the coarser the partition, the larger the upper approximation of a set and the
smaller its lower approximation. The following fact conveys a stronger and closely
related result.

Fact 2.2.4 Letw andn’ be partitions of some set S. Then:

m<n' iff forallX CS: apr (X)

<« iff forallX CS: apr (X) C apr,.(X).

U
)
=]
X

Proof: The proofs of both cases run along analogous lines; we will here give that
of the first. The left-to-right direction is immediate by Fact 2.2.3. For the opposite
direction, assume that for af C Swe haveapr (X) 2 apr_ (X). Consider an
arbitraryX € 7. By definition, X is a non-empty subset & AsS= |J’, there is a

Y € 7' such thaXNY # ¢. By the assumption, theapr (Y) 2 apr_,(Y) =fact2.2.2Y.
Because alsapr_(Y) C Y, it follows thatY = apr_(Y). By definition,Y = (J {x' e
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m: X' C Y}. Since XNY # 0, we haveX N X" # o, for someX” € {X' € 7 :
X' C Y}. With X andX"” blocks in the partitiorr, it follows thatX = X”, and hence,
X C Y. Having choseiX arbitrarily froms, we may conclude that < '. =

In the sequel, we will mostly be interested in a particular class of partitions of a
universe with respect to which the approximations are defined. If the universe set is
the powerset of a s&, we define an equivalence relation holding between any two
subsets of if each element of a third subset Afis in the one subset if and only if it
is an element of the other. Létbe a set and define for eaZzhC A the equivalence
relationez on 2* such that for alX, Y C A:

(X,)Y)eez iff ZNX=ZNY.

Sometimes we use the infix notati®n~z Y to convey thatX,Y) € ¢z. Observe that

it is both a necessary and a sufficient conditionXor; Y to hold that for allz € Z, it

is the case that € X if and only if z € Y. Note that:, andep are the universal relation

and the identity relation on”2 respectively. More in general, we haxeC Y if and

only if ey C ex. The only-if direction is trivial. For the other direction assume for the
contrapositive that € X butx ¢ Y. Then,o ~x {x} butg ~y {x}, i.e, the relations

ex andey are distinct. Hence, the séty : X C A} constitute a complete lattice with
relation composition and intersection as join and meet, respectively. To appreciate this,
consider the following fact.

Fact2.2.5 Let X and Y be subsets of a set A. Then:

EXNY = EXOEy and Exuy = e&xMNey.

Proof: For the C-direction of the first claim, assume for arbitrasys’ € 2 that
(s,5) € exny. HencesNXNY = s NXNY. Defines* =4, (sN X) U (s' N X). Then:

sNX = (sNXNX)U(sNXNX) = ((snX)u(snX))nX.
Hence,(s, s") € ex. Also consider the following equalities:

SNY = ((SNX)u(snX)nYy = ((NXNY)u(snXnYy))
= ((snXNnY)u(enXnY)) = ((snX)u(§nX))nYy.
Accordingly also(s*,s') € ey and finally alsqs, §') € ex oey.
For theD-direction, assumés, s') € ex ocy. So, for somes” € 2* both (s,s”) €

ex and(s’,s) € ey. L.e, bothsNn X = "N X ands’ NY = s NY. Consider the
following equalities:

sNXNY = 9nNXNnY = NnYnX = InyYnxXx = Inxny.

Hence,(s, ) € exny.
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For the second claim, first assume for arbitrarg € 2* that (s, s') € exyy. Then,
sN(XUY) =9 N (XUY). Since,X,Y C XU Y then also botlsN X = s N X and
sNY = s NY. We may conclude thds, ') € ex N ey. For the opposite direction,
assumds,s) € ex Ney, i.e, bothsNn X =g NXandsNY =5 NY. Now reason as
follows:

sN(XUY)=(snX)u(snY)=(nNX)u(snY)=sn(XUY).

We may conclude thds, ') € exyy. -

The partition of 2 as determined byx, we denote byry. The notationx]., for
the equivalence class undst containingx we usually abbreviate tix]x. Obviously,
7a i the finest andr, the coarsest partition of*2 More in general we have that the
larger the sekK, the finer the partitionry.

Fact 2.2.6 Let X and Y be subsets of some set A. Then:

XQY iff Wygﬂx.

Proof: First assumeX C Y and consider an arbitra¥ € nx. We without loss of
generality we may assume thét= [Z]x, for someZ C A. Now considerZ]y as well
as an arbitrarg’ € [Z]y. Then,Z’ NY = ZNY. With the assumption tha¢ C Y, then
alsoZ’ N X =ZnNX. HenceZ' € [Z]x. We may conclude thaty < 7x.

For the opposite direction, assume tat/ Y, i.e, that there be am € X with
x ¢ Y. Consider this< along with the blocK{x}]y of wy. Observe that bothy} €
[{x}]y ando € [{x}]y. It suffices to show that for a € wy if {x} € X theng ¢ X.
So consider an arbitray € mx with {x} € X as well as an arbitrarX’ € X. Then
{x} ~x X, and withx € {x} andx € X we may conclude that € X'. Hence X' # @.

_{

For X a subset of a s& we denote the approximation operatﬁrrTrx andapr,,
as defined for subsets of 2oy apr, andapry, respectively. As an immediate result of
the facts 2.2.4 and 2.2.6 we have the following corollary.

Corollary 2.2.7 Let X and Y be subsets of some set A. Then:

XCy fiff forallX C2*: apr (X) C apr,(X),
XCY iff forallX C2*: apr,(X) C apry(X).

Proof: Immediate from Fact 2.2.4 and Fact 2.2.6. =

With respect to the behavior of lower and upper approximations of a set given
partitionsmy andmy, we have the following two facts.
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Fact 2.2.8 Let A be some set, of which X and Y are subsets. Let, moreober,a
subset o2”. Then:

apr, . (X) = apr, (apr, (X)),
aphy(X) = apry (aprv(X)),
apr, . (X) 2 apr (X)napr,(X),
apry,y(X) € aprg(X) Nnapry(X)

Proof: The proofs of the first two claims are analogous; here we only give that of the
latter.

S € apry~y(X) iff S~xny § ands € X, for somes € 2
iff Fact225 S~x 8 ~y § ands X, for Somes’,s” e2h
iff s~x " ands € apr,(X), for somes’ € 24

iff s apry (apry(X)).

For the latter two claims merely observe that, in virtue of Coroll 2.2.7, Bpth(X) C
apr, (X) andapr, (X) C apr, . (X), as well as botfapry y(X) < apfk(X) and
apryy(X) € apry(X). n

Fact2.2.9 LetAasetandletl be asetofindices. Let furth¥}, ., and{X};, be
indexed families of subsets of A and of subse®é afespectively. Then:

mﬂ i(Xi) < @’Uielxj (miel Xi)’

ﬂaT)rxi(Xi) 2 apry,_, x (Miar Xi)-

Proof: First consider an arbitrary C A and assum& < apr, (Xi), i.e, for
alli € 1, itis the case tha¥ € apr, (Xi). Since, obviouslyX; C [Ji Xi, by Corol-

lary 2.2.7 for alli € I, alsoY € a_prulEI xi(Xi)' Therefore,Y € (i a—prU.E.K (Xi).

Finally, by distribution of") overapr, we may conclude thaf € apr, (Nier Xi)-
- - Vel
For the second claim, assume for an arbitréry A, thatY € apry._ (ﬂiel Xi).
Then there is somg& C A such thatY Ui % ZandZ e ﬂiel X;. It follows that
for eachi € I, bothY ~y ZandZ < X;, i.e, Y € apr, (X;). We may conclude that
Y€ miel a_pr)(‘(xl) B

For the special partitions, andr,, moreover the following equalities hold:
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Figure 2.5. The figure on the left shows the partitiaq of a space 2, for some subseX of A.
The figure in on the right shows the partitiagz on the same space. The elements of each block
of mx will be distributed over the blocks of the partitia.

Fact 2.2.10 Let Abe asetand lét C 2% Then:

apr,(X) = am(X) = X

) X ifX=2°
apr -
- @ otherwise

) X ifX=0
apr, =
? 27 otherwise

Proof: Observe thatra = { {a} : a € A} and thatr, = {2*}. Then the claims
follow almost immediately from the definitions of upper and lower approximatien.

For a subseX of A, the partitionsryx andry are closely related. Let trgeneralized
sumor the set of choice setwer a family of setX = {X },, be defined as:

in =df. {{f(l) i€|}: f:|—>UiE|XiandVi€|: f(i)EXi}.

icl
Omitting explicit reference to the index sgt;, ., X; is also denoted by | X. Then, the
following proposition establishes thay is a set of choice sets af;.

Proposition 2.2.11 Let A be a set and let X A. Consider the partitionsx andmg
of 2%, Then,rx is a set ofchoice set®f 7y, i.e.,mx C Y 7x.

Proof: First observe that”2is not empty. It suffices to define for eaeh € 7x a
functionf,,: mx — 2% such that §) . () € =, for eachm € =y and @) m =
{fx(m) : m € mg}. So consider an arbitramy € mx. Assuming the axiom of choice,
there are choice functiorgs mx — 2% andg': T — 2” such that for eachy € mx
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Figure 2.6. The left and right figure represent the partitionsandmy as in Figure 2.5, above.
The oval in the left figure and the lighter shaded areas in the right figure represent theXsubset
of 2*. The darker areas aequx(x) andaprg(X) in the left and right figure, respectively. Be-
cause of the distribution of the elements of each blockdsontained inX over the blocks ofry,

it can now be recognized tha_prx(X) being non-empty impIiea_er(X) =2A

andn € 7y bothg(my) € m andg’ (7j) € ;. Now define the functioffy,, : w5 — 24
such that for allrj € 7x:

fr (1) =ar (9(m)NX) U (g (m)NX).

We show thatr = {f, (7)) : =} € mg}.

The D-direction is almost immediate as from the definition almost immediately
follows thatf,, (mj) ~x g(m), for eachrm; € mx. Sinceg is a choice functiong () €
mi. Hencef,, (mj) € m, for eachrj € my. For theC-direction, consider an arbitrary
s € m. With 22 non-empty, we may also assume the existenceasf well as that of
the block[gx in 7x. It suffices to show thdt;, ([sx) = s. Observe that; = [s]x. Since
g andg’ are choice functions, both([s]x) € [s]x andd'([dx) € [sx. Hence, both
s~x g([slx) ands ~x g/ ([]x), i.e, SN X = g([g]x) N X andsN X = ¢/ ([s]y) N X. We
can now reason as follows:

s = (snX)U (snX) = (g(gx) N X) U (g ([s)x) N X) = fig([slx) = fr([S%)-
This concludes the proof. o
This proposition has the following corollary, which is also illustrated in Figure 2.6.

Corollary 2.2.12 Let A be a setX C 2" and X C A. Then,ﬂ))g(x) = @ or
apry(X) = 2

Proof: Assumeapr, (X) # ©; it suffices to show tha#iprg(X) = 27, By the as-
sumption, there is some; € 7x such thatr; C X. Moreover, since 2 is not
empty, neither isr. Now consider an arbitrary; € mx. By Proposition 2.2.11, then,
m = {f (m) : m € mx}, for some choice functioh mappingmx on 2. Therefore,
f (mi) € mj. Moreover,m; N X # @ and so;m; C aprg(X). With 7; having been chosen
arbitrarily and the blocks ofx exhausting 2, we may conclude thapry(X) = 24,
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2.3 Propositional Logics

A propositional language (A) consists of a set of formulaB(A) over some set of
propositional variableé. Unless stated otherwise, we assufnt® be countable. A
proper logicfor a propositional languadg(A) is a set of pairs of theories In(A), i.e.,
a subset of6(A) x @(A).> For any logic/ for L(A) and any pair of theorieg' and
© we say tha® logically follows fromI" in Aif (I,©) € A. In the sequel we will
usually denoté ", ©) € Aby I' -4 © and(I',0) ¢ Aby I' ¥ O, also omitting the
superscript whenever possible. At an intuitive level, it can be a help to read®
as signifying that some formulas & hold whenever all formulas id” hold. Two
formulasy and+ arelogically equivalente =4 1 if both ¢ F4 ¢ andvy F4 ¢. The
sets ofconsequenceandanti-consequencesf a theoryl” is then defined as:

Cny (I =¢. {p: ' o}
Any (1) =ar. {e: go}—AF}

We say that a theory' is A-closed(or simplyclosed if I' = Cn, (I'). Atheory A is
said to be aet of axioms foa theoryl" iff I" and A have the same consequences. A
theory is calledinitely axiomatizabléff it has a finite set of axioms.

We take a very liberal attitude towards what to consider a logic and impose no
further restrictions. Then the logics for a propositional langua@e can be partially
orderedvia set inclusion. Definel < A’ if and only if A C A’, for A and A’ logics
for L(A). The set of logics for a propositional langudge\) thus constitutes a field of
set$ and as such a complete lattice and even a Boolean algebra.

We give a brief overview of the most common conditions usually imposed on log-
ics.” A logic A is reflexiveif I = I, for all non-empty theorieg’. Very similar
conditions are those afiagonalityandoverlap which are satisfied i - ¢, for all
formulasy, and, respectively, if” - @, for all theoriesI” and® such thatl" N © # ¢.

If o F4 ¢, for some formulap, we say that! is diagonal forp. A logic is monotonic
iffor I' C I"and® C @', ' - @ impliesI” + ©'. For monotonic logics the con-
ditions of reflexivity, diagonality and overlap coincide. We say a logic satisfie#
I'-oeuU{ptandl”U{p} - O imply 'UI" I ©UEO'. Observe that this definition
of cut is equivalent to any of the following two conditions fBrfinite:®

(x) T'FOUZ andI"u{¢(pFO forallée = imply T'ul’reoue
(xx) TUEFO and I"FO'U{¢} forallé e & imply 'ulFoOUE.

Also consider the following cut-like condition:

(xx%) oFY Y, T O U {p} andI" U {y} F* @ imply rur’'+*euve.

5We follow Segerberg[1982] in this definition and the following remarks on logics.

6A field of sets $ a collection of subsets of a nonempty Xetuch that both the empty setand the set
X are inSandSis closed unden, U and™— with respect toX (Chang and Keisler, 1973, p.39).

“Again we closely follow the exposition of Segerberg[1982], pp.34-39.

8Segerberg proposes a stronger and more general notion of cut defined as the conjunction of these two
conditions with the restriction that be finite lifted €f., ibid., p.37).
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Fact 2.3.1 Any logicA for L(A) that satisfies cut also satisfies«). Moreover, x)
implies cut, provided! satisfies diagonality.

Proof: First assume» -4 v, I' ' © U {¢} and I’ U {¢)} - ©’. From the former
two assumptions and cut théh-4 © U {1}. Together with the third assumption and
another application of cut, this yieldsu I"" -4 © U ©. For the second claim, assume
'+ e u{p}andl” U {p} H* ©'. With diagonality ofA, we havep - ». Hence,
(x**) entailsl" U I" 1 © U @' follows, which we had set out to prove. —

Finally, a logic isfinite (or compac} if I" - © if and only if there are finitd” C I
and®’ C © such thatl” - @’. This notion is not to be confused with the notion of a
finite semantics, to be introduced presently. We have the following fact:

Fact 2.3.2 Let A be a reflexive, monotonic and finite cut logic fd). Then for all
theoriesI" and© in L(A):

It e iff cn(l) " An(o).

Proof: For the left-to-right direction, observe that sin¢és reflexive,I” C Cn(I") as
well as@ C An(©). Hence with monotonicity]” ! © impliesCn(I") 4 An(6).
For the opposite direction assur@a(I") -4 An(©). By finiteness, there are finite
theoriesI” C Cn(I") and®’ C An(@) such thatl” 4 ©’. By monotony of/ then
also'UI" Y ©u e Foreachy € I" —I', we havey € Cn(I"), i.e, I' 4 ~.
Hence, by cut and its equivalence with), I' F* © U ©'. Similarly, € An(©) —
i.e, itis the case that ' © — for all v € ©'. Therefore, by cut and its equivalence
with (x), eventually," - ©. .

A logic A is consistentf A # 2% x 2%. Obviously, there is only oniaconsistentogic.
For monotonic logics, this condition for consistency is equivalent with the(paip)
not being an element of the logice., ¢ ¥ ©.

A valuation-based semanti¢er just ‘semantics’) for a languadgA) associates
with each formulay of the language a subset of @hich we call theextension ofp
and denote byy]. Here, 2 is taken as the set efluations which will in the sequel
frequently be referred to b§. LetsI- ¢ if s € [¢] andsl¥ ¢ if s ¢ [¢]. The set of
extensions of the formulas infawe denote by’ (I'),i.e., & (I') =q1. {[v] : v € I'}.
The set of all formula extensions of a languddé), & (?(A)) we usually denote by
simply & (A) or even just, if Ais clear from the context. Let, furthermoifd]] =gt
,er [V and{I") =at. U, [7]. Semantical consequentsethen defined as:

ree if [I]c (o).

In a similar vein, a theory is said to Isatisfiableif [I'] # o andvalid if [I'] = 2*. A
formula is satisfiableor valid if {¢} is, respectively, satisfiable or valid. Any binary
relation on the theories of a languag@) is said to besoundwith respect to a logicl

if it is a subset ofl andcompletewhenever it is a superset df
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We call a valuation-based semantics for a langu&de finiteif for each formulay
of L(A) there is a finite subset C, A such that:

s€ [p] ands~x § implies s € [¢]

In terms of rough sets this means that for all formupasf L(A) there is a finite seX C

A such that:
el = apry([e]) -

It now happens that if a semantics is finite, then for each formulla L(A) there is
a smallesffinite set such thafy] = apry([¢]) . This proposition is a corollary of the
following lemma in rough set theory:

Lemma 2.3.3 Let A be a countable set arHC 2*. Assume further that there exists
some finite g C,, 2% in Z. LetX C 2A. Then:

apr, (X) =apr;(X) forallZ € Z implies apry (X) = aprnz(X).

Proof: Assume for allZ € Z : apr, (X) = apr,(X). Since(1Z C Z,, also
aprz, (X) € aprn z(X), in virtue of Fact 2.2.7. So consider an arbitrary apr z(X).
We prove thats € apr, (X). Then, for somep € X, S ~nz s SinceZ is fi-
nite, so ar§Z andZy, — (\Z. LetZy —(\Z = {z,...,z,}. Observe that for each
ze{z,...,z:}, there is som& € Z such that ¢ Z. Assuming the axiom of choice,
let{Z],...,Z\} C Z be such thag ¢ Z/, for eachi < n. Foreach0< i < n+1,
defines® as follows:

S =d. S
st =a (5 —{z})U(sn{z})

Since by definitionz; ¢ Z{, and withs" ands,, differing at most atz, it follows
thatforeach 6<i <n+1, § ~z §°;. As a consequenc, ; € apr, (X), for each
i < n+ 1. To appreciate this, observe that by assumgjoa X and hence alss; €
apry, (X). Now assume; € apry, (X). By the initial assumptiopry, (X) = aprz (X),
s0s" € apry (X). Since, moreoves' ~z Sy, § 1 € APy (a‘pTz‘, (X)). Then also
S'y1 € apry (X) and eventually’, ; € aprz (X).

We now prove by induction onthat for alli < n+ 1 (letting{z, ...,z,} = o if
k > n):

S ~zo—{z,20} S

Fori = 0, recall that by assumptiaj ~n z S, which is exactly what we have to prove
considering thafz, ..., z,} = Zo — () Z. For the induction step, we may assume that
S ~z0—{z,....2,3 S Now considess ;1 as well as an arbitrarg € Zo — {z1,...,2,}.

If ze€ Zo—{z,...,2,}, just observe tha&',; ~z _(z....2.1 § ~z—{a,...2.} S I,
however, the only remaining possibility obtains ang= z;, then alsos’,; ~(z} S.
Hence, we may conclude thglt ; ~z,_(z,,....2,} S



48 PRELIMINARIES

In particular it holds thats;,; € apr, (X) and thats; ; ~z s Hence,
s € apry, (apr,, (X)), which is so much as to say thae apr,, (X). Wrapping things
up, we recall thas had been chosen arbitrarily such tisgt~nz s. So, we may
conclude thaéipr 7 (X) C apry, (X). =

Observe that Lemma 2.3d®es nothold in general ifZ does not contain at least
one finite element. For a counterexample, consider a countably infinite @ed let
X be the set of infinite subsets &f HenceX # 2°. Let furtheray, ..., a,,... be an
enumeration oA and setZ =g {A—{ao,...,a:} : n € w}. Clearly,NZ = o
and soaprn z(X) = 2%, However, since ever}( € X has an infinite intersection with
anyZ € Z, we also havapr,(X) = apr,(X) for all Z,Z" € Z. However, ifZ is
itself finite, the restriction of it containing a finite element can be dropped. Just recall
thatapr, (apr,, (X)) = apr,~» (X). We are now in a position to prove the following
proposition.

Proposition 2.3.4 For every finite semantics for(RA) and each formulay of L(A)
there is a (unique) smallest X A such thafy] = apry ([¢]).

Proof: Consider a finite semantics fa(A) along with an arbitrary formula. Now
consider the seZ =4 {Z C A: apr,([¢]) = [¢]}. By finiteness, there is also
a finite Zy € Z. Hence for allZ € Z, apr,([¢]) = apry ([¢]). By Lemma 2.3.3,
apinz([el) = apry, ([¢]) = [¢]. Hence, by definition oZ, also(1Z € Z, which
proves the proposition. -

This result warrants the definition éf(¢) as thesmallestsubset of propositional
variables inA for which [¢] = apry([¢]). More in general we sehA(I") =gt
U, er A(y). Moreover we employ the notatiop(ao, . . ., @) to indicate thafy] =
aPlyq,....a} ([] ). Observe that\(I") does not in general denote the smallest sukiset
of propositional variables such thpf’] = apry([/]). We have the following two
facts.

Fact 2.3.5 Lety be a formula of a propositional languagé€A). Then for all subsets
A of A such thaiA(¢) C A:

apra(le]) = apr,([el) = lel-
Proof: Merely consider the following equalities:

apra(le]) = apra (@pTag,)([el)) =ract22s
AT pna) ([0]) =a) ca aPTae)(le]) = [¢l-

That then alsapr , ([¢]) = [«¢], follows immediately from Fact 2.2.1. -
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Fact 2.3.6 LetI be atheoryinI(A) and A a subset of A such thét(I") C A. Then:

apr, ([1']) = aprA([1]) = [T
apr, ((I')) = apra((I)) = (I').
Proof: Consider the following equalities:
apr, ([ = Myerapr,(I]) =ractzss MNyer bl = [,
aprA([I]) = U,erapma(h]) =ractzas U,er ] = 11
That alscapr 5 ([1']) = [I'] andapr , ([I]) = [I'] then follows by Fact2.2.1.

A classical propositional language(B) over a set of propositional variabléss a
minimal set containing\ as well asl and for each formula contains another formula
denoted by(—¢) as well as for each pair of formulgsand« a formula denoted by
(¢ vV ¢) and allows for a classical semantics. chassical semanticéor a classical
languagel(A) is such that for each propositional varialalezs A and all formulasy
andy:

[a] = {seS: acs}
[ = o
[l = S—I¥]

[(eve)] = [[ J Ul

The resulting logic we will refer to aslassical propositional logi¢CPC). Where pos-
sible we omit parentheses. We also have the usual abbreviafiops ¢, ¢ — 1,
A\ © and\/ ©, wherep and¢ are formulas of (A) and® a finite and possibly empty
sequences of formulas in(A). For each formulap, the set of propositional vari-
ables occurring inp is defined as usual and depicted Afp). We useA(I) to de-
notel ), » A(v). The set algebra over the set of extension of a classical propositional
languagelL (A), i.e, (5;@,2A,_,U,ﬁ), we denote by&a. For a classical proposi-
tional language.(A), for each formulap, define[p|_ =4 {¢: ¢ =4 ¢}. Then
({lel=: ¢ €D} [L],[T]=,—, V,A) is theLindenbaum algebra of (), also de-
noted by£. Here—, vV and A are the operations, V and A raised as to apply to
equivalence classes of formufa€lassical propositional logic is compact.

Fact 2.3.7 (Compactness @PQ Let L(A) be a classical propositional language and
I" atheory in L(A). Then:

I' is satisfiable iff every finite subtheoFy of I is satisfiable

%le, m[p] =d. [¢], ¢l V [¥] =a. [¢ V] and[e] A [¢] =4 [p A]. These definitions are
representative independent.
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Proof: Cf, Barwise (1977), pages 26—28. %

We state without proof that Fact 2.3.7 has the finiteness of CPC as a corollary.

Fact 2.3.8 CPCis finite. l.e., forl" and © theories in a classical propositional lan-
guage LA):

I" ECP€ @ implies there are finite subsefd C I" and®’ C © such thatl” ECPC @',

Classical semantics is also finite in the sense that for each formnthare is a finite
setA such thaf¢] = apr, ([¢])-

Fact 2.3.9 Classical semantics is finite.

Proof: Consider an arbitrary classical propositional languag&) along with an
equally arbitrary formulg of L(A). The proof is then by induction ap.

First assumep = a. Obviously[a] C apr,,([a]); so, it suffices to show that
apr, ([a]) € [a]. Observe that for ang € apr,, ([a]), there is some’ € [a] such
thats ~, S'. Since by definitiora € s/, alsoa ¢ s Hences € [a].

Let o = —. In virtue of the induction hypothesis we may assume there to be a
finite A C,, Asuch thafly] = apr,([¢]). Now consider the following equalities:

[v] = I =in apra(vl) = apr, ([WI) =in apr,([-¥]).

With Fact 2.2.1, we may conclude thaiy] = apr,(—).

In casep = v V1, the induction hypothesis grants us there to be fidite\’ C,, A
such that[y] = apr,([v]) and[x] = apr.. ([x]). Now consider the following
equalities:

apryua (o] U [v])

= apraua([¥]) Vapraga([x])

=in  aplaya (@PTA([¥])) Uaptaua (@PT A ([X]))
= @l auannall¥]) Uapt auannar (Ix])

apraua ([v v x])

= apra([¥]) vapra (Ix])
=in. [Y]UIX]
= [Vl
This concludes the proof. o

For classical propositional logic we have in geneddl) C A(p). Hence the
following fact.
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Fact 2.3.10 Let L(A) be a classical propositional langge,A C A andy a formula
of L(A). Then:

apr, ([e]) = apry ., (e) = apr, ()

apra(fel) = aPTaca)(le]) = @Prana) ([el)

Proof: Immediately from the Facts 2.2.8 and Fact 2.3.5 and the fact that for classical
propositional in generah(¢) C A(p). o

In CPC also the following version of cut holds.
Fact 2.3.11 LetI  and®© be theories in [A) and letA C A. Then:

if TUAEPCOU(A— A, forall A’ C A then " ECPC Q.

Proof: By contraposition. Assume thdt #°PC ©. Then, there exists some valua-
tion ssuch thas |- ~ for all v € I" ands ¥ ¢ for all ¥ € ©. Consider this valuatioa
along with the subsets @t given byA NnsandA Ns. Clearly,A — (ANs) = ANs
Then,slk~forally € I'U(ANs)andsk ¢ forall ¥ € © U (ANS). Consequently,
there is somel’ C A —viz, ANs—suchthatl’ U A’ ECPFCO U (A — A). 8

We now introduce some terminology relating to formal systems, derivations and
Gentzen-style sequent systemsfoimal systenior a formal languagé is a number
of axiomstogether with a number afules The axioms are sequences of formulas
of L and the rules are relations between a finite number of sequéfces. , >, and a

finite sequence of formulgk, . . ., Tm, allowing one to derive from all ofy, .. ., on,
any one ofly, ..., Ty l.e, for Xy, ..., Xy andTy, . . ., T, Sequences, a rule is denoted
by:

ZO, ey En

To, ..., Tm’

A derivationis then a finite sequence of sequenégs. . ., Y of formulas such that

. L ) . To, ..., 1h
each (0 < i < K), is either an axiom or there is a ru?— suchthaty = 71;
I ( . ) . . . . O’ St m . . l . ]
for some0 < j < mand eacl{; (0 < i < n)is identical to somexj with 0 < ij < i.

For X andT finite sequences of formulas i(A), X' = T is called asequent A
Gentzen-type system is a formal system containing a number of sequents as axioms
and rules enabling one to derive a sequém, succedents of the ryléom a finite
number of other sequents, thatecedents of the ruléVe use- X' = T to denote the
existence of a derivation of the sequént-T'. For I and® possibly infinite theories
in L(A), defineI’ - © if and only if - ¥'= T, for someX € I'* andT € ©*. The
Gentzen-style systems GPC and GP, which are sound and complete with respect to
CPC, are given in Table 2.4.
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Axioms:
0 L=e (1) e=T (20 a=a
Logical Rules:
Y=T, ¢ Xpo=T
L X =T R X=T,—
Yoo, =T Y=T, ¢ Y=T,y
A RYNEYS AR E=T,p Ay
Yopo=T Yop=T X=T, 0,0
Vi S oV =T VR ST,V
Structural Rules:
‘ 2o, 0=>T ‘ 2=T,0,0
cont : T o contk: — o
2op=>T Y=T, ¢
Yoo, P=T Y2=>T,0,0,7
PRI 2 g o, P=>T PR 2o T 0,7
. X=T . X=T
thin_ : W thing : TT,(Q
X=T, ¢ Xop=T
cut: SN

Table 2.4. The System GPC. GP is like GPC except that GP lacks

Fact 2.3.12 (Soundness and completenes&BiC) The system&PCandGPis com-
plete with respect t€PC i.e., for all theories/” and © of a classical propositional
language I(A):

I ':CPC 6

iff I'tgp® iff I'tgpcO.

Sketch of proof: ~ Soundness is by a straightforward induction on the length of the
derivation in GP. Completeness is as in Barwise (1977), page 38—-39. -
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2.4 Cylindrification in Propositional Logic

In the previous section we argued ti@gr. can be construed as a cylindrification op-
eration anctaigr as its dual. In first-order logic the quantifiers can be thought of in
a similar manner. Quantification increases the expressive power of first-order logic
tremendously and is responsible for Church’s famous undecidability result. These
phenomena connected with cylindrification, however, do not occur at all in classical
propositional logic. As a matter of fact, the set of extensignis classical proposi-
tional logic is closed under taking lower and upper approximations. Hence for each
subsetX of propositional variables we may assume the existence of fornilag

and [X] ¢ with the respective extensior@ry([¢]) andapr, ([¢]). This we prove.
Moreover we characterize the set of extensions of a classical propositional language as
the set of fixed points of all operatio@pry anda_|orX with X finite. Recall that?’ (A)

denotes the sgitf¢] : ¢ € B(A)}.

Theorem 2.4.1 Let L(A) be a classical propositional language with a classical se-
mantics and let Fixaprg) =qr, {X € S: X =aprg(X) }. Then:

& = | Fix(apry).

BCLA

Proof: The left-to-right direction is immediate by finiteness of classical semantics.
For the opposite direction consider an arbitr&nZ Ssuch thaiX = aprg(X), for
some finiteB C A. Now define for eack C B:

Bs  =dt. /\{bﬁb’ : bp’eB andbes and b’ ¢s}.
Obviously,s Ik Gs, for eachs C B. Now set:

B =a \/{Bs: sCBandseX}.

We prove thaX = [3]. Firstassume, for an arbitrasye S, thats € [5]. Thensl+ Sy,
for somes’ € X with s C B. Some reflection reveals that~g s and subsequently
s € apra(X). With the assumption thaX = aprz(X), the latter is equivalent with
seX.

Conversely, assumec X. Defines® =4 sN B; thens® I+ fs. Since, moreover,
s ~g S" and s only depends oB we also have that I Gs-. It is equally clear that
s* C B. Sinces" ~g s, alsos* € aprg(X), i.e, s* € X by the assumptionA fortiori,
alsos |- 3, and we may conclude thate [J]. %

This result is very close to the more syntactically flavored fact of classical propositional
logic that each formula is equivalent to a complete disjunctive normal form. Observe
that if A comprises precisely the propositional variables occurring in a formula
then each disjunct of its complete disjunctive normal form characterizes a block in the
partitionm x.
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Corollary 2.4.2 Let L(A) be a classical propositional language. Then:

& = {aprg(X): BC, A and XC 28}

Proof: The inclusion of& in {@pfg(X): BC, A and X C 2%} is an immedi-
ate consequence of Theorem 2.4.1. For the opposite inclusion just observe that
apr (apr (X)) = apr (X) is a law of rough set theory and again Theorem 2.4.1.

This corollary establishes classical propositional logic as the most expressive one with
a finite semantics, in the sense that the extensions of its formulas exhaust the set of
valuations that can be finitely approximated.

So, the set of extensiod$(A) of formulas of a propositional languagéA) is given
by the fixed points of the approximation operati@sg on sets of valuations witB
finite. Obviously,& (A) does not exhaust in general the powerset of valuatifngf2
A'is countably infinite, so is the set of formulaslgfA). The set of valuations, not to
mention the set of sets of valuations, however, is uncountably infinite and so there can
impossibly be a formula for each subset of valuations, or even for each valuation.

The set of theories of a propositional langudd@) will be uncountable ifA is

countably infinite. Nevertheless, there will still be subsets of valuations that are not
the extension of some theory. For an example consifier £o}. For areductio ad
absurdunassume thal"] = 2* — {@}. Then there is at least onen I" such thafy]
does not contain the empty setIn virtue of Corollary 2.4.2, there is a finite sub&et
of propositional variables and some subset of valuatikissich thaf]y] = aprg(X).
Now consider thealuationB. Observe that witlB finite andA infinite, B is not empty.
Hence,B € [I'] anda fortiori alsoB € [y]. ThereforeB € aprg(X). Evidently,
B ~g 0 and soo € aprg(apr(X)) = aprg g(X) = aprg(X) = [7], which is at
variance with the assumption that¢ [+].

More important for our purposes, however, is that Theorem 2.4.1 and Corollary 2.4.2
pave the way for the following fact, which warrants the introduction of the ‘rough-set’
quantifiers to the propositional language.

Fact2.4.3 LetL(A) be a classical propositional language with a classical semantics.
Then for all BC A:

Xe & implies aprg(X) € &

Proof: At page 41 it was stated as a law of rough set theory that folBa®/ C A,
aprg(aprc(X)) = aprg~c(X). Now consider an arbitrarX € &. By Theorem 2.4.1
there is a finiteC C A such thatX = apr-(X). Now consider an arbitrar3 C A and
reason as follows:

apig(X) = apig(apic(X)) = aplgc(X).
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Since obviouslyB N C is finite, with Corollary 2.4.2aprs~c(X) € & and we may
conclude thaaprg(X) € &. .

From this fact follows that for each formulain L(A) andA C Athere are formulas
£, ¢ in the language such that:

apralel) = [€]
apr, ([el) = [€]

We denote these formulas by, respectively) ¢ and[A] . The following two clauses
rephrase their semantics:

sl (A)p iff forsomes € S: s~a s and s I ¢,
sl [A]¢ iff forall § € S: s~ implies s IF ¢.

Observe thatA) is not a truth functional connective, witness the fact thét a — b
ando I- ({b})abute ¥ ({b})b. Still, from Theorem 2.4.1 follows that formulas
of the form (A) ¢ and[A] ¢ are equivalent to formulas expressible by means of the
Boolean connectives only. The following reflections show how such formulas equiva-
lentto(A) p and[A] ¢ can be obtained from.

ForL(A) a classical propositional language andC A, let ¥ 4 be the set of func-
tions given by{T, J_}A. We extend eaclr € X, to a functiong: ¢(A) — P(A)
which is defined inductively as follows:

. o(a) ifaeA,
o(@) = {a otherwise
o (J_) =df. 1
o (T) =df. T
G (~p) =d. 0 ()
G NY) =d. 6(p) NG (Y)
G(eVY) =da 6(p) Vo)

Eachs € XY, replaces all occurrences of propositional variabtesn a formula
by either T or L. In the remainder we will confusé ando. We will also write

¢ (0,...;an/o,...,&n) fOra (p),if o € Xy . 4y ando (&) = &, foreachd <i <
n. We have the following pair of lemmas.

Lemma 2.4.4 Let s be a valuation for a propositional languagéA) and let A be
a subset of A. Then, for eache X there is a valuation’ssuch that s~ s" and
slk o (v) ifand only if S IF , for all formulas.

Proof: Consider an arbitrary € X and defines®, such that for ala € A:
1 ifa¢g Aando(a) =T,
s'(a) =q¢. (0O ifa¢ Aando(a) = L,

s(a) otherwise



56 PRELIMINARIES

It can readily be established that- 5 s*. A straightforward inductive argument on an
arbitrary formulap then shows that I o (¢) if and only if s* IF .

Fory = a, eithera € Aora ¢ A. If the latter, merely observe that(a) = a and
s(a) = s*(a). If the former, first assume that(a) = L. Then boths ¥ o (a) and also
s*(a), because*(a) = 0. Finally, assume (a) = T. Then,s ¥ ¢ (a) ands* I a.
The latter because in this casda) = 1.

The case forp = L is trivial and that forp = ¢ V x is immediate by the induction
hypothesis. -

Lemma 2.4.5 Lets be a valuation for a propositional languagéA) and letA be a
subset of A. Then, for each valuatidrssich that s~ 4 s/, there is ao € X such that
slk o (p) ifand only if S IF ¢, for all formulasp.

Proof: Consider an arbitrary valuaticsi such thats ~, s'. Definec* € X5 such

that for alla € A:
T ifaes,
o (a) =df. )
1 otherwise

A straightforward inductive argument then shows thatcomplies with the require-
ments as stated in the lemma. So consider an arbitrary formHar the basis assume
¢ =aforsomeac A If ac A, thens* (a) = aand:

sika iff aes iffg_, ¢ aes iffory-a slko(a).

If, however,a ¢ A, first assume’ |- a. Then,o* (a) = T and immediatelys IF T.
Now assume&' }¥¥ a, thena ¢ s ando* (a) = L. Observe that alssi L.
The inductive cases are either trivial or immediate by the induction hypothesis.

These lemmas prepare the ground for the following proposition.

Proposition 2.4.6 Lety be a formula in a classical propositional languageA) and
A a subset of A. Then both:

apr,([el) = () o] and apra(le]) = |J [0 (]

oeXx o€l

Proof: As to the first claim, consider an arbitrasy= 2. For theC-direction, assume
thats ¢ ﬂaezz [o (p)]. Then, there is some € X5 such thats ¢ [o (¢)]. By
Lemma 2.4.4, there is some valuatigrsuch thas ~ s ands |t o (¢) if and only if
S |- ¢. Consider this, thens' ¢ [] and hence ¢ apr , ([¢]).

For the2>-direction, assume that¢ apr , ([]). Then, there is some valuatish
suchthas ~4 s'ands’ ¢ [¢]. By Lemma 2.4.5, there isac Y5 suchthasl- o (¢)
if and only if ' I ¢. Hences ¢ [o (¢)] anda fortiori, s ¢ Noesy lo (¢)]-
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For the second claim consider the following equalities:

apra(le]) =apr, (el = () ool = J el = U @]

o€l APV o€y
This concludes the proof. o

This result has the following corollary.

Corollary 2.4.7 Lety be a formula in a propositional languagdA), let A C A and
a a propositional variable not imA. Then:

apr, ([p (/L) Nlg(a/T)]) = apr,([¢]) and
apry (le(a/ D ule(@/M)]) = apra(le])-

Proof: First consider the following equalities:

apr, ([9]) =aga apry (le]) =raczzs apr, (apr([e]))-

Then observe thfﬂ_prm([[w]]) = [p(a/L)] N ¢ (a/T)], by Proposition 2.4.6. The
proof of the second claim is analogous. .

Observe that for each formulaand eachA C A, the set{o (¢) : 0 € X4}
is finite, because> only contains a finite number of propositional variables. Hence,
we may assumé\, . o (¢) andV 5 o (p) to be, respectively, a well-formed
finite conjunction and a well-formed finite disjunction, everdfis infinite. On ba-
sis of Proposition 2.4.6 we may therefore assymiy and (A) ¢ to abbreviate the

formulas/\gezZ o (p) and\/gGZZ o (p), respectively.
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Chapter 3

A Modal Characterization of Nash
Equilibrium

3.1 Introduction

With the advance of distributed and multi-agent systems there has been an increased
interest in the relation between logic and game theory within the field of Artificial
Intelligence €f., e.g, van Benthem (2001b), Boutilier, Shoham, and Wellman (1997)
and Pauly (2001)). In multi-agent environments, various decision making agents with
various degrees of autonomy interact. The individual agents making up a multi-agent
system may be designed for widely divergent and even conflicting tasks. Still, which
actions are most conducive to an agent’s ends in such situations, may well depend
on the decisions of the other agents. The specification and verification of multi-agent
systems calls for mathematically precise concepts that facilitate reasoning about such
interactive strategic situations. Game theory is relevant to the fiedtiicial Intelli-
gencein that it provides an apposite conceptual framework in this respect.

The theory of games originated in the middle of the 20th Century with the recog-
nition that, to that date, no theory in classical mathematics had dealt with social situ-
ations in which each individual tries to maximize a function according to an idiosyn-
cratic principle without having control over all of the variables on which this function
dependscf., von Neumann and Morgenstern (1944), p.11). Thus, game theory was
developed as the mathematical study of game-like situations in which the eventual out-
come depends on the individual choices of various agents, each of which has different
preferences over the possible outcomes. In any such situation the traditional notions of
optimality were thought no longer to suffice for a proper analysis and game-theoretical
solution concepts were developed to take over their role. In this respect, the celebrated
Nash equilibriumand itssubgame perfeatariety are archetypical in non-cooperative
settings. Recall that, informally, a collective course of action, or a strategy profile, is
said to be dNash equilibriumif none of the participants has an incentive to deviate
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unilaterally from that course of actioref(, page 28). Whether an agent has such an
incentive depends on his individual preferences.

One of the guiding ideas of game theory is that situations of social interaction
can fruitfully be compared with and analyzed as games by distinguishing players,
their strategies and their interests. Games have proved to be an especially rewarding
metaphor for social environments in which interacting agents are conceived of as play-
ers with individual preferences and powers of manipulation. This leaves the question
how far the game metaphor goes and how far it should be carried. In order to arrive
at a general theory of social interaction, specific and idiosyncratic aspects of games
should be abstracted from, in favor of other, more generic features, which should duly
be emphasized. Where the dividing line between the general and the specific should be
drawn is not an objective matter and may very well depend on one’s purposes. Still, it
should always be borne in mind that:

A model structure that is too simple may force us to ignore vital aspects of the real
games we want to study. A model structure that is too complicated may hinder our
analysis by obscuring fundamental issues. (Myerson (1991), p.37)

The order in which the players perform their actions in strategic situations has reason-
ably been argued to be a vital, rather than an obscuring, aspect in this sense. The mod-
els of strategic situations providég games in their extensive form or justextensive
games— are especially designed to account for this type of sequential structure.

The extensive form of a game makes explicit the order in which the players are
to choose among a number of alternative courses of action and how the alternatives
available to a player are dependent on previous decisions. This makes that the extensive
form of a game can be represented as a labelled tree, each subtree of which can be
considered as an extensive game in its own right, as a subgame of the game as a
whole. An important solution concept that comes along with extensive games is that
of subgame perfect Nash equilibriuhis ramification of the original concept selects
among the Nash equilibria of the a game those strategy profiles that also qualify as a
Nash equilibrium in each of its subgames.

In this chapter, we will give a logical analysis of extensive games and their (sub-
game perfect) equilibria. With an extensive game being introduced as a specific kind
of relational structure, we employ multi-modal languages to this end. First we come to
consider a multi-modal language which set of labels is assumed to possess relatively
little structure. The last section of this chapter shows how this framework can be refined
by deploying the language of Propositional Dynamic Logic (PDL).

Our approach is congenial to Bonanno’s in Bonanno (1998), who used Computa-
tional Tree Logic (CTL) extended with a prediction relation to formalize the concept
of backward induction, which is closely related to subgame perfect Nash equilibrium.
Also the work of Baltag (Baltag (1999)) should be mentioned in this context.

Extensive games define a proper subclass of Kripke-frames for the special kind of
multi-modal language we consider. Each strategy profile of an extensive game then
corresponds to a subrelation in the frame and as such can be taken as the accessibility
relation of a modal operator. Some strategy profiles qualify as a (subgame perfect)
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Nash equilibrium and others do not. A strategy profile being a (subgame perfect) Nash
equilibrium reflects in certain specific structural properties of the subrelation it defines
on the corresponding frame. The result we are after is to characterize these structural
properties by means of a multi-modal formula schema. Sokfan extensive game,

Se its corresponding frame argbne if its strategy profiles, our quest is for a formula
schema’ (s) such that:

SelFv(s) iff sisasubgame perfect Nash equilibriumin

Any such result would show that subgame perfect Nash equilibrium is a definable
property of frames in appropriate multi-modal languages. Here it be emphasized that
the frames in question belong to a special class of frames corresponding to extensive
games.

In the next chapter, we propose a sound and complete axiomatization of a multi-
modal logic which semantics is restricted to models based on this class of frames ex-
tensive games define. Remarkably, we will find that the axioms are nothing much out
of the ordinary and can also be bestowed rather intuitive readings. The very austerity
of the whole analysis we take as something speaking in its favor, as it shows how lit-
tle is required of a modal language to be able to characterize (subgame perfect) Nash
equilibrium.

3.2 Extensive Games with Perfect Information

Generally speaking, putting the egg in the pan first and then the butter does not work
quite as well as putting in the butter first and then the egg. The order in which the
actions are performed does matter in some cases. In strategic environments this is no
different. What is more, the order in which agents can make their choices and moves
often makes atrategic differencand as such is something the game-theorist had better
not ignore entirely.

For an example, consider the strategic situation depicted in Figure 3.1. Here two
players RowandCol, choose between rowsf or botton) and between columnseft
orright), respectively. The matrix merely summarizes the payoffs to the players for the
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different possible choices of action. The figure bottom left in each quarter indicates the
payoff toRow the figure top right the one awarded@ol. The matrix is thought of as
specifying no temporal structure whatsoever; as it is the players are not even assumed
to move simultaneously.

In this situationrRowmay be tempted to playottom the idea being that this would
leaveCol the relatively unfavorable choice between an outcome afid an outcome
of zero. Anticipating thaCol chooses the formeRowmay expect a payoff of0. In
order to deteRowfrom taking this course of actiorGol may threaten to plaleft if
Rowwere to playbottom resulting in the worst outcome for both players. This would
forceRowto playtop, which guarantees a better outcome@al. However, if the game
structure were such th&towis (able) to move firstCol's threats would be rendered
void, provided he is not otherwise committed to choose the left column. If, in defiance
of Col's threats Rowwere to play bottom anyway;ol would be presented withfait
accompliand Col had better make the best of a bad job and opt for the right colomn
after all. Similarly, if Col were to move first a threat on his part does not make sense
either. In that case, however, he can secure a more favorable outcome by choosing the
left column. That would leav®owthe easy choice between a payoffcbr one of
zero. Rowmaking the obvious decision would guaran@a a payoff of3, instead of
the probable and miserlyhe would have gotten had his initial choice beigt with
Rowquite likely seizing the opportunity and playibgttom This time, howeveriRow
can try to achieve a better outcome for both by promising — and committing herself to
fulfill this promise — to playtopif Col decides on the right column.

Figure 3.1 as such leaves unspecified the sequential structure of how the game is
played. Above we gave two possible interpretations, an obvious third would be to
conceive Figure 3.1 as a fully-fledged game in strategic fam, by assuming the
player to make their choices simultaneously or in ignorance of one another’s. Be that
as it may, the point of these reflections is that the order in which the players make
moves does make a strategic difference. For one thing, the feasibility of making a
threat or a promise may depend on it and in our example even the outcome of the game
may as well. As such, the sequential structure of game has sensibly been made subject
of game-theoretic study.

The sequential structure of a game is made mathematically precisesitétssive
form, which represents the game as a labelled multi-player decision tree. Play com-
mences at the root and each edge indicates a possible course of action for a player. At
each node a player is to strike a decision how to act. The two temporal interpretations
of Figure 3.1 can thus be represented as in Figure 3.2, below. The vectors at the leaves
indicate the payoffs to the players, in both cases the first entry being the Roywff
the second t&Col. Observe that in both cases, there are four strategies for the second
player that is to move. In the left picture, eachGal's strategies has to specify whether
to playright or left both if the first player playtop and if she play®ottom

Similar concerns may drive the game-theorist to consider models of game-like sit-
uations with even more structure. Strategic reasoning may thus be argued to depend
on epistemic features such as the players’ knowledge of the situation they are in or
the beliefs they entertain about it or about one another’s beliefs, preferences and ra-
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tionality. Likewise, one may wish to consider players that randomize over their (pure)
strategies. In an effort at keeping our logical analysis as perspicuous as possible, how-
ever, we will abstract from these issues and confine our attention to extensive games in
pure strategies with perfect informatidrg., the players are assumed to play a (pure)
strategy with probability one or zero and they are assumed to be fully informed about
the game’s structure and the other players’ preferences and powers. Moreover, we will
assume that only one player can move at a time and that the games will eventually come
to an end after a finite number of moves. With respect to the preferences of the players,
we take into account the ordinal structure they determine over the possible outcomes
only, as this suffices for our purposes. Concerns as to the intensity of preference as
expressible by a specific rational or real number, do not enter the picture. Disregarding
uncertainty on the part of the players as well as mixed (or randomized) strategies, our
analyses are of a strictly qualitative nature. The following definition mathematically
precise the notion of game in extensive formr just anextensive game

Definition 3.2.1 (Games in extensive form of perfect informatioA) game in exten-
sive form Eis a tuple(V, RN, P, {pi}iEN), whereV is a set of vertices (or nodes) and
R a relation onV such that(V,R) is a, possibly infinite, directed and irreflexive tree
with a finite horizonj.e,, (V, R) contains no infinite branches. The root nod¢\6fR)

is usually denoted by.. FurthermoreN is a non-empty bufinite set of players. The
function P assigns to each internal node\ihthe player inN that has to move at.
Finally, for each in N, p; is a total pre-order (a reflexive, transitive and connected rela-
tion) over the vertices iV, specifyingi’s preferences. Intuitively(v,V') € p; signifies
thati valuesv' at least as high as A playeri is calledindifferentif pj = V x V and
interestedotherwise. LeZ denote the set of leaves 0f, R) and, for each player let

V; betoken the subset of vertices in whidk to movej.e, thesefve V: P(v) =i}.

This definition differs from more conventional ones in that the players’ preferences are
defined over all vertices rather than over the leaves only. Although for the relevant
game-theoretical concepts the preferences over the leaf nodes suffice, we found that
defining preferences over all vertices is more convenient for our logical analyses. Note
further that the players’ preferences over the internal nodes are independent of their
preferences over the leaf nodes. In particular, they are not assumed to coincide with
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the preferences over the internal nodes that backwards induction would give rise to.
An extensive game is a labelled tree, the vertices of which represent the possi-
ble game positions and the edgesVv') are possible actions for the player assigned
to v. After a player has decided to play along a certain edge and acted accordingly,
the game reaches a new game state. The position then reached is either a leaf, in
which case the game terminates, or an internal node. In the latter case, the node
reached can also be taken as the the root node of an extensive game, with the play-
ing of which the game proceeds. This idea gives rise to the notionsafbgame
Let E be an extensive game given by the tu@le RN, P, {pi}ieN). For each subtree
(V',R) of (V,R) generated by some vertexanother extensive game is obtained by
appropriately restricting the assignment functP®mand eachp; to the vertices irv’.
For each vertex in V we define the subgants, as the tuple(V’, R,N,P, {pi’}ieN),
whereV' = {V eV: (,W)eR}, R = {(V,V) e V' x V' : (V,V') € R},
P’ = P|V’ and for each € N, p{ = pi N (V' x V). Here,R* denotes the reflexive
transitive closure oR.
A (pure) strategyor a player in an extensive form is a complete plan for that player
to play the respective game. As such a strategy has to account for a player’s choices
at all stages of the game in which that player is in control. A strategy even has to
prescribe a player’s actions in stages of the game it itself precludes from being reached.
Intuitively, a strategy profileis then a combination of strategies, for each player one.
The set of strategy profiles in an extensive games denoted byS:, omitting the
subscript where no ambiguity can arise. For our concerns the notion of a strategy
profile is more fundamental than that of a strategy. We define a strategy jsrofisn
extensive game formally as a function mapping eiatérnal vertex onto a vertex that
succeeds it,e., for eachvin V, (v,s(v)) € R. For any pair of strategy profilesands’
and for each subset of playersve haves, denote the strategy profile that is like
except on the vertices assigned to one of the playersiinere it takes values fromi.
I.e,, for all internal verticey we have:

J(v) fPW)el,

(V) = {

s(v) otherwise

We also haves, abbreviatesi,'}. A strategy for a player is then the restriction of a
strategy profile to the vertices in whicls in control. Accordingly the set of strategies
for a player is defined by{s[ Vi : s S}.

From each vertex onwards a strategy profikgenerates a path through the game-
tree until a leaf node is reached. This path is given by the sequence, v, such that
Vo =V, Vpisaleafandi; = s(vi), forall0 <i < n,i.e, by the sequence:

v,s(V), ..., s"(Vv),

wheres" (v) denotes ther-fold application ofsto v. E.g, s* (V) = s(s(s(v))). In
this manner each strategy profile determines for each vertex a unique leaf node as out-
come. With each strategy profitewe accordingly associate amtcome functions,
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which maps each vertex on the leaf it has as an outcome if the strategy piisfita-
lowed iteratively. Formally we define for each strategy prdfillee outcome functios
inductively such that for each vertexn V:

X Y, if vis a leaf,
§(v) =ar.

§(s(v)) otherwise

On this basis, each extensive gamean be correlated with a strategic gafge
The unique outcomes the strategy profiles determine for the root node can be rep-
resented in a matrix. Thus the various strategy profiles of extensive games can be
compared with respect to the solution concepts available for strategic games, in par-
ticular that of Nash equilibrium. Exploiting the outcome function, the preference rela-
tion p; for each player can straightforwardly be raised as to apply to strategy profiles.
Let E be the extensive gan(e/, RN, P, {pi}ieN). The preferences of playeover the
strategy profiles are made dependent'sipreferences over the outcomes these strat-
egy profiles induce in the root node of the game-tree. Define the preference rgjation
over the strategy profiles & for each player such that for all strategy profilesands’
for E:

(s,8)ep iff (5(Ve),8(Ve)) € pi.

Let the tuple(N, {Stiens {ﬁi}iEN) define the strategic gant&:. A strategy pro-
file sis then said to be Alash equilibriunmin an extensive game if and only ifsis a
Nash equilibrium in the strategic gan@. Intuitively, a strategy profiles is a Nash-
equilibrium if none of the players benefit from unilaterally deviating frentors a
strategy profile in an extensive gafaayiven by(V, RN, P, {pi}ieN) we obtain:

sis aNash equilibrium iff forall i € N,and alls' € &: (§g (Ve),8(Ve)) € pi.

As an individual pendant of Nash-equilibrium we have the concepthefsh response
for a player idefined for a strategy profieand a player as:

sis abest response foriiff forall s € Se: (& (Ve),8(ve)) € pi.

Obviously, a strategy profile is a Nash-equilibrium if and only if it is a best response
for all players.

The notion of a Nash equilibrium entirely focusses on the outcomes the various
strategy profiles determine from the root. Different strategy profiles may very well
give rise to an identical path from root to leaf node — and as such determine the same
outcome — and still differ widely on vertices off this path. The path a Nash equilib-
rium determines through the game tree is such that unilateral deviation from it will not
benefit the defector. Yet, it has been argued that if the sequential structure of a game is
taken into account, the notion of Nash equilibrium fails to make some important dis-
tinctions. Although one could accept — were it only for the sake of argument — the
refusal to defect unilaterally from the equilibrium path as the very hallmark of game-
theoretical level-headednessf the equilibrium path a Nash equilibrium may strike
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Figure 3.3. The extensive game of Example 3.2.2.

one as somewhat unsatisfactory. Consider once more the extensive game in Figure 3.2
in which Rowis to move first. We have already argued tRatw need not refrain

from playing bottomeven if Col were to threaten to choose the left column in that
case. This is vindicated by all strategy profiles in whidwchoosedottomandCol
subsequently playingght being Nash equilibria in this game. Strategies, however,
determine choices for the players at all nodes where they are to play. The node that
would have been reached hRdwchosentop is no exception. At that node it would

be slightly incomprehensible €ol were to choose the left column. Still the strategy
profile in whichRowplaysbottomandCol playsright if Rowwere to playbottomand

left otherwise, is nevertheless a Nash equilibrium.

As a refinement of Nash equilibrium that does do justice to the sequential struc-
ture of an extensive game, Selten (Selten (1965)) proposed the solution concept of a
subgame perfect Nash equilibriurRoughly speaking, a strategy profile is a subgame
perfect Nash equilibrium in an extensive gaié it is a Nash equilibrium in all sub-
games oE. In the example above, any strategy profile that would pres@di¢o play
left whenRowhas chosen the top row, would not qualify as a subgame perfect Nash
equilibrium. Formally, forE the extensive gam(:,\/, RN, P, {pi}iEN), define for each
strategy profiles:

sis asubgame perfect Nash equilibrium
iff
forallve V,i e N;ands € S: (& (v),5(v)) € pi.

As individual counterpart of this concept we also introdsabgame perfect best re-
sponses for a playerdefined in a similar manner as a strategy profile that is a best
response forin all subgames. A formal definition of this concept is obtained by omit-
ting the universal quantification over the players in dediniensof a subgame perfect
Nash-equilibrium.

The following example illustrates the concepts that have been introduced so far.

Example 3.2.2  Figure 3.3 gives a graphical representation of a two-player game in



EXTENSIVE GAMES WITH PERFECT INFORMATION 69

LL

LR

RL

RR

Figure 3.4. The strategic game associated with the extensive game of Example 3.2.2, with
Player 1 choosing rows and Player 2 choosing columns.

extensive form. The preferences of the players over the leaves are represented by the
vectors appended to the leaf nodes. The first entry indicates the preferences of Player 1
and the second those of Player 2. The higher the value, the more the outcome is pre-
ferred by the playerE.g, the pair(z, z3) is in the preference relation,, because

is smaller thant. Player 1 has four strategies at her disposal and Player 2 six. Ac-
cordingly, there are twenty-four strategy profiles in all, each of which we indicate by a
four letter subscript corresponding to the direction the players move at the vettices

v3, Vi andvs, respectively. The choices of player 1 are denoted by capitals, those of
player 2 by lower case letter&.g, the strategy profileg, is the functional relation

given by {(ve,V2), (V3,21), (V1,V3), (V2, Z) }. Starting from the root., it gives rise to

the sequence., v», z, and, accordingly, we have:

&uir (Ve) = Srur (Srur (Ve)) = Srur (V2) = Sur (Srur (V2)) = &ur (Z) = Zs.

This strategy profile, however, fails as a Nash equilibrium. Player 2 could deviate
fromsgyr atv, and playl there instead. This would make tlsat) is played, yieldingy

as outcome and guaranteeing him a payof dfistead of zero. The corresponding
strategic game is given in Figure 3.4. The Nash equilibria are given by the following
relations on the vertices:

srul = {( ), ( ), ( ) )}
Srut = {( ), ( ), ( ) )}
Srril = {(Ve,V2), (V3,22), (V1,V3), (V2,24) },
Srril = {( ), ( ), ( ), ( )}
sk = {(Ve, V1), (V3,22), (V1,V3) )}
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Of these onlysggy is a subgame perfect Nash equilibrium as well. The strategy pro-
file s.rrir, €.0, is excluded as a subgame perfect equilibrium since it is not a Nash-
equilibrium in the subgame that hasas root.

Obviously, every subgame perfect Nash equilibrium is also a Nash equilibrium. An
important result known as Kuhn'’s theorewf.( Kuhn (1953)), establishes that every
finite extensive game of perfect information has a subgame perfect Nash equilibrium
in pure strategies. Closely related is the methodatkwards inductionwhich is
essentially an algorithm providing subgame perfect Nash equilibria which goes back
to Zermelo (1913).

A strategy profile corresponds with a collection of paths through the tree and each
of these paths starts at a different internal node. In particular, a strategy profile deter-
mines a path connecting the root with a leaf. Strategies can similarly be construed as
subgraphs ofV, R). Another interesting subgraph results if one takes the union of a
strategy profilesand the set of edges with the vertices possessed by a (sub-)set of play-
ersl as source. Intuitively, the significance of any such graph is that it reflects which
outcomes a set of players can force to come about if they operate in coalition and the
strategies of the other players are given. For the game of Example 3.2.2, this graph for
Player 1 and the strategy profigy curbing Player 2’s freedom of action is depicted
in Figure 3.5.

To capture this notion formally we define for each strategy prefdaed subset of
playersl a correspondencg on the vertices such that for all vertices V:

{weV: (vyw)eR} ifP(v)el,
s(v) = { _
{s(v)} otherwise

The correspondencg is obviously monotone ih, i.e., I’ C 1” impliess: C §.

Each relations, in turn, induces a correspondence on the vertices of the game,
which value is a subset of the leaves of the tree. We define for each strategysirofile
Sand each subsetof players inN, this correspondencg such that for each vertex
inV:

{v} if vis a leaf,

U{sw: wes (v} otherwise

We will write § for ;;,. The value the correspondengdakes at the root, is the set

of outcomes the players Incan force to come about by cooperating if the other players
adhere to the strategy profiée In our examples; (v.) = {zl, 22, z4}, wheresrepre-
sentssi ;. Obviously, the more players inthe larger this set of forceable outcomes,
i.e., the monotonicity of propagates t§;:

§(V) =t

I C1” implies § C§,.

The following fact relates notations and will prove to be particularly convenient. Its
proof is an easy check.
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Figure 3.5. The graph of the correspondertgein the game of Example 3.2.2, wheseepre-
sentssg. Player 1 can force the game to terminate in either, or z, if Player 2 adheres to
the strategy profilegpi.

Fact 3.2.3 Let s be a strategy profile of some extensive game E with v’arattices
therein and | a subset of its players. Then:

vesg (V) iff forsomeseS: & (V)=v.

Obviously as special case we have thatv) = {5(v)} . The set of outcome nodes that
can be reached by a strategy pro§il®ith no player possibly deviating clearly contains
as only the element the vertex ttsadetermines as the unique outcome.

3.3 Describing and Reasoning about Extensive Games

Extensive games are based on trees and the players’ preferences are defined as rela-
tions over the vertices in the previous section. Exploiting this relational structure, we
propose a multi-modal language to describe extensive games and reason about them.
In particular, we will argue that such a language can express whether a strategy profile
of an extensive game is a (subgame perfect) Nash equilibrium.

Syntax and Semantics

Our formal researches are conducted within propositional multi-modal logic. A propo-
sitional multi-modal languagle(A, B) contains a non-empty but countable set of propo-
sitional variablesA along with a countable set of labeBsfor monadic modalities.
The formulas ofL(A, B) are thus given by the following BNF-grammar, withe A
andg € B:

e u= a|-p|poner | Bl

We assume the set of labé3sto be the union of two disjoint sets and their Cartesian
product,i.e, B = By U B; U (By x By) with B N B; = @. Moreover,B, will be



72 MODAL CHARACTERIZATION OF NASH EQUILIBRIUM

assumed to be non-empty and finite. Multi-modal languagésB) with B structured
thus we will refer to asnulti-modal matrix languages

Extensive games are taken as the basis of the frames any such multi-modal language
describes. Truth-value assignments to the propositional variables at each vertex takes
care of the interpretation of the propositional variables and the Boolean connectives are
given their conventional interpretation. The labeldBijngo proxy for the players of a
game. For eacli € By, the accessibility relatioRs runs along the preference relation
of one of the players of the game. This gives rise to the intuitive readifigofas" ¢
holds in all states at least as preferable to i as the present ambérei is the player
associated with the labgl. For convenience, the labels By are also calleglayer
labels In contrast, the labels iB; stand for strategy profiles of the gamgA, B) aims
to describe and are therefore referred tetategy labels For each labeb € B; the
accessibility relatioriRs is defined as (the graph of) the functi§rwheresis the strat-
egy profile associated with. As suchRg relates vertices to leaves only, being reflexive
at the latter. Intuitively|3], then read$ if, starting in the state of evaluation, all play-
ers choose their strategies as prescribed in s, the game ends in a situation ingvhich
holds”. Finally, leti be the player associated with the lapgeh B, ands the strategy
profile associated with the labgl in B;. Then, the accessibility relatidR 3 5, con-
nects each vertex to the leaf nodes ii§ (v). Recall that§ (v) collects the terminal
nodes player can force to come about, provided that the other players adhere to the
strategy profiles. Then[(3, 3’)]¢ obtains the informal interpretation 6fy holds in all
outcome states that can be reached if at most player i deviates from s”

The frames and models for the multi-modal languages are also of a special kind.
Rather than taking into account all relational structures, the formal semantics is defined
on frames that are structurally closely related to extensive games. The notion of a
game-modefor L(A, B) on such agame-framés then introduced much in the usual
fashion.

Definition 3.3.1 (Game-frames and Game-models)framefor a multi-modal matrix
language (A, B) is a tuple(V, {Rs} ;g ), whereV is a set of vertices arlds C V <V,

for eachg € B. A label mapfor L(A, B) a multi-modal matrix language on an extensive
gamek is a functionf mapping each label iB, onto a player ifN and each label in
B, onto a strategy profile oE. In the sequel we will usually tacitly assume such a
label mapf and denote the labels B by their values undef, i.e., if f (5,) = i and
f(81) = s, we will write i, §, and§ for, respectively/, in By, 51 in By and (5, 81)

in By x B;. We say that the labels, and 3; representthe playeri and the strategy
profile s, respectively. Agame-framefor L(A,B) on an extensive gami is a tuple
(V. {Rs} sep:f), where (V. {Rs} ;g ) is an frame frame fot (A, B) andf a label
map onkE such that:

VRV iff (v,V) e

pi
VRV iff Ve, (v)
VRV iff VvV e§(v).
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Figure 3.6. Transformation of an extensive game (left) to a game-frame (right) with respect to
two strategy profiles ands’ and their corresponding accessibility relatidhs andRéi. In the
righthand figure the reflexive arrows at the leaves are omitted.

We denote a game-frame &by §¥, tacitly assuming a label mdpand usually omit-
ting the superscript M. A fram§ is a game-frame fok (A, B) simpliciter if there

is some label map rendering it a game-frame on some extensive [famegame-
model 2 for L(A, B) is a pair (§,U), whereF is a game-framgV, {Rs} ;.5 ) for
L(A, B) andy a function assigning to each vertex\tha subset of propositional vari-
ables inA, i.e, U: V — 2% Figure 3.6 illustrates the construction of a game-frame
from an extensive game.

On this basis, multi-modal matrix languages are furnished with a standard modal se-
mantics:

Mm,viFa iff aeY(v)

M,V IF—p iff I, v @

MvIFp Ay iff DvIEe and M, vIEP

M, vi-[Ble iff forall vV €V suchthavRsv': 9,V IF .

Furthermore) I+ o denotes that for all verticasin 9t it is the case tha®i, v I- .
M, v - " signifies thatit, v I ~, for all v in I". Finally, § IF ¢ andg§, Vv IF ¢ denote
that, respectivelydt I- ¢ andM1, v IF ¢, for all modelsdt on §. We will useF«
to symbolizelocal semantical modal consequeneéh respect to the class gfame
framesdenoted byz'. |.e.,, we havel” F4 ¢ if and only if O, v IF " impliesOt, v IF ¢,
for all verticesv of all models?t on agame-frameén %'. In case? is the class of all
game-frames, we writ€' Fy .

In the next chapter we will present a sound and complete axiomatization for this
semantic modal consequence relation. The modal semantics of multi-modal matrix
languages is confined to models on game-frames. This complicates the Henkin-style
completeness proof to some degree as the model constructed should be guaranteed to
be based on a game-frame.
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Characterizing Subgame Perfect Nash Equilibria

A strategy profile being a Nash equilibrium in a particular extensive game, is a feature
of that game which, moreover, is reflected in a particular structural property of game-
frames defined on it. A condition for a game-frame to evince this feature is that the
strategy profile in question and each interested player be represented by a label in
the respective multi-modal matrix language. The aim of this section is to formulate
this structural property of game-frames and to characterize it by means of a formula
schema of the modal language. To make this idea somewhat more precgsee lat
strategy profile in some extensive gakelet furtherL(A, B) be a multi-modal matrix
language an@e a game-frame ok in which sis represented by some strategy label

in B. What we are after is a formula schenfé&s) such that:

Sel-d(s) iff sisasubgame perfect Nash equilibriunn

It turns out that such a formula schema can be obtained as a special case of a
familiar schema in standard modal correspondence theory. A ft(am@Rg}ﬁeB)
for a multi-modal languagk(A, B) — i.e., not per sea multi-modalmatrix language
as introduced in the previous subsection — contairing m andn as labels inB
for L(A, B) is said to have thék, |, m, n)-confluence properti:

forallv,w,x € V: vVRw andvRx imply for somey € V: wRy andxR,y.

Here the label&, |, m andn neednot necessarily be distinct. The following fact then
holds. For a proof the reader be referred to Popkorn (1994).

Fact 3.3.2 (Confluence) Let (A, B) be a multi-modal language containing k, I, m
and n as labels. Then the formula schefkgl]o — [m|(n)y characterizes frames
for L(A, B) satisfying thgk, I, m, n)-confluence property.

If R, is taken to be the identity relation on the set of vertides$, m, n)-confluence re-
duces to the following property, which for obvious reasons we(@ul m)-Euclidicity:

forallv,w,x € V: vVRw andvRx imply wRx.

As a special case of Fact 3.3.2 we now obtain as a corollary the following fact, of which
also the direct proof is elementary:

Corollary 3.3.3 For L(A,B) a multi-modal language containing k, | and m as la-
bels, the formula schem)[l]o — [m]|e characterizes frames for(IA, B) satisfying
(k, I, m)-Euclidicity.

By appropriately choosing, | andm from the labels of a multi-modal matrix lan-
guagel (A, B) a strategy profiles being a subgame perfect best response for a player
in a game-fram& can be characterized by the formula scheidl]¢ — [m]|p. Tak-
ing § for k, i for | ands, for m, respectively, gives the desired result. Considering that
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this schema characterizes frames satisfyig, 5, )-Euclidicity this makes informally
sufficient sense:

forallv,v,v' € V: VRV andvRy V' imply VRV".

In words this condition says that, if play commences at a vertgkayeri values the
vertexVv” that the strategy profiledetermines as an outcome at least as highly as any
vertex V' thati can force to come about by unilaterally deviating fremlf this is

the case, by deviating fromithe player will not be better off than by sticking to the
strategy prescribed by The following proposition establishes this observation as an
appropriate basis for the characterization of the game-theoretical property of a strategy
profile being a subgame perfect response for a player in a game.

Proposition 3.3.4 Let s be a strategy profile and i a player of an extensive game E.
Let further L(A, B) be a multi-modal matrix langage, e a game-frame for (A, B) on
E in which s and i are represented by a label in B. Then:

s is a subgame perfect best response for i in EFiffis (&, 1, S,)-Euclidean.

Proof: For the left-to-right direction, assume the contrapositive, that §g is not
(§.i,5,)-Euclidean. Then, there are vertiogs” andv’ such that:

(@ VRV (b) VRV’ (©) not: VRV".

The frameg§e being a game-frame da andi ands being represented by labels i)
these claims correspond to:

@) vVesv (0) v'es (v) ©) vV.V')¢n.

With (&) and Fact 3.2.3 there is sordesuch thas,, (v) = v'. Moreover, sincé, (v) =
{s(v)}, alsos(v) = V. Hence, with ¢), (& (v),5(v)) ¢ pi, i.e., sis nota subgame
perfect Nash equilibrium k.

For the right-to-left direction, assume thatis not a subgame perfect Nash
equilibrium in E. Then for some vertex, some playeri and some strategy pro-
file ', (& (v),8(v)) ¢ pi. By definition of 3¢ as a game-frame oB, however,
bothvR, & (V) andvRy 5(v). It follows thatFe is not(§, i, §,)-Euclidean. o

Putting things together we obtain the following theorem, which lays down the results
we set out to prove in this section. The reader recall that a player is datérdstedf
he values some vertices strictly higher than other vertices.

Theorem 3.3.5 Let L(A, B) be a multi-modal matrix langage, E an extensive game
and§e a game-frame for [A, B) on E. Assume that | be a subset of the player labels
By and contain labels representing eaictierestedplayer in E. For i a player and s a
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strategy profile in E both represented by a label in B, then:

Se, Ve IF (§)[i]l¢ — [8,]¢ iff sisabestresponse foriin E
SelF (8)[i]le — [8,]¢ iff sisas.p. bestresponse foriin E
Se Ve IF Aier ((8)[ile — [8,]¢) iff sis aNash equilibriumin E
Se - Aie) ((8)[ile — [8,]¢) iff sisas.p. Nash equilibrium in E

Proof: As all claims rest on much the same principles, we only present the proof
of the fourth claim here. For the right-to-left direction, first assume that the for-
mula schema\;., ((8)[il¢ — [8,]¢) is not valid inFe. Hence, for some player
and some formulax we havege ¥ (§)[il¢ — [5,]¢. Consequently, the formula
schemas)lily — [5,]¢ is not valid inFe either. In virtue of Corollary 3.3.3, the@e
does not satisfy§, i, §,)-Euclidicity. With Proposition 3.3.4, thesiis not a subgame
perfect best response figrand,a fortiori, neither a subgame perfect Nash equilibrium.
For the opposite direction, assume for some vexesome playeli and some
strategy profiles’, that (& (v),5(v)) ¢ pi. Observe that this rendersn interested
player. An easy little inductive argument, which we will leave to the reader, establishes
thats, (v) € § (v). Hence, by definition ofe bothvR &, (v) andvR; §(v). It follows
that§e is not(§,1,,)-Euclidean. Hence, the formula schegg[ijo — [5,]¢ is not
valid onFe anda fortiori neither is the formula schenyy,., ((§)[il¢ — [8,]¢). This
concludes the proof. =

In the sequel, For each labele B, and each labet € By, we refer to the axiom
schemas )iy — [8,]¢ by 5; and the axiom schem@,, ((§)[il¢ — [8,]¢) by 5.

3.4 Characterizing Nash Equilibria in Dynamic Logic

In the previous section, we argued that the structural dependencies that obtain between
the players’ preferences and their strategies when a strategy profile is a (subgame per-
fect) Nash equilibrium can suitably be characterized in a multi-modal matrix language
L(A, B). Some of the labels of such a multi-modal matrix language represent a strategy
profile sand are interpreted as the graptsgf These labels, however, have no further
internal structure and their accompanying accessibility relations are semantically prim-
itive. As a consequence, in order to evaluate a formula of the f&yp at a vertex,

one needs to calculate, quite independently of the semantics, the vayévpin the

game under scrutiny in order to identify the vertices reachable froira R A similar

remark applies to the evaluation of formulas of the fd§fy in a vertexv, which re-

quires the calculation of the value §f(v). In the semantics of the multi-modal matrix

THere(§)[ile — [8,]¢ and A\icg, ((8)li]¢ — [8,)) denoteformula schemasather than formulas.
Furthermore, ‘s.p.” abbreviates ‘subgame perfect’.
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languages much of the burden has thus been put on the the transformation of an exten-
sive game to a game-frame, which requires reasoning of a game-theoretical rather than
a logical nature.
For an illustration of this point consider once again the game of Example 3.2.2,
above. LetL(A, B) be a feasible multi-modal matrix language containing a laliet
the strategy profilsg.y. In order to evaluatee.g, the formula of the fornis,¢ at a
statev in a model on the corresponding frame, one should investigate whethelds
in all vertices ins, (v). The relatiorRs , however, is taken to be semantically primitive
and to establish thag.g, VeRe, Z5 but that notvsRs, 2 the semantics is of no further
help. These facts have to be obtained independently at the meta-level of reasoning.
The set of labels of the dynamic languagePobpositional Dynamic Logi¢PDL)
has a richer structure, giving rise to a highly expressive modal logic. Exploiting this
structure and expressive power some of the semantic burden can be shifted from the
informal meta-level of reasoning about the model to the object-level of the logic. We
will find that the relations corresponding # ands, are the accessibility relations
associated with labels denoting complex programs, which allow for further semantical
analysis. Also the way a frame for an appropriate dynamic language is constructed
from an extensive game is more direct and preserves more of the treelike structure of an
extensive game than was the case for multi-modal matrix languages (for an illustration
of this point compare Figure 3.6, above, and Figure 3.7, below).
This section concerns a class of two-sorted multi-modal langua@e®), where
B is the union of two disjoint label se®, and I1g,, whereIlg, denotes the set of
PDL-programs over a s&; of atomic programs. The set of formulasand the set
of programsr of such a language(A, B) — which we will call dynamic multi-modal
languages— are given by the following BNF-grammar, withe A, 5y € By andg; €
B;:

p = al | woAer | [we | [Bole
T u= [ ’ ;5 1 ’ o U ‘ " ‘ ©?

Extensive games are again used as the basis for the models on which such languages are
interpreted. The propositional connectives and the program operators obtain their usual
informal readings of negation-§, conjunction {\), sequential composition)( non-
deterministic choicel(), iteration () and test (). We also have the usual abbreviations,

in particular that of while ¢ do 7 od” for* (¢?; )" ; " . The labels irBy go proxy

for the players of a game, giving rise to the informal readingjjefas” ¢ holds in all

states at least as preferable to i as the state of evaluati@s’ before. The atomic
programs inB; are interpreted as a subset of the edges of the game-tree. We assume
this set of atomic progran®; to be the union of two disjoint se;; andB,;. Each
atomic progran® € By is associated with a playeand runs along those edgesV')

of which v is assigned to the playér Letting 5, be associated with playér then,
intuitively, [510]¢ reads'if i is to move, theny holds at the next stage of the game no
matter which strategy i decides to act upoiThe atomic prograns,, in By associated

with a player will be denoted byr(i). We will moreover assume that the set of players
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Figure 3.7. Transformation from the extensive game in Figure 3.6 to a dynamic game-frame
(left) with respect to two strategy profilesnds’ and their corresponding atomic progran(s),

7(s'), 7(1) andx(2). The righthand figure shows the program(s, ) and=(s’, 1). Note that
these can béderived” from the lefthand figure, whereas in the multi-modal framework these
relations were primitive .

associated with the labels By is identical with the set of players associated with the
labels inB;y. Each atomic program; in By, is associated with a strategy profge
Informally, [311] holds at a vertex, if ¢ holds at the next stage that the game will be
in if the strategy profilesis adhered to. Fos a strategy profiler(s) denotes the label

in By itis thus associated with. We now define formally:

Definition 3.4.1 (Dynamic game-frames and dynamic game-modeisframefor a
dynamic multi-modal languagde(A, B) is a tuple(V, {Rﬁ}ﬁeB), whereV is a set of
vertices andRs C V x V, for eachg € B. A label mapfor L(A, B) a dynamic multi-
modal language on an extensive galie a functionf mapping each label iB;; onto

a strategy profile of and each label iB, and each label iB;, onto a player irfN such
thatf (By) = f (Byp). In the sequel we will usually tacitly assume such a label map
f and, iff (o) =1, f (810) = J andf (811) = s, write i, «(j) and=(s) for, 5y in By,

Bro in Byp and3y; in By, respectively. Adynamic game-framgEPt for L(A, B) on an
extensive game is a tuple(V, {Rs} ;.5 f), where(V, {Rs} ;g ) is an PDL-frame
andf a label map ork such that:

VRV iff (v,V) € p;
VRV iff P(v)=i and (v,V) € R
VR gV iff s(v) =V,

If formal rigor permits we will often omit the superscript PDL for aesthetic reasons. A
dynamic game-mod@én for L(A, B) is defined as usual as a pég, ), whereg is a
dynamic game-frame fdr(A, B) andy an interpretation function for the propositional
variables inA, i.e, U: V — 2 as before. Figure 3.7 illustrates the transformation of
an extensive game to a dynamic game frame.

The evaluation of the formulas of a dynamic multi-modal languagg, B) in a PDL-
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model is then as usual.
M, viFa iff aeB(v)
M,V IF—p iff M,V @
MVIEp Ay iff MVIFe and M, vIF
M. vi-[Ble iff forall vV €V suchthavRsv': 9,V IF .

A PDL-model is said to beregular if program connectives;”, “U”, “«” and “7”
have their intuitive interpretations eéquential compositigmon-deterministic choige
iteration andtest respectivelyj.e., if the following conditions are fulfilled:

Rrims = Rr oRg,
Rrum, = Rr, URg,
R = (Re)’

Ror = {(v,v): MVIF e}

HereR,, oR,, denotes the relational composition Rf, andR,,, and(R;)" is the
transitive reflexive closure or ancestral Rf. In the sequel we will assume PDL-
models to be regular.

The important thing to observe in this definition is that the accessibility relations
R, Ry andR, ) can be read off from the extensive game specification almost imme-
diately. In particular, the construction does not invoke the correspondgnaeds,
for the interpretation of the atomic progams.

Theorem 3.3.5, above, showed that subgame perfect Nash equilibria are character-
ized in multi-modal matrix languages by the axiom schela, ((3)[ile — [S]v).
The dynamic modal languages of this section do not possess the modgitesd [ ]
explicitly. However, for each dynamic modal langudgé\, B) they can be defined
implicitly as molecular PDL-programs. Lstbe a label irB,; representing a strategy
profile and Iet{io, ce im} be a subset of labels B, denoted byl. Then, introduce
the following abbreviation:

(s, 1) =gt while (m(S)) — do m(S)Um(ip)U...Un(im) od.

We will write (s, 1) for (s, {i}). The idea is then that the prograrts, i) performs the
same task in PDL as the lal#&in the multi-modal languages, and, similarys, @) is

the dynamic counterpart of the multi-modal laBgl Construed as a program(s, | )
performs non-deterministically one of the program($) or 7(s), as long asr(s) is
enabled. Given the informal readings of the atomic prografssandx (i) have in the
dynamic game-models;(s, |) also allows for a rather more game-theoretical interpre-
tation. The accessibility relatioR, ) connects a vertex with a leafz of the game
tree, whenever is a possible outcome state if play is commencedand the strategy
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profile s is adhered to by all players, with the possible exception of the playdrs in
Formally, the following proposition vindicates this intuitive interpretation.

Proposition 3.4.2 Let E denote the extensive gafve R, N, P, {pi};.y) and let be§e
be a dynamic game-frame on E for a dynamic multi-modal languéég ILet further-
more | be a subset of players in N represented by labels)iaril s a strategy profile
of E that is represented by a label in B Then for all vertices W' in V:

VR.shV iff V e§(v).

Proof: Consider an arbitrary modebt on Fg. Define theheight of a vertexv
in (V,R), denoted byhgt(v), inductively as:

0 if vis a leaf

hgt(v) = ,
1+ max hgt(V): (v,V) € R} otherwise

The proof is then by induction dmgt(v).

For the basis assunmgt(v) = 0. Thenvis a leaf and we havg (v) = {v}. Sincev
is a leaf there is n®’ such thats(v) = V' and accordingly)t, v ¥ (x(s))T. Hence,
the guard ofr (s, 1) is not satisfied at andvR,. )V if and only if V' = v, which proves
the case.

For the induction step letgt(v) = n+ 1. Thenv is an internal node and by
definition of a strategy profile there is somesuch thas(v) = V', which makes that
the guard ofr(s, 1) is satisfied av. Hence for all vertices’:

VR sV iff VR (s)Un(io)u...un(im)in(sY Iff VRr(9)Un(io)u...un(im) © Resn)V -

Now, eitherP(v) € | or P(v) ¢ I|. If the latter, for noi € | there is av” such
thatvR,;)v". Hence, for an arbitrary vertex', we havevR: s un i )u...ux(im) V" if @and
only if vRys)v’. Consequently alsoR, (s V" if and only if VR (s) o Ry (s;)V’. Now
consider the following equivalences:

VRn-(s,I)\/ iﬁp(v) ¢l VRﬂ.(s) (¢} Rqr(s,l)\/ iff for somev”: VRyr(s)\//Rn(s,l)\/
iffy S(V)RrsV  iffin. V €§(s(v) iffpy V€ (V).

The induction hypothesis is applicable because obviohgtys(v)) < hgt(v). Ob-
serve further that in virtue of Definition 3.4.YR. Vv’ if and only if v/ = s(v);
whence the equivalence marked with the asterisk. The inference step indicated with
the double asterisk is valid in virtue sf (v) = {s(v)}, becausé (v) ¢ |, and, there-
fore,5 (V) = U {8 (W): wes (v)} =5 (s(v)).

In the former case in whicR (v) € |, leti denoteP (v). Becaus&/R, )V’ implies
VR V', then, also:

VR (9ur(io)u..un(imV  Iff VRygur@V' iff VRV
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Now consider the following equivalences:

VRV iffpy =i VR oRysnV
iff for somev’: VR, (\V'R; sV
iff () for somev’ € § (v) : V'Ry(s )V
iffi . forsomev’ € 5 (v): V € § (V')
iff Vel J{s(W): vesv)}
iff vV e§(v).

The induction hypothesis is applicable because forvalle s (v), it is the case
that hgt(v’) < hgt(v). Here, the inference step marked with the asterisk holds in
virtue of Definition 3.4.1 and the definition sf (v) on page 70, above. =

The construction of the fram@} andFEPL from an extensive forri guarantees that if
the one satisfie&s, i, §,)-Euclidicity, the other satisfiesr(s, i), 1, 7(s, @))-Euclidicity
andvice versa

Corollary 3.4.3 Let E be an extensive game. Consider a frgg¥efor a multi-modal
matrix language (A, B) that is a game-frame on E in virtue of a label map f. Let,
further, EP- be a dynamic game-frame for a dynamic languag&'LB’) on E given

by (V,{Bs}g ). Assume that B= B, and that B = B/, and thatf (By) = f (B) =

f (B),) andf (By) = f (B11). Then, for each player i and each strategy profile s of E
that are represented by labels in the respective languages, we have:

SV satisfieqs;, i, 8,)-Euclidicity iff §EP' satisfies(n (s, i), i, 7(s))-Euclidicity.

Proof: Consider arbitrary verticeg andV' in the extensive gamE. First observe
thatvRV in ¥ if and only if VRV in FEP- becausg¥ andFEPt are a game-frame
and a dynamic game-frame &y respectively. Also foX C {i}:

VRV inFY iffperzsr V €8¢(V) iffprop.saz VRy(sx)Sin FEO-.

Hence, in particulai}s = Ry (s,) andRs = R (sj). The claim then follows immedi-
ately. -

In virtue of this observation we now have the following result, which states that sub-
game perfect Nash equilibria can be characterized in dynamic multi-modal languages
in much the same manner as that was the case for multi-modal matrix languages.

Corollary 3.4.4 Let L(A,B). LetFEP- be a dynamic game frame on an extensive
game E for I(A, B) given by(V, {Rs}see f). Assume that | be a subset of the player
labels By containing labels representing eaahterestedplayer in E. For i a player
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and s a strategy profile in E both represented by a label in, respectivglané B,
then the following four equivalences hold:

FEPL v, I (m(s, i)

&EDL Ik (m(s,i)

TP Ve - Ay ({mr(s,1))
SEPH I Niel (<7T( )

il — [r(s,0)]¢ iff sisabestresponse foriinE
il — [7(s,0)]¢ iff sisas.p. bestresponse foriin E
[i]

[i]

— [7(s,0)]) iff sisaNash equilibriumin E
s, i))li (s,0)

S, 0 ]go) iff sisas.p. Nash equilibriumin.E

Proof: Almost immediate from Theorem 3.3.5, Proposition 3.4.2 and the semantics
of multi-modal matrix languages on game-frames. All cases run along analogous lines
and the proof is confined to that of the fourth case. Consider the multi-modal matrix
languagel (A, B') with B' =g By UBy; UBy x By1. Then,(V, {Rs} ger fIB)isa
game-frame o for L(A, B') and let this game-frame be denoted3¥. Now consider

the following equivalences:

sis a subgame perfect Nash equilibriumén

iff th. 3.3.5 ST IF Aier ((8) il — [8,]0)

iff foralliel: ¥ I-(§)]ilp — [8,]p
iff forall i €1, 3¥ satisfieq(s, i, $,)-Euclidicity
iff coron. .43 foralli €1, FEPL satisfieg (s, i),i, 7(s))-Euclidicity
iff FEPHIE Ay ((m(s. 1)) — [m(s,0)]¢).-
This concludes the proof. o

A dynamic game-frame of Definition 3.4.1 reflects the structure of the underlying
extensive game in considerably finer detail than the game-frame of Definition 3.3.1
does for the same game. This feature, however, comes with a vengeance in that it
imposes heavier requirements on the models to be constructed in a Henkin-style com-
pleteness proof. The issue as to a complete axiomatization of the dynamic framework
with respect to dynamic game-frames we leave as an open question.

3.5 Conclusions and Other Topics

In this chapter we proposed the use of multi-modal matrix languages for the formal
description of a class of extensive games. The games in this particular class all had a
finite horizon and assumed perfect information on the part of the players. By focussing
on such a limited class of games, the correspondences between the games and the logic
could be kept relatively simple. Independent issues were left out of the picture, so as to
emphasize the fundamental idea of how modal languages can be used to describe exten-
sive games. Thus, the analysis passed over fundamental game-theoretical topics such
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as coalition formation, randomization of strategies and other issues involving probabil-
ities as well as over repeated games and games of infinite depth. Incorporation of these
issues in the present framework warrants further investigation. Still, a proper treat-
ment would quite likely demand considerable extensions of the languages presented
in this chapter. Special mention should be made of imperfect information and related
epistemic issues, as modal logics have prominent applications in the formal analysis
of knowledge and beliefcf., e.g, Hintikka (1962), Fagin, Halpern, Moses, and Vardi
(1995), Meyer and van der Hoek (1995) and Gerbrandy (1999)) and has been firmly
established within the field of Artificial Intelligence. Moreover, such modal logics have
been deployed in the analysis of the epistemic aspects of gafmesd, Baltag (2002),
Battigalli and Bonanno (1999) and van Ditmarsch (2000)). Incorporating features of
these logics in the present framework may lead to a more comprehensive modal logical
analysis. The concomitant complications should not be shunned.

The multi-modal matrix languages were especially designed to deal with (subgame
perfect) Nash equilibrium in pure strategies. Its expressive power is limited to prefer-
ences anéhdividual divergences from a strategy profile. The characterization of other
game-theoretical notions — such Bareto efficiencydominanceas well as the vari-
ous refinements of Nash equilibrium as they have been suggested in the literature —
may require more sophisticated concepts. More structure of the extensive games is
preserved in the dynamic game-frames. Accordingly, we may expect more from the
dynamic language of PDL as to expressiveness with respect to other game-theoretical
concepts than Nash equilibrium alone.

These considerations put in perspective the multi-modal matrix languages as we
proposed to use them in the description of extensive games. They should by no means
be taken as a proposal for a comprehensive and ultimate logical language for the de-
scription of extensive games. Rather, we meant to expose some of the structural prop-
erties of extensive games which render some strategy profiles to be (subgame perfect)
Nash equilibria. The fact that these properties are characterizable in quite an inelabo-
rate formal language, says something fundamental about the elementary nature of Nash
equilibria and the expressive requirements for a modal language to characterize them.






Chapter 4

Axiomatization of Extensive Game
Logics

4.1 Introduction

In the previous chapter, multi-modal matrix languages were introduced in order to rea-
son about particular features of extensive games with a finite horizon and in which
all players have perfect information as to the structure of the game. Accordingly, the
frames and models on which these multi-modal matrix languages were interpreted con-
stitute special class of Kripke structures. The notion of modal consequence has been
parameterized by a class of game-franies, " F ¢ was defined to hold if and only

if for all verticesv of all models)t on agame-framén ¢, M, v I- I" implies9t, v - ¢

(cf., page 73). Each of these modal consequence relations defines a logic in the respec-
tive multi-modal matrix language. This chapter concerns the axiomatization of three of
such logics: the one characterized by the clasdlajame-frames and those character-
ized by the class of game-frames in which a particular strategy profile is, respectively,
a player's subgame perfect best response and a subgame perfect Nash equilibrium.

In the upcoming section we formulate a number of axiom schemas for multi-modal
matrix languages, which are valid on all game-frames. We find that the minimal normal
modal logic containing these axioms, denoted by M, is also complete with respect to the
class of all game-frames. Furthermore, di&nd M are introduced as the extensive
game logics that result if M augmented with, respectively, the angmandSQ‘, fora
player label and a strategy labslof L(A, B) (cf.,, page 76). The logic M3 is proved
to be complete with respect to the class of game-frames in which the strategy profile
represented by the strategy lalsds a subgame perfect best response for the player
represented by the player lalbeSimilarly, M5 ; coincides with the logic characterized
by the class of frames based on extensive games in which the strategyrigfesents
a subgame perfect Nash-equilibrium (and in which there is a label for each interested

player).

85
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A Henkin-style construction method is employed to obtain these completeness re-
sults.

4.2 The Axioms

For a multi-modal matrix language(A, B) we have the following axioms. We as-
sumeg, 3, 8", and’” to range over the whole @&, 5, and 3 over the player labels
in By, and; and3; over the strategy labels By.

Taut. any classical tautology.

K:  [8l(¢ — v) — ([8le — [81)

(
(Bo, BN ([(Bo, B < )
B3 (1Bl — ©) v [B”1[6"1([Bolth — ).

The logic M is closed under the rules miodus ponen@viP) andnecessitatiorfNec):

E260,6:), 8,8 :

Tso:  [Bolp — ¢
45,2 [Bole — [Bo][Boly
Dlg,:  [Bily = (Br)e
Elgo.p.50  [(Bo, B)]e — [Bily
[
[

E3s.6:,87.8 80

MP w Nec.: ¥

0 - Ble
The Hilbert-style axiom system given by these axioms and rules we will refer to as the
normal modal logic M. Any multi-modal logic containing M we will refer to as an
extensive game logi@ccordingly, M is the smallest extensive game logic, in a similar
manner as K is the smallest normal modal logic.

Definition 4.2.1 (Extensive game logicg)n extensive game logi¢ for a multi-modal
matrix languagé (A, B) is any set of formulas df(A, B) closed undeMP andNec.and
containing all instances of the axiom scheme3ait, K, 45,, Ts,, D!s,, EL 5, 5,5
E250.51).(85.8,) @NdE3s 57 5 g 5, We will write I" -4 o if there exists a derivation
of ¢ from the theoryl in an extensive game logi¢, as usual. The smallest extensive
game logic we will refer to by M.

At the conclusion of this chapter we will come to review also the stronger extensive
game logics than Miz,, the logics M3; and ME;L The former hass;, for fixedsand
i, as an additional axiom and the Iatférfor a particular subsétof By.

Within the setting of extensive games and the intended interpretation of the multi-
modal matrix languages, the axiordsthroughE3g s/ g g g, have quite intuitive
readings. The axiom$aut.andK along with the two rules fomodus ponenéVIP)



THE AXIOMS 87

and necessitatioNgc) guarantee extensive game logics to be normal logics. With the
accessibility relations for the modal operators with labeBgnunning over the prefer-
ences of players in an extensive garig, and4g, warrant the players’ preferences to
be reflexive and transitive. The axio&8s s/ 3 g g, reflects the players’ preference
relations being connected. Observe that in virtu®anft, Tg, andE3g 5/ g g 5,, WE

can derive the following axiom in each extensive game logic:

Eds5.6 .  [68]([Bole — ¥) V [B]([Bv — ).

The labels inB; represent strategy profiles and in particular their outcome functions.
For each labeB; in By, the accessibility relatioRg, connects, for some strategy pro-
file s, any verticessr andVv such thag(v) = V' and as such is the graph of a function.
Hence, AxiomD! 5,, which characterizes functionality of the accessibility relatian
in the general setting of modal correspondence theory. Addm, 3,5, character-
izes the inclusion of the accessibility relatiBp, in R s, 5,). The intuition behind this
lies in the observation that any outcome that is determined by a strategy profile can
also be reached if one of the players has the option to deviate from that strategy pro-
file; the player in question may choose to adhere to the strategy profile after all. The
labels inBy x B; represent the correspondenéefor strategy profiles and players.
The value of any such correspondence is a set of leaf nodes, from each of which only
the leaf itself can be reached. It is exactly this fact 823, s,) (s, 5;) conveys. Ob-
serve that as a consequence&@fs, s, (.5, D! s, aNdEL s, s,) 5, We can derive the
following more general axiom schema, in which bgttand 5’ range over labels in
eitherB; or By x By:

ESsp : [B]([B]e < @)

Note that the scheni€5; 5 does not hold in general if or 5’ are inBq.
The cogency of these informal remarks are vindicated in the following proposition,
which formally establishes the soundness on game-frames of the axioms in question.

Proposition 4.2.2 (Soundness) Let(A, B) be a multi-modal matrix language. The
axioms K through E3gs: 5 g g, as well as E4 3 g, and E5 3 are valid on all
game-frames of (A, B). The rules MP and Nec., moreover, preserve validity on game-
frames.

Proof: For ordinary multi-modal frames the axiomig and4z characterize reflexivity
and transitivity ofRs, respectively. SimilarlyD! s characterizes functionality &3 and
Els s the inclusion ofRs in Rg. The axiom schem&2s g characterizes frames in
whichRg is the identity at every vertexthat is reachable bis, i.e., frames for which:

forallv,v € V: vRzV implies forallv’ € V: VRg V' iff vV =V".
Finally, E35 51 5 57,5, — [B][8']([Bole — ) V [8"][8"]([Go]¢> — ) — charac-

terizes frames in which any two verticesndv' are comparable with respect Ry,
whenever the one is reachable from from some third vertexia R; o Rg: and the
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other from the same verteX’ via R~ o Rgv. l.e, more formally,E3g g/ 5 g 3,
characterizes frames in which for all vertioes’, v':

if for somew,w’: VRsW' RV and VRz»W'RgV' then VRV’ or V'RgV.!

All of the above are results of elementary modal correspondence theory.

Since the game-frames fb(A, B) are special cases of ordinary multi-modal frames
and the connectives obtain their usual Boolean interpretafiangs K, MP andNec.
hold without ado and it suffices to show that the propeffigghroughE3s 5 g g g,
characterize in ordinary frames are satisfied in the game-framé&$4oB).

The players’ preferences were assumed to be reflexive, transitive and connected
anda fortiori so areRg, for eachfy € N. This takes care of the soundnessTgf,
45, andE3g g/ g g 5,. Strategy profiles determine a unique leaf node as outcome.
Formally,s, (v) = {8(v)}, for each strategy profieand each vertex l.e., for eachg;
in By the accessibility relatioRg, is functional. Hence! g, is valid in game-frames as
well. In virtue of the monotonicity of; (cf.,, page 70), we have in particular tiigtC §.
Hence, alsds, C R, 5, for all 5o € Bo and; € By, The validity of El g, 5,) 5,
follows. ForE2g, 5,58, it suffices to show that for all strategy profilesand s’
and for all verticess andV' in a game-treey’ € § (v) implies§ (V) = {V'}. Merely
observe that in genergl(v) C Z and that for all leaves € Z we have thatj (z) = {z}
by definition ¢f. page 70).

Establishing that the rulddP andNec.preserve validity on game-frames amounts
to a routine check.

Finally, E43 s/ 5, andESg g are valid on all game-frames bfA, B) because they
are derivable in any extensive game lodic o

For easy reference Table 4.1 collects all axioms that have so far been dealt with; the
labels are chosen in such a way as to reflect their intended game-theoretical readings
as suggested in Definition 3.3.1, abolie., typical elements 0By, B; andBy x B; are
represented by, respectivelys, ands.

4.3 Completeness

This section concerns completeness results for the extensive game logics; Va5
M5Y in a multi-modal matrix language(A, B). l.e., for A one of these logics arfd
the intended class of game-frames, we prove that:

I'Eg ¢ implies I'kH4 .

In order to prove completeness of an extensive game ldgigith respect to a
certain class of game-modeds it suffices, to construct for each-consistent theory’
a game-modeﬁmﬁ that satisfied” at some vertex and prove this model to be in the

1This property is a close multi-modal relative of thatiécewise connectednegsKripke frame is said
to be piecewise connected if for all vertioes/” andv'’, vRV andvRV’ implies eithen/RV’ or v/RV.
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Taut.: any classical tautology.

K: [8(e = ¢) — (Bl — [81%)

Ti: [ilp—¢
4. [ile — [illile
51 (§)ile — [Sle
5: At ((8)lp — [8,]0)
Dls,:  [S,le <« (8)¢
Els: [Sle—[Ble
E2s: [§8](§le < v)

E4s5i:  [B([ille — ¢) VIB1([iJv — )

[
[
[
E3s0r,0m0mit [BI81([le — ) v [8”][8"1([I1¥ — ¢)
[
ES s [ ([8e < ) whereX,Y € NU {a}
Table 4.1. List of axiom schemas for multi-modal matrix languag€#, B), whereB = N U
SU (N x S) andg and its primed varieties range ov@r

class%. We prove the contrapositive. Assume tliat“, o, for an arbitrary theory
I" and an equally arbitrary formula. Then,I" U {—¢} is A-consistent and the model
mtjlu{w} can be constructed. By assumpti(mt/}u{w} ¥ I' U {—y}, and with

My iNE, this establishes thal £ .

The semantics for the multi-modal matrix languages is based on the notion of a
game-frame. The hardest part in proving completeness for an extensive gamé logic
is thus in to guarantee that this modmﬁ belongs to the appropriate classgafme-
models

In this section we first show how for each theory consistent in an extensive game
logic A a game modemjl in the sense of Definition 3.3.1 can be constructes, the
frame underlying’t:: should demonstrably be based on an extensive game. To this end
we adopt a Henkin-style construction (step-by-step) methbdBlackburn, de Rijke,
and Venema (2001), Section 4.6, pages 223—-229). Although the axioms of M, M5
and M’ are all of a standard nature, it is not obvious, however, whether a standard
Henkin-style proof would produce a canonical modeli-e; a model satisfyingach
A-consistent theory at the same time — that is based on a game-frame, or that can be
transformed into a model that is. A proof of this is likely to become complicated be-
cause the structure of a canonical model is pretty much fixed. The construction method,
in which for each/-consistent theory” separately a moda)tﬁ satisfying/” is de-
fined, gives far more control over the structure of the model to be built. In particular,
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the process of constructing the mo@al - for a theoryl” can go hand in hand with the
construction of an extensive garke underlyingt,. As such this method of proof
is more natural for our purposes.

For M, the weakest extensive game logic, the construction of a game-model for
each M-consistent theory suffices, as it is supposed to be complete with respect to the
class of all game-frames far(A, B). For completeness of M5and ME’Q‘, however, it
has additionally to be proved that the models this construction yields are in the appro-
priate class of modeld.e., for M5; s it has to be shown that, for each Mgconsistent

theoryI" the model9)’(¥5“s is based on, an extensive game in which the strategy pro-
file s contains a best response for playein the case of M, similarly, one should

show that, in the extensive game underlying a mal’lq'\ﬂssN , for each interested player
fora M52‘-consistent theory’, there be a label iN, and, moreover, the strategy profile
denoted by the labalis a subgame perfect Nash equilibrium.

Before entering on the formal elaboration, we first devote some more or less infor-
mal remarks as to the structure of the proof.

The Structure of the Construction

For each extensive game logicin a multi-modal matrix language and each thebry
we construct a modebi?, omitting the superscriptt when clear from the context.
Let A be an extensive game logic addbe aA-consistent theory in a multi-modal
matrix languagé (A, B). The main burden will be on guaranteeing that the moaie!
be an actual game model. For eadfconsistent theory”, therefore, we construct
a modelMt, along with an extensive ganter. A game-frameg, based on this
gameE ;- then underlie9i .

In the construction of the game-mod®it-, we first define a labelled tre& -
consisting of a tree¥' - and a labelling functior® - assigningA-consistent theories
to the vertices in¥ . In particular,, assigns a maximall-consistent extension
of I" to the root of X. The set of vertices¥’ - is not entirely independent of the
labelling function@ - since it may depend on the theory assigned to a particular vertex
whether X’ should also contain another vertex. For this reason, induction is relied
upon in the definition of€ .. This tree¥ . contains sufficient information for the
definition of a fully-fledged extensive game denotedHy as well as that for the
game modeMt, based orEr. The tree on whiclt - is based is given by . The
number of players it - turns out to be one greater than the number of player labels in
L(A, B). Also which player is to move at which node depends on the structukeof
Finally, the players’ preferences over the vertice3hf are derived from the theories
the labelling functior® - assign to the vertices &' .

The vertices of the tree’- are chosen in such a way that appropriate strategy
profiles inE can easily be recovered to serve as the interpretations for the strategy
labels inB; of L(A, B). This furnishes us with a natural label map. Thus a fr@pés
defined that is game-frameon the extensive gante, according to Definition 3.3.1.

A suitable valuation functio®d for & is found by another appeal to the labelling
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determines provides valuation

Er Mr

on which is defined underlying frame

Sr

Figure 4.1. Structure of the construction of the game-mo®Rl-, whereT = (X', 0r).

function 6 of T: let 20 map each vertex of §Fr onto the set of propositional
variables contained i@ (v), i.e,, onto the seA N O (v). Then definedt, as the
very model ong  with 23 as valuation. The vertices & and9t, coincide. We
prove that any formula in the theo6y- (v) holds atvin ¥, i.e,, that9i,, vk 01 (v).
Because inT » the root is decorated with a maximatconsistent extension df, we
may eventually conclude th@t - satisfies/” at the root node. The dependencies of
the various elements of the constructio®®fr— viz, ¥, Ep, § anddip itself —
are as depicted in Figure 4.1.

Formal Exposition of the Construction

a In order to facilitate the proof, we first make some harmless but convenient assump-
tions. We assume to be working in a countable multi-modal matrix langugyeB)

with B = NUSU (N x S). Let us further assumi to be given by a finite initial
segment of the positive integerise, N = {1,...,n} C w with n the number of
player-labelg|N||. The gameE - to be constructed will comprise an additiomays-

tery player which will be denoted by. We will also assume an arbitrary but fixed
enumerationpy, . . ., ¢n, . .. Of the formulas ofL(A, B). Moreover, the concept of a
maximal A-consistent extension of a theories will be heavily relied upon. The Linden-
baum lemma for, stating that any extensive game logieconsistent theory can be
extended to a maximal-consistent theory, is reproduced without the routine proof.

Fact 4.3.1 (Lindenbaum lemma) Eveng-consistent theory in (A, B) can be ex-
tended to a maximal-consistent theory.

Having assumed a fixed enumeration of the formulds 4§ B) we may for each exten-
sive game logicl assume &losure operator C| mapping eachli-consistent theory’
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onto auniguemaximal A-consistent extension df. The subscript is usually omitted
whenever the logicl is understood from the context. The construction of the mod-
elsfmjl is uniform for all extensive game logic$ modulothe notion of consistency
involved.

The general idea of the proof is to start with an initial tree, the vertices of which
are labelled with theories. In particular, the root will be associated with a maxi-
mal A-consistent extension of 4-consistent theory™. Then new vertices are intro-
duced when necessaryg., whenever “witness” states are required for formulas of the
form =[] or —[i] occurring in the theories the vertices are labelled with. (There hap-
pens to be no such need for formulas of the feff8,].) This process should preserve
the tree-like character of the structure and it should eventually culminate in thg tree
on basis of which the game-mod®it - can be defined. The nodes of the model coin-
cide with the nodes of the eventual tree. Moreover, any maxitransistent theory
associated with a vertex is to contain exactly those formulas that are satisfied at that
vertex in the model. This makes that the theories associated with the vertices are sub-
ject to certain consistency constraints and these constraints should be vouchsafed in the
process.

The vertices of the labelled tr&g,. are selected from the s€f U SU w)" of finite
sequences ovar U SU w including the empty sequenee Henceforth we denote this
set of strings by3’. The setsl, Sandw are assumed to be pairwise disjoiltfo be
countably infinite, an®the set of strategy-labels bfA, B).2 We also assume there to
be a partition ofT in a countably infinite number of countably infinite blocks. Hence,
for each sequencein X' we may assume there to be a unique countably infinite subset
of T, denoted by, and enumerated &g, ..., t7,. ...

Suppressing the implicit ordering of the strings we will deliberately confuse the tree
X' and its set of vertices. For each natural numberw, we letx" denote the string
of n occurrences of, e.g, x> = xxxandyx’z = yxxz Let furthermore/s| denote the
lengthof a stringo. We haver stand for the empty string. In the remainder strings are
assumed to be ordered by tinemediate prefix relatior, defined for stringg ando’
over a seX in such a way that < ¢’ if and only if there is soma& in X with ox = ¢”.

E.g, the stringsxy andxyzare thus related byty andyxxare not.

Conceptually, in the gamé - to be constructed, the elementsTof) SU w could
be seen as possible actions and each sequenasaepresenting laistory of play(cf.,
Osborne and Rubinstein (1994), pp. 89-90). A sequ&sis then the vertex that will
be reached if subsequently the ‘actiohss’ ands are performed. In the gant&-, the
strategy profile to be represented by the strategy lalsah then easily be recovered
as the function that maps each sequemaanto os. The setsT andw are added in
order to ensure that there be a sufficient number of verticEs-jrand eventually also
a sufficient number of strategy profiles in the galye Roughly speaking, elements
of T are used to introduce vertices falsifyingas witnesses for formulas of the form
=[i]e. Similarly, the elements @b are used to construct witness states for formulas of

2The first assumption requires one to distinguish an elemiert U SU w from the sequenceof length
one inX. In the remainder we will generally assume a natural isomorphism befWee8U w and the set
{oeX: |o|=1}.
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the form—[§]e.

Now the stage has been set for the definition of the labelledTree The fun-
damental idea is that for each formula of the foriiB]e in a theory associated with
a vertexo by 8, there should also be a vertex that falsifiesp and, moreover, is
reachable by the accessibility relati®s in the model®t,. The theory associated
with vertexo’ will thus contain—y and will also have to comply to certain consistency
constraints. In particulas; should additionally satisfyv : 3]y € 61 (o) }. As, for
different labelss and 3’ the theories{¢) : [8]y € I'} and{« : [5']¢) € I'} are not
in generalA-compatible, proper care should be taken that no leaf be reachable by two
different accessibility relationRs; andRg/. Simultaneously, it has to be ascertained
that the tree constructed is a game-tree in accordance with the interpretation of strings
as actions and the strategy profiles as described above. Thus, for each internal node
of ¥~ and each strategy label 8of L(A, B), we introduce a unique leafs", for some
appropriate integen € w, serving as the outcome of the strategy profile the Iabel
stands for when play is commenceddrin the model)t,. Meanwhile, the tre& -
should also be guaranteed to have a finite horizon.

For eacht in {e} U T, each theoryl" in L(A, B) and eaci € w, we first define
inductively a treeT?., (no boldface!). The vertices &, are decorated with theories
inL(A,B). Then the tre€ ., is defined as the limit of th|s induction. This latter kind of
labelled tree will form the modules which eventually compose the¥rgdor I". The
set of vertices off -, we denote byY' -, and the labelling function assigning theories
of L(A, B) to the vertices in-, by ;. The root ofT -, is taken to be and the other
vertices and the theories assigned to them are chosen in accordance with the idea that
I" be eventually satisfiable &t

At the basis of the induction, the tre&)., is defined, with>?,, as vertices and
9% as labelling function. The idea is thﬁ%t contain, for each strategy labgin S,

a uniqueleaf that can be taken as the outcome of strategy profile corresponding to
when play is commenced in the rdofThe design is such that along any such path each
of the players irN is to move once. In general, playieis assumed to move &. In
particular, the mystery play@rmakes a decision at the rd.‘otHenceZ“ containg as

well as each sequent® with n < ||N|| + 1, the idea being that each playet N is to
move atts and thats!NlI+1 be the outcome determines it. Moreover, each strategy
profile should prescribe a move at each internal node. Hence, fotadgth i < ||N||

and each labef in Sdifferent fromswe also distinguish a lea's’ in 2.4+ No further
vertices are inv?.,.

Figure 4.2 depicts the tree f(ﬂ%t in a language containing two labels for players
and also two labels for (the outcome functions of) strategy profiles. The labelling
function 90m assigns the maximal-consistent extensio@l (I") of I" to the roott and
the empty theory to each of the internal vertices. However, arbitrary the latter may
seem, it will prove to be convenient as the proof develops. If now the thebty)
is supposed to be satisfiedtanh some game-model oi?., then each leafs!Nl+1
should satisfy a formula> whenever(s,]v is in Cl (I"). Similarly, if Cl (I") contains
a formula[$]y, then each leafs's’ should satisfy). The assignment functio@%t is
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tsss tss$ tsss tsss

Figure 4.2. The treex?., for language (A, B) with N = {1,2} andS= {s,s'}.

fixed accordingly.

The role of the mystery player can now also be revealed. Suppbad been
assigned to a player with a label inN. Assume further thait* be different from
1. Now consider strategy profilssands’ with labels inS. Then, the leafss would
be reachable frorhvia the accessibility relation for the strategy laBglas intended.
However, the verteiss would also be reachable from they way of the accessibility
relation for§.! If so, the theory associated witss should then contain all formulas
for which [§;]¢ is in I" as well as all formulas) such that[§]y is in I". The A-
consistency of a such a theory, however, cannot in general be guaranteed. By assigning
a player without a label il to the roott this contingency does not occur.

Formally we define:

The =a (ZP00%),

whereE%t is a subset of X and&‘}’t a function assigning theories InA, B) to the
sequences in X7, such that:
29 =4 {tJU{tss: s eSand0<i<|N|}
CI(I) if o=t
Cl({v: BlvecCl()}) ifo=tsINl+1
Cl({v: [§lvecCl(I)}) ifo=tssands#¢s

otherwise

09, (o) =,

Q

In the inductive step, defining:’]{tl from T7.,, we check whethepy, i.e., the
n — 1-st formula in the enumeration, is of the foraig]. If it is and ¢, moreover
occurs inCl (I), the stringts nis added to the set of vertices and assigned the maximal
A-extension of =/} U{x : [§]x € I'}. Inany other cas&};* andT7., are identical.
The idea behind this construction is that, if the ro@ to satisfy a formula of the
form —[§]¢, then a leak’ should be reachable frotwia the accessibility relatiorRs
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and not satisfy). Being reachable thus, the ledfshould, in addition, also satisfy any
formula x such that forces[§]x. Note that a similar construction is unnecessary if

¢n is of the form—([§,]+/. In virtue of Axiom D! , the formula—[$,]y is equivalent

to [5,]—¢ and the latter is thus an element@if(1"). Hence, this case has already been
taken care of by the construction®{.,. A similar remark applies to the case in which

a formula of the form[§,]v or —[§]v is contained in the theory assigned to a leaf

in X7, by 67.,. Then, AXiomESs s makes that-y is already in the theorg}., (o).

The theories assigned to the internal vertices contain no formulas, let alone formulas
that require Witnes$ states. Formally define:

n+1 _ n+1 pn+1
Tre =t (EF,t 07y )’

WhereZ}ﬁl is a superset of the sequencesiifi ande}ﬁl is a function extending?.,
by associating with each sequenceﬂ?ﬁl atheory inL(A, B):

SNl {2?",t U {tsn} if on =-[§]v and ¢, € CI(I)
rt —df

PILN otherwise

Cl ({—\1/)} U {x . [§]x € CI(I) }) if o =tsn, pn = -[§]e
07 (0) =t andzn € CI (1)

07 (o) otherwisei.e, if o € X7,

Finally defineT ., as:

Try =t ( U Y U 9?,t)~

new ncw

The theoried -, assigns to the vertices may also contain formulas of the fojif.

If this is the case for a vertex, then the construction should also contain a vertex
associated with a maximal-consistent theory containingy as well as any formulg

if [i]x is in the theory associated with To accommodate this type of formula, we
push the construction one step further.

We now define inductively for each € w a collection of decorated trees of the
form T .., from which we eventually manufacture the tr&. At the basis, this col-
lection consists of the tre€ . , which hasI” itself associated with its roat The
empty sequence, being a prefix to any sequence, will also be the root of the tree to
be constructed and, eventually, also of the game-m@idel. If any of the verticesr
of T, contains a formulgy of the form—[iJy), a new treet, ;» is added to the col-

lection, on the understanding that the theérequals{ -y} U {x : [i]x € 6 (o) }.
Then this process is repeated for the new collection, and so on. Thus define:

T =a  {Tr}

T =« U {T@,tf » o€ Xandpx = ~fiJy andypy € 0(0)} ’
(D,0)€T.
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Figure 4.3. The treeX - for a theoryl” in alanguagé.(A, B) with N = {1,2} andS= {s, '}
Each subtre& , , is introduced in virtue of a formula of the form(i]+ being in the theory
assigned to a vertex in another part of the tree.

where® = {—} U {x: [i]x € 0 (o)}. Then set:

7 o= (J T

new

We are now in a position to formally define the decorated Egeas:
Ty =4 (Xr,0r),

where:
ro=a J{¥: (2,0 TP}

or =a |J{0: (£,0) Tt}

The treeT - having been defined thus for each thedryin L(A, B), we are now
almost in a position to define on its basis the gdfge First, however, some prelim-
inary remarks and auxiliary results are in order. It should be checked that for each
A-consistent theory™ the tree ¥ - is in fact a tree with its verticeX¥’ - ordered by the
immediate prefix relatiork. Moreover,8 - should be ascertained to béuaction This
is established by Fact 4.3.4. Since the constructioB pinvokes the closure operator
Cl, the functiond - should be guaranteed to assign a consistent theory — either empty
or maximal consistent — to each vertexn 6. Fact 4.3.5 demonstrates thgt is
properly defined in this sense.

At each stage of the inductive construction®f. the set of vertices of each tree
added to the collection is disjoint from any other set of vertices of a tree introduced thus,
as well as from any set of vertices of a tree already present in the collection. Hence,
the domains of the various functioAsemain separate as well. This observation is laid
down formally in Fact 4.3.3. First we prove the following lemma; Figure 4.4 supports
the underlying intuitive idea.
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Lemma 4.3.2 Let A be a countably infinite set. Letbe a countably infinite partition
of A, i.e.,m € Part(A), such that each; € = is countably infinite as well. The elements
of each blockr; of 7 are enumerated asja...,ay, .. .. Let7° be a block inr and
let f be an injective function mapping A ani.e., f: A — 7, such thatz® is not in
the image of A under f, i.er” ¢ f (A). For eacho € w*, letr, denote a block inr
inductively as follows:

0
Te =df. T

Ton =df. T(877).

Then,r, andn,. are disjoint, for all distinct stringgr ando”’ in w*.

Proof: By induction on|c|, the length ofr. First assuméos| = 0, i.e,, o = €. Since
o’ is distinct fromo there is some”’ € w* and some&k € w such thatr’ = o”k.

Hencem, = f (ag”") with ag*” € 7. Then:

T = f(a") # 7 = 1 = 7.

Now let|o| = n+ 1. Theno = ¢”’l for somes””’ € w* and somé € w. This case is
by induction on the lengttv’| of o’. If |o’| = 0, the reasoning is analogous to the case
in which |o| = 0, above. So assume’| = m+ 1. Then,c = ¢"k for somes” € w*
and some € w. Then, bothr, = f (a*"") andm,. =f (a ).

Eithero” = ¢ or ¢” # o"'. If ¢’ = o', thenk # |, sincec ando’ had
been assumed to be distinct. Thefi;”" # a;°”. If, on the other hands” # o',
then, by the induction hypothesis,» andr,» may be assumed to be disjoint. With
a'”" € mpm anday”” € m,, againa """ # a;"" .

By injectivity of f, it follows thatr, = f (a"*"") # f (a;*") = m,+. With , and
. being blocks in the partitiom, they are disjoint as well. -

Fact4.3.3 Let (X,0) and (X',0") be distinct trees inx}.. Then,X and X’ are
disjoint, i.e.,.X’ N X' = @.

Proof: Consider Cartesian produsi x w. Define for eachxin SU T U w a subset
Xy of X x w as follows:

Sy =4 {o: forsomes’ € X, xo' =0} x w.

Obviously for distincx andx’ the sets¥y and Yy are disjoint. Moreover, ity and Xy
are disjoint, so argJ,., {c € X: (o,n) € X} andU,., {0 € X: (o,n) € Iy }.
Let 3. be given byl J,.r 2t. Hence,{X.} U {Xy: x € T} is a partition of X x w.
Observe that fox € T U {¢} andTg , given by(X, 0), we haveX' C (J,c,, {cex:
(o,n) € Xx}. Letr be a partition ofY x w given by { Xy : x € T} U {X.}. Now
define the functioh mappingX' x w onm, such that for al(o, n) € X x w:

f(o,n) =g 2o
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Figure 4.4. The development of the blocks as in Lemma 4.3.2. Each box represents arblock
of the partitionw of A. The arrows indicate the functidn which maps elements of the blocks
on blocks inr. By Lemma 4.3.2 these blocks are all pairwise disjoint.

On account of the assumptions made with resped snd the definition ofl, on
page 92, the functiofiis clearly injective. MoreoverL. is not in the image of x w
underf.

Assume eactty to be enumerated in a particular way. For striags w*, let 7,
denote a block in the partitiom as defined in Lemma 4.3Ma f with 7. = X.. In
virtue of Lemma 4.3.2, it then suffices to show that fomadt w and for each tre&g ,
in €7, there is some € w* such thatr, = Y. The proof is by induction on € w.
The basis is immediate &) = {T .} andX, = r.. Now assume tha, , € T}
Then,x = t7, for someTg, ,, = (2 0) € ‘ZF, somes € X and somek € w. By
the induction hypothesis there is somes w* such thatr, = Xy . Let (o,k) be the
m + 1-st element in the enumeration &% . ThenXi, = m,m, which concludes the
proof. o

Fact 4.3.4 For each A-consistent theory”, the set¥ is a tree if ordered by the
immediate prefix relatior, and @ is a total function on¥' .

Sketch of proof:  We first prove by that’ -, is a tree ordered by, forallt € {e}UT
and all theories”. For observe thaL?., is a tree ordered by by definition. Then
observe that>}* is obtained froms}, by adding at most a fresh vertesin. With ts

already contained m?“, we may by the induction hypothesis conclude tﬁ‘@tl is
atree ordered by as well. It follows that™' -, is a tree ordered by; otherwise there
would be a smallest € w such that™},, is not a treequod non Now considerZ?.
Observe that each treg, ; hast as root and that is an immediate prefix of. This
makes that¥ - is a tree ordered by. A similar argument shows thatis functional
for each(X, 0) in T}.. By Fact 4.3.3 for any tw¢X', 6) and(X",0’) in T}, the sets¥
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andX’ are disjoint. With eacH, for each(X, 8) € %, being defined precisely ah,
we may conclude that, i.e, |J{f: (X,0) € T}}, is functional as well. .

Figure 4.3 depicts the structure ®f- for a languagé (A, B) with N = {1,2} andS=
{s,s'}.

For technical convenience we distinguish particular subsets of vertiGes.ifrirst,
the root node and the verticet that are the roots of subtre®s, .. in T are collected
in Tr,i.e,

Tr =4t {6} U (T n Er) .

For eacht in Ty the set of internal vertices and the set of leaves of the respective
subtreeX, , of T are denoted by~ andL', respectively. Obviously,. andL. are
disjoint and together exhaust the verticestip, ;. Finally, WL compriseg together

with the leaved |.. Some reflection reveals thaf}, are exactly those vertices @, ,
which are labelled with a (non-empty) maximal consistent theory. FormallyZfor
given by(X -, ), define:

I =g {ts € Xr: seSandi<|N|},
LY =g {ts/NIF1tss tsne X newands s € Ssuchthas# '},
WL =g {t}ULL.
On this basis also define:
lr =a U 1%, Lr =at U L%, Wr =a U W}
teTr teTp teTr

The internal vertices ok - are collected ifl .. The setW, contains precisely those
vertices labelled with maximal consistent theories. Moredvercontains the leaves
of T . Finally, as some reflection reveals, we have that:

Xr = IFULF-

How the various type$ of sequence in the collectio | relate to one another is
illustrated in Figure 4.5.

Fact4.3.5 LetI be aA-consistent theory in (A, B). Let further¥ . be given by
(¥Xp,0r)andletc € X . Then,@r (o) is a maximalA-consistent theory, i is in
Wr, and the empty theory, otherwise.

Sketch of proof: By definition of each tre€g, , given by (¥, 0) we find that¢
assigns the empty theory to the internal vertices other than theafaqidges 94—94).
Some reflection reveals that this makes thatassigns the empty theory to each vertex
inl,of T
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tsn

tssg tssn

Figure 4.5. Types of vertex inf¥ . The setT containse and (vertices of type). The ver-
ticese, s andssmake upl €, wheread, ts andtssare the sole elements Id. L' is given by
{tss, tsl, tssstss$, tssl} andW contains all vertices exceptss ts andtss

By definition, the root of T is assignedCl (I"), the maximumA-consistent clo-
sure ofI". Assuming thaf" is A-consistent, so i€l (I"). For the other possible cases,
it suffices the prove the following equivalences:

¥ 1 implies {¢: [§jvel'}¥F L,

I'¥ 1 implies {¢: [§Jv e I'} ¥ L,
u{-filx} ¥ L implies {-x}uU{y: [ijvel}F L,
ruf{-[slx} ¥ L implies {-x}U{y: [§]y eI} ¥ L.

Each of these implications hold for any extensive game lagicThe logic A being

a normal logic, the latter two can be proved by a standard argurognBlackburn,

de Rijke, and Venema (2001), pp.198-9). The argument for the first and the second
item is similar, although it essentially involves the axioblg, andEl g, s,) 5, First
assume the contrapositive that : [§]¢ € I'} = L. Then there is a finite number

of formulasy, ..., ¥n € {1 : [§]¥ € I'} such thaty,...,¥n F L. Consider the
following implications:

to,...,n L implies [§vo,...,[§]Ynt [§]L implies I'F [§]L
impliesElﬁys I't1[s,]L  impliesp,  I'-(§,)L implies I'F L.

The first and last implication are in virtue of being a normal modal logic. The
argument for the second item runs along analogous lines. Bgom. , ¥, - L obtain
[8,]¢0, - - -, [8,]Yn = [8,]L, which impliesI” & (§,) L in virtue of D!s . Then, finally,
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I' = L. This concludes the proof. %

In the sequel we also find the following convention and fact useful of great usefulness.
For eachleaf o in L andx in Ty, we havegX denote a strategy label &fA, B) as
follows:

Sp

e {s o =xdyfori € N,se Sandy € wU (S— {s}).
y  =df

otherwisej.e, if o = xgINIL forse S

We now have the following fact.

Fact 4.3.6 Consider¥ . for I a A-consistent theory in (A, B). Let xe Tr ando a
leaf inL%}.. Then:

{e: [BleeOr(x)} C 0r(0).

Proof: Eithero = xgNI*1 & = xds or ¢ = xgn, for somen € w and some

s,s € S such thats # §. In the first case3X = §,. Assume for an arbitrary

formulay of L(A, B) that[8]y € 61 (x). By Fact 4.3.3, theifs, |y € 0, (X), where

theory @ such thatt ,, given by (X, 0), is included inT7. Then,[s,]y € CI(O).

Consequentlyy € 6, , (xsiNI*1) and by Fact 4.3.3 and withy, , C 6, eventually,

¢ € 0 (xsNI+1). The reasoning for the other two cases runs along analogous lines.
_{

We are now in a position to define for eadhconsistent theory™ an extensive
gameE - on basis of the labelled treg,-.

Definition 4.3.7 (Extensive games faf-consistent theories).et /A be an extensive
game logic in a multi-modal matrix languaiéA, B). Recall thatB is given byN U
SU (N x S) andN by {0,...,n} for somen € w. Let I" be a maximall-consistent
theory. We define: the extensive gaig as:

Ef =at (Vr,Rp,Np, Pro{piticn, )

whereVr is defined as the set of sequen@s in ¥ as above an®R is given by

the immediate prefix relation o® -, i.e., for all o, ¢’ € V:
oRpo’ iff forsomexe SUTUw: o =ox

The players of the gante, are given by the player label$of L(A, B) together with a
mystery playedenoted by, i.e.,

Nr =gt N U{O}.

The player assignment functid®y- is such that for each internal vertexof Vr, i.e.,
for eachi in Np:

Pr(o)=i iff o= xs, for somex € T, and some strategy labgk S
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Finally, the preferences of each playén N are such that for all vertices o’ € V:
(o,0") € p; iff forallformulasy: [ijp € O (o) implies ¢ € 61 (d').

The mystery played we assume to be entirely indiffereng., p, =4 Vr x V. When
no confusion is likely, we will omit the subscrit as well as the superscrigtin E£.

The following fact establishes that, for eadkconsistent theory’, the structurd - is
a properly defined extensive game according to Definition 3.2.1 on page 65.

Fact4.3.8 Let I' be a maximalA-consistent theory” in L(A,B). Then,Er is a
properly defined extensive game.

Proof: Consider an arbitrary theoy in L(A, B). By constructionVr, Rr) is a tree
and some reflection reveals that the length of a string;ins no longer thar{N|| + 2.
Hence, withN being finite,(V, Ry) has a finite horizon. The set of playéts of E
is finite as well, sinceN- contains just one element more thidnviz,, the mystery
player. The player assignment functiBg total on the internal vertices by definition.

Finally, each of the players’ preferences are reflexive, transitive and connected as
required. For the mystery play@rthis is immediate, its preference relation being the
universal relation ove¥ . So, for the remainder of the proof, consider an arbitrary
playeri in N other tharp, i.e., i in N.

For reflexivity, consider an arbitrary vertexin o € V. Then eitheis in Wi or
in | .. If the former, observe that, by Fact 4.3.5, the the®(y) is empty, and trivially
(o,0) € p;. In the latter case, also by Fact 4.3.5, the the(y) is maximal A-
consistent. Assume for an arbitrary formylahat[ijy € 0 (o). With axiomT;, then
alsoyp € 6 (o) and consequentlyg, o) € p;.

For transitivity a similar run-of-the-mill argument suffices.  Assume that
(0,0"),(c’,0") € p, for arbitrary verticesr,o’,0” € Vp. Again if 0 (o) is empty,
immediately(o,c”) € p;, as well. Otherwised (o) is maximalA-consistent and as-
sume for an arbitrary formula that[ijy € 0 (o). By axiom4;, alsoli][i]l¢ € 0 (o). By
definition of p;, then subsequentlyl¢ € 6 (¢') andy € 6 (¢”). Hence(a,0”) € p;.

To prove that for each € N the relationp; is connected, we must show that
either (c,0’) € p; or (¢/,0) € p;, for all o,6’ € V. Consider arbitrary vertices
o,0' € Vp. If eithero ¢ W oro’ ¢ W, i.e,, if either@ (o) or 6 (¢’) is empty, we
are done immediately. Otherwiseg,, if bothoc € Wr ando’ € W, the axiomsE3
andE4 are heavily relied upon.

First we introduce the auxiliary notion of@nnecting pathwhich we define as
a sequence of vertices, v, ..., T, Un, OF Tg, V0, - - - Th—1, Un—1, Tn IN V such that
70 = ¢, and for eacld < m < nbothvy, € W, andmyy1 € T,,,. Observe that each
7 is in Tr. The latter requirement guarantees that, given the constructi@n.péach
vertexTms1 Was introduced t& - in virtue of some formula of the form[k]x being
included in@ (vy). l.e, we may assume that for eabh< m < n + 1, there to be
aj € Nsuchthaf{y : [kl € 0 (vm) } € 6 (7my1). Inspection of the various possible
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Figure 4.6.

cases along with an easy inductive argument reveal that for each veirtieéW/, there
is a connecting path of which is the last element.

The argument proceeds with a simultaneous inductiom @and m, proving that
for any two connecting pathsy, ..., o, anday, . .., of, that either(o,, of,) € p; or
(0f o) € .

Forn = m= 0, obviously,o, = o}, = € and we are done immediately by reflexiv-
ity of p;. For the firstinductive case — assuming the claim to holeshfandmand prov-
ing it also to hold fom + 1 andm — consider two connecting paths, . . ., on, ony1
andoy, .. ., o, If n4-1is odd, thew, = 7,/, andon 1 = vy /2. By definition of a con-
necting path them,, 1 € W, If in this caseg,.1 = op, then{x : [ilx € 0 (on) } C
6 (on11) @s a consequence of axioinandé (on41) being maximald-consistent. Oth-
erwise,ony1 € Lo and{x : [87,]x € 6 (0n) } C 6 (0ny1), in virtue of Fact 4.3.6.
If, on the other handy + 1 is even, thew, 1 = 7,2 andoy = v(n/2)—1. In this case,
there is & € N such that(on, ont1) € py.i-e. {x : [Kx € 0 (on) } C 0 (ony1). Let
Ont1 denote a label i as follows:

i if N4+ 1isodd antdrni1 €T,

Ont1 =df. o ifn+1lisodd andrn, ¢ T,

On+1

k otherwisei.e.,if n+ 1is even

Then in general, we have th@k : [Onga]x € 6 (on) } CO(ony1)-

By the induction hypothesis, we may assume thato;,) € p; or (o), on) € p;- In
the former case, assume tlat,, on+1) ¢ p;, i.e., for some formulap, [ij¢ € 6 (o},)
bute ¢ 0 (ont1). We show thafon,, or,) € p;. To this end consider an arbitrary
formula ¢ such thatfijy € 6 (ony1); we prove that) € 6 (o),). By maximal A-
consistency 08 (o1, [i] — ¢ ¢ 6 (ont1). This yields[dni1] ([i] — ¢) ¢ 6 (on).
By maximal A-consistency and axioffi4,, . , i, then also thafi] ([ijo — ) € 0 (on).
Having assumed thdt,, or,,) € p;, with the definition ofp;, we havelilp — ¢ €
6 (o},). Subsequently, by maximal-consistency andljy € 0 (oy), eventuallyy €
6 (o/,). This line of reasoning is illustrated in Figure 4.6.
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Also if the other case obtainse., if (o}, on) € p;, we can prove thalo},, ony1) ¢
pi implies (ony1,0),) € p;. SO0 assuméon,onty1) ¢ p;; then there is a formule
such thafile € 0 (o},) buty ¢ 0 (on41). Consider an arbitrary formula such that
[i]Y € 0 (ont1); we prove that) € 0 (om). As in the previous caséi]y — ¢ ¢
0 (on+1) and consequentlipn1] ([ijvr — ¢) ¢ 6 (on). This time having assumed that
(0hson) € p;, We obtain(i][6ny1] ([l — ¢) ¢ 6 (of,). By maximal A-consistency
of 8 (o7,) and axiomE3;, ., i, then[i]i]([ijy — ) € 0 (of,). Two applications
of axiomT;, then give[ilp — ¢ € 6 (o},). With [i]¢ having been assumed to be in
0 (or,), thedesideratum) € 0 (o},) follows. Figure 4.7 illustrates this argument.
Since the argument for the second inductive case — assuming the claim to hold for
nandm and proving it also to hold fonandm+ 1 — runs along analogous lines, we
may conclude that each playiés the preference relatiop, is connected. o

A strategy profile of the extensive gare is then given by function mapping each
internal vertex in(V, Rr) onto a succeeding vertex. Not all strategy profile& of
however, are represented by a strategy lab&. iWe will assume the labedin Sto
represent the strategy proféethat maps each internal vertexontooss. I.e., for each
internal vertexs in V- and each strategy labgln Swe have:

S (O’) =df. OS.

The following fact is an obvious consequence of this definition.

Fact4.3.9 Let Er be the extensive game defined forlaconsistent theory” in
L(A,B). Letxe Tr, i € N and s€ S and haves denotes;. Then:

(X) = {x§|NH+1}’
= {xsINI+1 xds',xsn € ¥ : newand ¢ € S such that's# s}.

w ¥
—
=
X
|
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Sketch of proof:  On basis of the definition o, on page 70, and inspection of the
construction off - andE -, the following can be established:

§ (x9 = {xsl+}
§(xs) = {xgNI*1 xds' ,xdn€ ¥ : newands € Ssuch thas' # s}.

Now recall that the additional player had been assumed to be different from any
players inN. SinceP(x) = 0, for eachi € N we haves € s (x) if and only if
o = s(x), i.e, if 0 = xs Then,§ (x) = § (xs) and$, (x) = §, (xs), which give the
desired result. 4

The stage has now been set for the definition of the game-f@@men E for
L(A,B). The set of vertice¥ is common to¥ ., Er and&,. The functionfr,
assigning theories ih(A, B) to vertices inV, is invoked to define the game model
M onF . Then we prove that the maximal consistent theory the funéjoassigns
to each vertexr in W, coincides precisely with the set of formulas thatorces in
M.

Definition 4.3.10 (Game-frame and game-modelBpn) Let A be an extensive game
logic for a multi-modal matrix language(A, B). Let E be the extensive game for
a A-consistent theory i.(A, B) given by (Vr,Rp,Np, Pr, {p;}icy,. ). Define the
label mapf assigning players and strategy profile€in to player labels, respectively,
strategy labels iB:

t) i if gisthe player labelin B,
7 \s if Bis the strategy labedin B.

Then define the game-fran@;* on E as the tuple(Vr, {Rs}4cp.f). The game

modelMi,r on 3? is defined as the tuplégﬁ,mp), where the interpretation func-
tionW: Vp — 24, is defined such that for each vertexn V:

Br(o) =a {acA: acb(o)}.
Whenever no confusion is likely to arise the supersciijg omitted.

For each/A-consistent theory’, the frameg and the modef)t - are a properly de-
fined game-frame and a properly defined game-model, complying with Definition 3.3.1
on page 72. The mod@&t, can now be shown to satisfy theconsistent theory”

at the root node. In order to establish this, we prove something slightly stronmer,
that for each vertex of Dt the theorydr (o), i.e, the theory assigned toby 6,
contains exactly those formulas that are satisfiedint9t -, provided tha® - (v) is
non-empty.

Lemma 4.3.11 (Truth Lemma) Lef be aA-consistent theory in (A, B). Consider
bothT . = (X, 0r) and9t. Then for all vertices € W and all formulasy:

Mr,ol-p iff pebr(o)
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Proof: Consider an arbitrarx € Ty as well as an arbitrary € Wy. The proof is
then by induction onp.

For ¢ a propositional variable we are done immediately by the definitioPf.
Similarly, if ¢ is a Boolean combination,e., if ¢ = 1, o = p orp = 9 A ¥,
maximal A-consistency ob (o) takes care. Thus the modal cases remain.

Let ¢ = [i]y, for somei € N. Assumey to be then + 1-st formula in the enu-
meration,i.e., ¢ = ¢n. First assuméijy) € 6 (o) and consider an arbitrary such
thatoRjo’. Observe that iMJt, we havesRio’ if and only if [ijp € 6 (o) implies
@ € 0 (a’), for all formulasy. Hencey) € 0 (¢’). Consequentlyd (¢’) is not empty
andc’ € Wr. Therefore, the induction hypothesis is applicable, yieldRg, o’ I- .
Having choserw’ arbitrarily, 9t, o I+ [i]y) follows. For the opposite direction, as-
sumelijy ¢ 0 (o). With maximal A-consistency 08 (o), then—|i]y) € 0 (o). There-
fore, {-y} U {x: [ilx €0 (o)} C 6(t7). By definition of R in <, we have
oRitg. Sincet? € W, then9tp, t7 ¥ ), in virtue of the induction hypothesis. Con-
sequentlydir, o W [ijy.

Let » = [§]¢, for somei € N ands € S. We distinguish the case in whiehis
in Tr from the one in whiclv is a leaf inL’}. for somex € Tr. If the latter, therv is
the only element o§ (¢0), i.e., § (o) = {o}, wheres abbreviatess. Being an instance
of axiom E2;55x 5, the formula[3Y]([§]v — v) is in 0 (x). With Fact 4.3.6, then,
[5]¥ < ¢ € 8 (o). Consider the following equivalences:

§lv€b(0) ffgyypcoo ¢eb(o)

iffi.n. Mpr,o -y

iffs (o) = (o} forall o’ such thav’ € § (o) : Wiy, 0" IF
iff forall o’ such thab R (0" M, o’ I- ¢
iff My, ol (3]

If, on the other handg = x for somex € Tp, assumg§ly € 6 (x). Then, by
axiomEls 5 , also[§,]1) € 0 (x). Consider an arbitrarg’ such thatoRso’. Then,
o' € §(x) ando’ € LX. Moreover, by Fact 4.3.9, either= xs/NI+1 or ¢ = xdy, for
y € wU (S—{s}). Ifthe formers), = §, and and if the latter3), = §. In either case
[BX1Y € 0 (x). By Fact 4.3.6, them € 6 (¢’). By the induction hypothesis follows
thatdt -, o IF ¢ and withe” having been chosen arbitrarily, eventuai -, x It [§].

For the opposite direction, assume ti&l) ¢ 0 (x). Then,=[§]y € 0 (x), by
maximal A-consistency of (x). Without loss of generality we may assumés |
to be then + 1-st element in the enumeration. Consider the vexgixand let it be
denoted by *. Then, by Fact 4.3.97* € § (x) anda fortiori alsoxRsc*. Moreover,
—p € 6 (o*), by construction off .. By the induction hypothesis, thedlt,, o* I+
—p and, consequentlpt -, o* ¥ ¢, which suffices for a proof.

Let o = [§,]. Again we distinguish between being a leaf inL ando in T,
dealing with the latter case first.
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Let o be denoted by and the vertexsNI+1 by o**. Then,3%.. = §,. First
assume tha, v € 0 (x), i.e, [3X.]1 € 8 (x). By Fact 4.3.6 then) € 8 (o**). The
induction hypothesis subsequently yiel8,, o** I ¢). From Fact 4.3.9 we learn
thato** is the only element i§, (X) and, hencez** is also the only element such that
XRs o**. We may conclude thadt,, x I [§,]¢.

For the opposite direction assung]y ¢ 6 (x). By maximal A-consistency
of 8 (x), both—[$,]¢ € 6 (x) and (§,)—¢ € 6 (x). In virtue of axiomD!s , then
also[5,]—¢ € 0 (x), i.e, [B%.]-9 € 6(x). By Fact 4.3.6 themy) € 6 (o**) and,
with maximal A-consistency o (o**), alsoy ¢ 0 (o**). The induction hypothesis
is applicable and s@Jtr,o** ¥ ¢. Fact 4.3.9 guarantees that* € §, (x) and so
XRs o**. Hence, eventuallydt -, x ¥ [§,]¢, which we had set out to prove.

Now supposer to be a leaf inL* for somex € Ty. Then§, (o) = {o}. In virtue
of axiomEB5; 5, we have thaf3X]([5,]¢ — ¢) € 6 (). By Fact 4.3.6, alss, ] <
¢ € 0 (o). Now consider the following, familiar looking, equivalences:

S, €0 (o) iffg1pvecow vEB(0)

iffin. Mp, ol
Iﬂ:gO (0) = {o} for all ¢’ such that’ € éi (0') ) [GaN o’ I- P
iff for all o’ such thav R (oy0': Mir, o’ IF ¢
iff Mp, o - [8,]¢.
This concludes the proof. -

Completeness

Definition 4.2.1 introduced M as the minimal extensive game logic. Proposition 4.2.2
proved its axioms to be sound with respect to the class of all game-frames. Com-
pleteness of M with respect to this comprehensive class of game-frames follows as a
corollary of the Truth Lemma 4.3.11 and the fact that, for each M-consistent theory,
the modetr is in fact a game-model.

Theorem 4.3.12 (Completeness dfl) LetI" be a theory andy a formula in a multi-
modal matrix language (A, B). Then:

F}—MQO iff F':M(p

Proof: The left-to-right direction is taken care of by Proposition 4.2.2, above. For
the right-to-left direction it suffices to prove that there is a model on a game-frame for
each M-consistent theori/ in L(A, B). The construction oft} for M, as defined
above, provides such a model. For, proving the routine contrapoditig, ¢ implies
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I'U{~¢} Fu L. ThenMY ., exists and, by Lemma 4.3.19t7,
I'U{~}. Then, alsat} (. € Ik I anddi}

—p}s e IF

—p}s o} €K yielding Iy . A
Completeness for the extensive game logics Mthd Mi‘ (for particular labels

andi andN the whole set of player-labels) is be obtained in a similar fashion. The

validity of the argument, however, depends on the moﬂﬁ%ﬁas’i andi))tﬁS‘N belong-
ing to the appropriate classes of game-modets. for each Mg -consistent theory”
the modelimws’i be based on an extensive game in which the strategy psofiép-
resented by the labslin L(A, B) contains a subgame perfect best response for player

represented by the labelSimilarly, in the extensive game underlying a moilﬁl}"ssN

for an Mi‘-consistent theory”, there be a label ilN for each interested player and
the strategy profile represented by the labké a subgame perfect Nash equilibrium.
For I" an M5;;-consistent theory, respectively, an MBonsistent theory, we find that

. N
9)1%5 andﬂﬁﬁss do actually meet these requirements. The soundness gf il
M5, with respect to these classes of frames being guaranteed by Proposition 4.2.2 and
Theorem 3.3.5, we have the following results.

Theorem 4.3.13(Completeness dfi5s;) The logicM5s; is sound and complete with
respect to the class of game-models built on game-frames in which s is a subgame
perfect best response for player i.

Proof: Soundness is a consequence of Proposition 4.2.2 and Theorem 3.3.5, on
page 75 above. For completeness the proof is as that for M (Theorem 4.3.12), be it
that it should also be shown that for any M&onsistent theory, the strategy profile

. .. . M5 i .
is a subgame perfect best response for playethe extensive gamg ' that is de-

fined in the course of the construction of the moﬂHﬁsSJ, In the remainder of the
proof the subscript is omitted ®. In virtue of Proposition 3.3.4 on page 75, it suffices
to demonstrate thgk - is (§,i,$,)-Euclidean. Consider an arbitrary M5consistent
theory " and equally arbitrary vertices o', 0" € Vr such thatrRso’ andoRg o”.
Then,o’ € § (o) ande” € §, (o). We show that'Rio”. i.e, that(c’, o) € p;, Con-
sider an arbitrary formula and, proving the contrapositive, we assumé 0 ()
and demonstrate that ¢ 0 (/). Some reflection reveals that there be sonmee T
such thato’,¢” € L*. Then,o” = xsNI+1. Moreover,os’ = xsNI+1 as well, or
o' = xdy, for somey € w U (S— {s}). In either caser’ € § (x), by Fact 4.3.9,
and soxRgo’. In virtue of Fact 4.3.6, furthermoré},, | ¢ 6r (x). Since in this
casefy, = §,, also[S,]¢ ¢ 0 (x). With (§)[ilp — [§]¢ being an instance of
axiom 55; and by maximal M5;-consistency of (x), then(§)[ij¢ ¢ 0 (x). By
Lemma 4.3.11, we hav@t,,x ¥ (§)[i]¢ and hencedi,, x - [§]-[i]¢. Having
assumed thatRs o', alsoMir, o ¥ [ijp. By another application of Lemma 4.3.11,
eventually|[ilp ¢ 6 (o). -

Theorem 4.3.14 The IogicMS’s\I in L(A, B) is sound and complete with respect to the
class of game-frames built on games in which s is a subgame perfect Nash equilibrium
and in which there is a label in N for each interested player.
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Proof: Soundness is again by Theorem 3.3.5 and Theorem 3.3.5, on page 75 above.
For completeness, it suffices to show that, for each maxim@-btihsistent theory, the

strategy profiles; is a subgame perfect Nash equilibrium in the extensive ga%%,

on which the modeﬁvt“fg is based. First observe that the mystery pldyisran indif-

ferent player, in the sense that his preference relation is universal by construction. As
a consequence, each strategy profile is a best resporsariarthis holds in particular

for s. For any of the other playeise N, there is a player label iBy. Hence, for

any of them, the axionds 5 is derivable in M%. In a similar manner as in Theo-

rem 4.3.13, it can thus be shown that for eattbrestedplayer the strategy profilg is

a best response for playein E¥5§ . We may conclude the proof by observing that
is a subgame perfect Nash equilibriunﬁ'gy'fs . o

As an immediate consequence of these completeness results and the fact that in any
derivation of a formulay from a theoryl” in an extensive game logid¢ only a finite
number of formulas can occur, we have that each of the logics M; &d F%' is
compact l.e, for each theory™ and each formule, if I" £, ¢ then there is dinite
subtheoryl s of I" such thatlz F 4 ¢. We state this fact here as a corollary.

Corollary 4.3.15 Let L(A, B) be a multi-modal matrix language with N the set of
player labels containing i and with s as a strategy label. Then, the extensive game
logicsM, M5 and MSSN are compact.

For /A one of the extensive game logics M, MGnd M3' andI" a M-consistent
theory, the extensive ganfg! has some noteworthy properties. In particular, the depth
of the gameE# — i.e, the length of the longest path in the game-tree connecting the
root to a leaf — does not exceed the number of player labdl$AnB) plus two,i.e.,

IIN|| + 2. Moreover, the players are assumed to play in a fixed order, and on each path
in the game-tree from the root to a leaf, each player represented by a |&betaves

at most once and any other player at most twice. Also, the number of players in each
gameE ;- is always one greater than the number of label.in

Corollary 4.3.16 Let I be a theory in a multi-modal matrix languagéA, B) with

N the set of player labels and Idtone of the extensive game loghds M5s; or M5}
For E an extensive game of perfect information E &id a game-model on a game-
frameJe for A on E. Assume thal’ is satisfiable i)ig. Then there is an extensive
game of perfect information’Buch that:

1. there is game-frame fot on E on which/” is also satisfiable;
2. the game tree of’Es of a maximal depth dfN|| + 2;
3. its players numbe|N|| 4+ 1 and move in a fixed order;

4. in each play of E each player represented by a label in N moves at most once
and any other player at most twice.
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Sketch of proof:  Sincel is satisfiable in a model ofg, by Theorem 4.3.12/4-
consistency of” follows. Construct the extensive garBé. The Truth Lemma 4.3.11
ensures thaf’ is satisfied at the root node Ef!. Moreover,E¢ can be seen to possess
the properties as stated in the corollary. o
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Chapter 5

Boolean Games

5.1 Introduction

In game-like situations a player has to decide in the face of epistemic uncertainty. The
structure of the game may be such that his information about the game is insufficient
to distinguish one possible state of the game from the other. This may ecguif

she knows that one of her opponents has made a move, but not exactly which move. In
such games aifmperfect informatior(pure) strategies that prescribe different courses

of action to a player in possible states of the game she cannot distinguish, are no longer
available to her. The idea is, that due to her epistemic limitations, she would be unable
to act upon such a strategy.

A method that is widely employed to make formally explicit this epistemic struc-
ture is by includinginformation setdn the description of an extensive game. These
information sets partition the set of internal vertices in such a way that in each block
of this partition all vertices are assigned to one player. The respective player is thought
to be unable to distinguish the different vertices in the information set. Consequently,
any of his strategies will have to prescribe a similar course of action at each node in
each information set. This similarity between different courses of action is commonly
accounted for by introducing a one-one correspondence between the alternatives open
to a player at one vertex and those of any other vertex in the same information set,
e.g, by labelling the vertices with actions. The strategies available to a player are then
restricted to those that prescribe corresponding courses of action at different vertices at
any two vertices in the same information set. Graphically, information sets consisting
of more than one vertex may be depicted as dotted lines connecting the vertices it con-
tains €f., the extensive game on the left in Figure 5.1). Those not connected thus are
assumed to form an information set on their own.

In this chapter we consider two-person finite extensive games of imperfect infor-
mation based on binary trees. The players are, moreover, assumed to be complete
antagonists and the outcomes are of only two kinds: a win for the one player or a win

113
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Figure 5.1. The figure on the left dipicts an extensive game of imperfect information in which
figure two antagonists — player 0 and player 1. The outcomes at the leafs in which player 1
is victorious are labelled with 1; otherwisie., if player O wins, with 0. At each vertex the
player to move has a binary choice between either going to the left or going to the right. The
information sets are indicated by the dotted lines connecting vertices. The strategies of each
player available to each player are assumed to be restricted in the sense that each of them should
either prescribe to go left at all vertices in the information set or to move to the right at all of
them. The picture on the right, is the Boolean form representing the epistemic structure of the
game on the left. We find that this boolean form is represented by (equivalence class of) the
propositional formulga < b) v (-a A —c). The corresponding Boolean game ensuesaind

c are assigned to Player 1 ah@ndd to Player 0.
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for the other player, without the possibility of a tie.

We may assume that from any vertex in such a game emanate exactly two edges
of two different kinds. In accordance with the two-dimensional way we depict binary
trees, these different kinds of vertices may be cal&timovesand right moves or
0 movesand1 movesrespectively. Without loss of generality it may also be assumed
that, whenever two vertices are in the same information set, each strategy for the re-
spective player prescribes a left move at the one vertex if and only if it prescribes a
right move in the other. An alternative way of representing information sets is then by
labelling the vertices bpinary decision variablesin such a way that the vertices in
the same information set are labelled by the same variahlele extensive game to
the left in Figure 5.1). Control over the binary decision variables a vertex is labelled
with is then be assigned to the player to play at that vertex. The strategies available to
the players may then be represented as the different choices they can make with respect
to the binary decision variables in their contrbk., a strategy for a player becomes a
function mapping the decision variables in his control to the two values these variables
may take. Represented thus, we refer to this class of gantésasan gamesWith-
out the explicit assignment of the decision variables to the players, a Boolean game is
called aBoolean game forror just aBoolean form

A strategy profile for a Boolean is now an assignment of binary valuaB tf its
decision variables. The same decision variables may occur different Boolean games.
Moreover, we allow a strategy profile also to prescribe a value for decision variables
that do not occur in the game and assume that the choices made for these “outside”
variables do not affect the outcome of the game. This makes that the set of strategy
profiles of distinct Boolean games may coincide and their strategic properties can be
compared and assessed on this common basis. It also suggest a natural notion of equiv-
alence of Boolean forms: two Boolean forms are said tedpgivalentif each strategy
profile determines the same outcome in both of them. Defining natural operations on
Boolean game forms, we find thamodulothis notion of equivalence, Boolean forms
constitute a Boolean algebra.

The principal observation of this chapter is that binary decision variables may be
taken as the propositional variables of a propositional language. On this conception,
each strategy profile, assigning binary values to all the decision variables, coincides
with a valuation for that propositional language. We find that each Boolean form can
be associated with a propositional formula, aiak versasuch that that two Boolean
forms are equivalent if and only if the corresponding formulas are logically equivalent.
This correspondence between Boolean forms and propositional variables, moreover,
proves to determine an isomorphism between the Boolean algebra of Boolean forms
and the Lindenbaum algebra of the respective propositional language. These algebraic
considerations ensure that Boolean games can straightforwardly be related to classical
propositional logic. The Boolean algebra of (equivalence classes of) games happens to
be isomorphic to the Lindenbaum algebra of a suitable classical propositional language.

One should be careful, however, not to confuse the notion of equivalence between
Boolean forms with notions offame equivalencas advanced ing.g, Thompson
(1952) — in terms of congruence of reduced strategic form — or in Goranko (2001a),
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van Benthem (no date-b) and Pauly (2001) — based on the sets of outcomes the play-
ers can guarantee to end the game in. Equivalence of Boolean forms does not take into
account the manipulative powers of the players. The strategic properties of a Boolean

game — such as a player having a winning strategy or not — may depend on the way

control over the decision variables over the players as well as on the structure of the

underlying Boolean form.

The point is rather that the conception of Boolean forms as propositional formulas
spawns a number of logical issues concerning distributed control over the propositional
variables. Two strategic issues with respect to Boolean games present themselves.
First,given a Boolean form and a player, which distributions of the decision variables
yield a Boolean game in which that player has a winning strate@étond,given
a distribution of the decision variables, in which Boolean games complying with this
distribution has the one player a winning strategy, in which the other and in which
neither of them?n virtue of the isomorphism between the algebra of Boolean forms
(moduloequivalence) and the Lindenbaum algebra of the corresponding propositional
language, these questions have counterparts in propositional logic. Thus, distributed
control of the propositional variables becomes a notion amenable to logical analysis.

A third issue concerns the properties of determined and indeterminate Boolean
games. A two-player game of complete competition and which has wins and losses
for the players as outcomes, such as Boolean games, is clgtedminedif one of
the players has a winning strategy. As a corollary of Kuhn’s Theorefn Selten
(1965) and page 70, above), any such game is determined, provided that it is finite and
the players enjoy perfect information. Connections between logic and games with a
pair of antagonists as participants, have frequently been pointed out. The employment
of game-theory irclassicallogic has, however, generally been restricted to games of
perfect information. Consequently, these games can generally be assumed to be de-
termined as well. The assumption of perfect information games being determined has
even been generalized to infinite games and as such it has been proposed as a rival of
theAxiom of ChoiceThe use of games of imperfect information has generally been re-
stricted to the semantical analysis of such abstruse phenomena as branching quantifiers
and the independence-friendly interpretation of connectives (Hintikka, 1973; Hintikka
and Sandu, 1997). Boolean games are not in general games of perfect information and
neither are they generally determined. This eventuality, however, does occur only if
none of the players has control over all propositional variables. Thus one may come to
wonder about the distinguishing properties of determined Boolean games.

After having introduced Boolean games in this chapter, we will examine these three
logical issues in the next chapter.

5.2 Boolean Games
Boolean games constitute a class of games of involving two antagonists, denoted by 0

and 1, for which there are only two outcomes: a win for the one player or a win for the
other player. In both cases the player that fails to win loses. Moreover, at each stage of
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the game, one of the players has choice between two alternatives.

Borderline cases are the two atomic Boolean games denot@dixyl. The former
player O wins without either of the players making a move, and the latter which is won
by player 1 without having to act.

Furthermore,complexor molecular Boolean games are constructed recursively
from these atomic games and a countable sdiimdry decision variables For any
two Boolean gamegy andg; and any decision variablg there is another Boolean
game which we denote k/(go, 91). Each decision variable is assigned to the control
of one of the two players. Moreover, each decision variable can take one of two values,
represented by 0 and 1. &(go, ;) it is up to the player to whom the decision vari-
ablea has been assigned, whether the game continuesggitin with g;. Choosing
the value 0 results in the game being continued wgithFor the value 1 the game pro-
ceeds with playing the ganm. Definition 5.2.1 formally defines the set of Boolean
forms and Boolean games on a set of decision variables. The purpose of the distinction
between Boolean games and Boolean forms is that in a later stage we will want to be
able to compare Boolean games that only differ with respect to the assignment of the
decision variables to the players.

Definition 5.2.1 (Boolean Game Forms & Boolean Gamds3t A be a countable set
that is disjoint from a two-element s€b, 1} the latter set representing the two players.
Define the set oBoolean (game) forms overafs the smallest s&A) such that:

{0,1} C B(A)
acA andgheB(A) imply (agh)eB(A).

We usually depicta, g, h) by a(g, h), and when they occur as atomic games we usually
write 0 and 1 in boldfacd,e., as0 and1, respectively. ABoolean game on & a pair
(g, ) consisting of a Boolean formand acontrol assignment function: A — {0, 1}
assigning the decision variables Mto the players in{0,1}. Fori € {0,1}, the
preimage of{i} underr is the set of decision variables assigned &md will usually
be denoted byr. If 7 is clear from the context we usually refer (@, 7) by simply
g. The set of Boolean games over a 8gjiven an assignment functianis denoted
by B (A, 7) and the set of all Boolean games oveby B(A). Again any of these
parameters may be omitted if no confusion is likely. Let further a Boolean fobm
called asubformof another Boolean forrg if g andh are identical, og = a(ho, hy)
andh is a subform of eithehng or h;.

Definition 5.2.1 can be understood as defining a classxténsivegames. The
recursion by means of which they are introduced suggests a sequential structure of
play, which can be made explicit in a game tree. A molecular Boolean gafgg ;)
offers the player controlling the decision variabléhe choice between two courses of
action. After having made one choice, the game continues with playirand after

LAlternatively, = could be defined as a set of two disjoint subset#\ahdexed by{0,1} and such
that|Jm = A. If = does not contain the empty set, it is then a bi-partition indexefOb¢}.
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Figure 5.2. The Boolean forna(b(1,¢(1,0)),b(0,1)).

having made the other the game continues with plagngAs such, Boolean games

are based on finite binary trees, internal vertices of which are labelled with decision
variables. We will assume that choosing 0 as the value for a decision variable takes
one to the left and choosing 1 takes one to the right. Consider for instance the Boolean
forma(b(1,¢(1,0)),b(0,1)). Play commences with the player having control over
the decision variabla. If she chooses the value zero farthe game continues with

the Boolean gamé (1,c(1,0)), otherwise withb (0, 1), and so on until an outcome

is reached. Under these assumptions, the Boolean géin{d, c(1,0)),b(0,1)) can

be represented as in Figure 5.2. In much the same manner, the graph on the right in
Figure 5.1 depicts the Boolean form:

a(b(c(1,1),¢(1,0)),b(d(0,0),d(1,1))).

As pointed out in the introduction the binary decision variables are construed as
identifying the players’ information sets, requiring the players to choose strategies that
assign a unique value to each decision variable. The decision variables — which label
the nodes of the game-tree — indicate that these nodes are in the same information set.
This interpretation of Boolean games as finite extensive games of imperfect informa-
tion is enforced by an appropriate definition of a player’s strategy. Thus, in the game
of Figure 5.2, any strategy for the player with control oleshould prescribe either a
move to the right in both subgambs1, c(1,0)) andb (0, 1), or a move to the left in
both.

Accordingly, astrategyfor a player in a Boolean gam@, 7) in a classB (A) is
defined formally as a function that assigns one of the binary values 0 or 1 to the de-
cision variables controlled by the player in question. Observe that this assignment is
not restricted to the decision variables that occur in the Boolean fprbut that it is
total on the whole set of decision variables assigned to a player. Because control over
the decision variables is divided over the two playersirategy profileis a function
mapping the whole oA onto {0, 1}. As such, strategies and strategy profiles can be
seen as (characteristic functions of) subsets of decision variables; in the sequel we will
frequently exploit this equivocality. The set of strategy profiles for a Boolean game
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in B (A, ), is thus given by 2 and, as such, imdependenof 7. This is expressly not
the case for strategies. The set of strategy profiles is denot&d by

Each strategy profile determines a unique outcome for each Boolean iferm,
independently of the specific way control over the decision variables is divided over
the two players. Fob and1 the outcome will invariably be 0 and 1, respectively. The
outcome of a molecular ganag go, 1) will depend on the value assignedédn s. In
casea is assigned the value 1 in a strategy profjléhe outcome of the Boolean form
a(go, 01) is identified with the outcome af; givens. Otherwise, the outcome &fin
a(go, 01) is identical to the outcome @j, givens. This gives rise to the definition of
the strategic form of a game,glenoted by g, as a function with the set of strategy
profiles as domain anfD, 1} as its range. Two Boolean forms are said teehaivalent
if their strategic forms are identical. Observe that, with the set of strategy profiles being
defined for a class of Boolean gant€A), all games in this class share the same set of
strategy profiles and, as such, they can be compared on this basis. This is even the case
if the decision variables occurring in two Boolean forms do not coincide. Formally we
have the following definition.

Definition 5.2.2 (Strategic Forms and Their Equivalence)et B(A) be the set of
Boolean forms over the sét For eachg € B(A) we define itsstrategic formas a
function"g': S— {0, 1}, as follows:

0’ (S) =4 O

’_1_‘ (S) =df. 1

"g1'(s) ifaces,
"go '(s) otherwise

"a(go,m) (9 =u. {

The strategic form of a Boolean form,q. Boolean game, being a function from strat-

egy profiles to a two-element set, can be taken as a characteristic function of a subset

of the strategy profiles,e. of {s€ S: "g'(s) = 1}. The definition above then trans-

lates to:
0" = ¢
' = 8
"a(go.g1) ' = ("w'n{ses: a¢shu("g'n{seS: acs}).

Two Boolean formgy andh are said to bequivalent— in symbols,g = h — if
they have the same strategic forire,:

g=h iff g’ = "h".

It is not hard to verify that the Boolean forms in Figures 5.2 and 5.1 are equivalent in
this sense. Lef be given by{a, b, c,d}. We then find that both their strategic forms
are the same set of sets of strategy profiles\irviz..

{0.{b}.{c}.{d} .{a b} {b.d} {cd}, {abc} {abd} A}
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A Boolean game is defined as a Boolean form together with a function assigning
control over the decision variables to the players. A player’s strategies are given by
the the different choices he can make with respect to the decision variables assigned to
him. A Boolean game can thus be represented as a matrix, with the columns indicating
the strategies for player 0 and the rows those of player 1. A combination of strategies
then yields a strategy profile, each of which is represented by a cell in the matrix.
The entries in the cells represents the values the strategic form takes for the respective
strategy profiles.

On this conception, Boolean games are ordinary strategic games, featuring two an-
tagonists whose strategies are given by the various choices they can make with respect
to the decision variables assigned to them. As Boolean games allow for two outcomes
only — viz.,, a win for the one player or win for the other — and assuming that both
players (strictly) prefer winning to losing, a strategy profile is a Nash equilibrium if
and only if it subsumes a strategy for one of the players that cannot fail to deliver vic-
tory, i.e,, no matter what strategy his opponent chooses to play. Thus, we say a strategy
profile is awinning strategyor a player if it guarantees that player a win even if his op-
ponent were to choose different values for the decision variables in her control. Define
formally for s a strategy profile anda player of a Boolean ganig, 7):

sis awinning strategyfori  iff forall s € S: s~ § implies"g"'(s) = 1.

We say that a playarhas a winning strategif there is at least one strategy profile that
is a winning strategy for. Obviously, at most one of the players can have a winning
strategy. Otherwise both players could play one of their respective winning strategies
against one another. Then both players would secure a win, which is absurd given the
assumption that one player’s victory means the other’s defeat. Assumedduetio
ad absurdumthats be a winning strategy for 0 argl a winning strategy for player 1.
Let, furthermores* be given(sp, ;). Then, botts ~, s* ands' ~, s*. Hence, both
"g'(s*) =0and g'(s*) = 1,quod non

Games are calledeterminedf one of the players has a winning strategy and
determinate otherwise. Not all Boolean games are determined; it is quite possible
for neither of the players of a Boolean game to have a winning strategy. Typical
examples of Boolean games for which this is the caseadlg0,1),b(1,0)) and
a(b(1,0),b(0, 1)), if one player has control overand the other ovd. E.g, strategy
profile s grants player 1 a win i (b (1,0),b (0, 1)) if and only if a andb are either
both present or both absentsnPlayer 1, however, has no safeguard against player 0
assigning the ‘opposite’ value toas he did ta, resulting in a win for player 0. Simi-
larly, whatever value player O chooses to assign fayer 1 might have chosen to set
to the same value and win. These games could be taken as the Boolean counterparts
of the well-known game oMatching Penniesin which two players toss a penny and
the one player may keep them both if the upsides match; otherwise, the other player
obtains the two penniesf, Figure 5.3).

Although a player need not have a winning strategy at her disposal, she may have

awinning responsg.e., for each strategy her opponent may choose to play, she can
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head tail 0 {b}
1 0
head o 0 1
0 1
0 1
tail {a} 1 0
1 0

Figure 5.3. On the left, the gamMatching PenniesThe figures indicate victories and defeats,
but not how many pennies are won or lost. On the right its representation by the a Boolean game
(a(b(0,1),b(1,0))). Player 1 plays rows, player 0 columns.

always find an appropriate strategy in response that will secure her a win. Yet, for
different strategies of the opponent the appropriate response may be a different strategy.
As such winning responses amet strategies in the strict sense, but rather functions
mapping each strategy of the opponent onto a strategy of the player herself. Formally,
for i a player in a Boolean garg, 7):

i has awinning responsé (g, 7)
iff
forallse S thereis arg € Ssuchthas~,, ;s and'g'(s) =i.

If a player has a winning strategy, he clearly has a winning response as well: against
each strategy of the opponent he can play his winning strategy.

Conceiving of the strategic form of Boolean form as a subset of strategy profiles, the
notions of a player having a winning strategy or a player having a winning response
can conveniently be expressed using the apparatus of rough sets. As an immediate
consequence of the definitions above, the set of winning strategies for Playgrd in

[

given byaiprm( g') and those of Player 0 likewise tmpr ("g") or, equivalently,
byapr,, ("g').2 Then, it can easily be recognized that:

9

Player 1 has a winning strategy  iff apr_("g") # 9,
Player 0 has a winning strategy  iff apr, ("g") # S
Player 1 has a winning response  iffapr, ("g") =S
Player 0 has a winning response  iff apr ("g) =o0.

2Recall thatr; here denotes setof decision variables and as such determingsuition of the strat-
egy profiles. It is with respect to this partition — which, if written out in full, would be denoted by the
cumbersomer,, — that the rough set operatcapr.., andaprﬂ_ approximate.
—N
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o {c} {d} {c.d} o {b} {c} {bc}

o 1] 1| 1|1 ol 1| 1| 1| o0
1 2| 3 4 1 9| 2 10|

{(ay| ol o] o| o {fay| o| 1| 0| 1
5 6| 7 8| 5 13 6 14

oy 1 0] 1] 0 (d}p| 1| 1| 1] 0
9 10| 11 12| 3| 11 4 12|

{fab}| 1] 1| 1|1 {fadt| o 1] 0] 1
13| 14 15| 16| 7 15| 8 16|

Figure 5.4. Two Boolean games on the Boolean foatb (1,c(1,0)),b(0,1)). In the game

on the left control over the propositional variablegandb is assigned to player 1 and control
overc andd to player 0. In the game on the right player 1 has control axardd, and player O

overb andc. The figures in the lower right corner of each cell indicate how the entries in the
two matrices are correllated: in cells indicated by the same number the same strategy profile is
played.

From these equivalences we can immediately read off that one player has a win-
ning strategy if and only if the other has no winning response. The intuitively obvious
observation that having a winning strategy implies having a winning response, essen-
tially depends on the sets of decision variabtgsandr; being disjoint. The assump-
tion that,e.g, Player 1 has a winning strategy furnishes one with a strategy psofile

A1

in a_prm( g ) that is such that for any strategy prof#fe also(sn ) U (S Nmp) is

in"g". Since clearly alsg ~,, (sNm1) U (S Nmp), we may conclude that Player 1
has a winning response as well. These remarks are summarized in the following propo-
sition.

Proposition 5.2.3 Let(g, w) be a Boolean game in &\, =) and letie {0,1}. Then,

at most one player has a winning strategy(@) ), player i having a winning strategy
implies i having a winning response, and player i has a winning strategy if and only if
playerl — i has no winning response.

Proof: The third claim is immediate from the rough set characterization of a player

having a winning strategy and a player having a winning response. The other two
claims can be seen to follow as well if, in addition, Corollary 2.2.12 (page 44, above)
is invoked. .

5.3 Operations on Boolean Forms

In Definition 5.2.1, above, Boolean forms were introduced recursively, providing a
way in which larger Boolean forms can be constructed from smaller ones. Here we
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introduce four operations on Boolean forms performing a similar task in a different
manner. We prove thamoduloequivalence, the Boolean forms constitute a Boolean
algebra with respect to these operations. Rather, this result forges a strong link between
Boolean forms on the one hand and propositional formulas on the other.

The operations on Boolean fornegmplemen(g), sum(g + h), product(g - h) and
simultaneous sum-produg® (g, h, k)), are defined formally as follows.

Definition 5.3.1 Let A be a set. Define the set of four operatigns+, -, ®) of sim-
ilarity type (1,2, 2, 3) on the set of Boolean fornB(A) inductively as follows, where
aranges oveA:

1) 0 =g 1
1 =4 0
a(9,91) =qr. a(%o,9r)
(2) O0+h =4 h
1+h =g 1
a(go,91) +h =¢ a(go +h,go +h)

3) 0-h =¢ O
1-h =¢ h

a(go,91) -h =ar a(go-h,go - h)
(4) ® (0,h,k) =gt h
® (L,h K =g k

®(a(907gl) ) —df. a( gOvh k) (glvhka

Let the algebrdB(A);0,1,7, +, -) be denoted byB,, suppressing the subscrifst
when clear from the context

These operations on Boolean forms have intuitive readings, which are best appre-
ciated if Boolean games are thought of as trees. Takingdngplemenof a formg
makes that all occurrences of the atomic gathesdO are interchanged. Thaimof
two forms,g + h, is the result of replacingny occurrence oD in g by h. Addition
yields the Boolean form in which the root bfis attached to any leaf node gfla-
belled with0. Theproductof two forms, @ - h), is similar to their sum, be it that now
it is every occurrence df that is replaced bj. The operatior®® comes down to si-
multaneously adding one form and multiplying it with another simultaneously. Hence,
@®(g, h, k) yields the form that is likgy except that each occurrencelois replaced by
an occurrence dfi, and every occurrence 6fby one ofk. Figure 5.2 illustrates the
workings of the operators.
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With respect to the algebraic properties of these operations it is worth observing
that+ and- are neither idempotent nor commutative. Neither do the absorption laws
(9+ (g-h) =gandg- (g+ h) = g) hold in general. Moreover- does not distribute
over- and neither doesover+. Also the identity lawg+g=1,9-g=0,g+0=1
andg - 1 = O fail to hold in general. Henc® is obviouslynot a Boolean algebra.
However, Fact 5.3.2 summarizes, among other things, some of the Boolean properties
that do hold for Boolean forms.

Fact5.3.2 Letg, h and k be Boolean forms ir{/8). Then:

g=g9
g+0=g gl=g
g+ (h+k) = (g+h) +k g-(h-k) = (g-h)-k
g+h=g-h g-h=g+h
®(9.0,1) =g ®(9.1,0) = g
®(g,h,1) = g+h ®(9,0,h) = g-h
®(g,1,h) = g+h ®(g,h,0) = g-h.

Proof: All proofs are straightforward, although it may strike the reader as slightly
odd that the De Morgan laws hold, whereagy, commutativity and distributivity do
not. Here we prove by induction on the complexitygpfhatg +h = g - h. For the
basic casd,e., if g = 0org = 1, consider the following pair of equations:

=

0O+h = h = 1.-h = 0

1+h =1 =0 = 0-h =

3

-h.

ol

For the inductive caség., if g = a(go, g1), consider the following equations:

a(9,91) +h = a(g +hg +h = a(g +hg +h)
= i.h a(%ﬁ7%ﬁ) = a(%?@) -h = a(QOagl)'ﬁ'
This ends the proof. o
In addition, both of the following claims hold; the inductive proofs are elementary and
duly omitted:
g+h=0 iff g=0andh=0,
g-h=1 iff g=1landh=1.
Each Boolean form can be associated with a finite combination of forms in the
subset{a(0,1) : a < A} together with 0 and1 by means of a finite number appli-

cations of the operata®. The atomic Boolean form8 and1 are be associated with
themselves and, inductively, each molecular ganiey,g:) by ® (a(0,1), hg, hy),
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a

A -

ANA
As
Aa -
Aot - £

Table 5.2. Four operations on Boolean forms: complement, sum, product and simultaneous
sum-product.

wherehy andh; are the combinations associated wgghandg, , respectively. Thus the
Boolean forma(b(1,¢(1,0)),b(0,1)) of Figure 5.2 is identical to the combination:

®(a(0,1),®(b(0,1),1,®(c(0,1),1,0)),b(0,1)).
The following proposition lays down formally this general observation.

Proposition 5.3.3 The algebraB(A) ; 0,1, ®) is generated bya (0,1) : a < A}.

Proof: Trivial. Consider an arbitrarg in B(A). We prove by induction thag can be
generated. For the basis, we are done immediately Siacel1 are nullary operations
in (B(A);0,1,®). For the induction step, let(hy, h;) and observe that (hy, h;) =
® (a(0,1), hg, hy). With the induction hypothesis we are done. .

A similar result cannot be obtained for the operations and-, not even if the set of
molecular Boolean forms is extendedfta(i, j) € B(A) : i,j € {0,1} } together with
0 andl. E.g, the Boolean forna(a(0,1),a(1,0)) cannot be generated thus.
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Proposition 5.3.4 Let A be a non-empty set of binary decision variables. The alge-
bra B given by(B(A);0, 1,7, +, ) is notgenerated by any subset fd (i, j) € B(A) :

i,je{0,1}}.

Proof: Because\ is non-empty, we may assuraec A. Letg be an arbitrary Boolean
form generated fronfa (i,j) € B(A) : i,j € {0, 1} } by a finite number of applications
of the operation$, 1, ~, + and-. We show, fori andj distinctin {0, 1}, that:

a(i,j) isasubformofy implies a(j,i) is no subform of.

This suffices for a proof, as botla(0,1) and a(1,0) are subforms of
a(a(0,1),a(1,0)) anda(a(0,1),a(1,0)) is a Boolean form irB(A). .

The proof is by induction on the number of occurrences of the operaiiohs,
+ and- in g. So assuma(i,]) is a subform ofy prove by induction on the number of
operators occurring ig that for distincti andj in {0, 1}.

The basis is trivial, since theme {a(i,j) € B(A) : i,j € {0,1} }. The inductive
cases in whicly is 1 or 0 are equally trivial.

Let g = h. First observe that by a simple inductive argument, here omitted, shows
that in general:

k is a subform oh iff kis a subform oh.

With a(i,j) a subform oh, then,a (i, j) is a subform irh. Observe thaa (i,j) = a(j, i),
sincei andj were assumed to be distinct elements{0f1}. Moreover,h = h. By
the induction hypothesis follows that(i,j) is no subform oth. Hence,a(i,j) is no
subform ofh either. Since, under the present assumptiafisj) = a(j,i), we are
done.

Letg = h+k. This case is by induction on the complexitykofFirst, assumé& = 0.
Then,h + k = h+4+ 0 = h, and we are done by the induction hypothesis. Second,
let k = 1. An easy inductive argument establishes thas no subform ofh + 1,
Consequently, neither &(i,]), sincei andj are distinct. Now consider the inductive
case, in whickk = b (ky, ko). It suffices to show that, for distinch andn in {0, 1}, if
a(m, n) is no subform ok, it is no subform ot + k either. So assume thatm, n)
be no subform ok; we prove then by an induction on the complexityhdghata (m, n)
is no subform oth + k. If h = 0, thenh + k = 0+ k = k and we are done by the
assumption. Ih = 1, thenh+ k = 1+ k = 1, and the claim follows immediately.
Finally, if h = c(ho, hy), thenh + k = c(hg,h;) + k = c(hy + k,h; + k). By the
induction hypothesia (m, n) is neither a subform df, + k nor ofh; + k. Neither can
it be the case thdt = a(i,j). For eitherm = 0 or n = 0 and without loss of generality
we may assume that = 0. Then, however) = hy + k. Hence als® = k, which is
impossible withk being a molecular game.

As the argument fog = h-k runs along analogous lines, this concludes the proof.

The Boolean laws that fail to hold faB, however, are satisfied by tlgpiotient
algebra®/=, which is given by{B/= ; [0]=, [1]=,, +,-}. HereB/= is defined as
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{lgl= : g€ B(A)} and ", + and- are the properly raised versions of complement, sum

and product for Boolean forms, respectivelye., we have in general thad] =g [g],

[9] 4 ["] =at. [9+ ] and[g] - [h] =ar. [g- h]. We first prove the following lemma as an
intermediary result, which has as a corollary thais a congruence relation. Hence,
B/ is properly defined in the first place.

Lemma 5.3.5 For gand h Boolean forms in®):

"a(0,1) ' = {seS: acs}
g = g
rg+ h' — Fg“IUFhT
I—g 3 h‘\ — l_g—l m l_hT
"®(ghk ' = (Tg'n"hU("g'n"k)).
Proof: Throughout the proof we hawrange over 2. For the first case consider the
following equations:

"a(0,1) ' = ("0'n{stag¢shu("1'n{s:acs})
= (pn{s:a¢s})U(SN{s:aecs})
= ¢gU{s:acs}
= {seS:aes}.

The remaining cases are all by inductiongand all follow a similar pattern. We give
here the proof of the third and the last case only.
For the basic cases we can reason as follows:

"0+h' = "h! = gu'h' = "0'Uh,
"1+h' = "1" = s = su'h' = "1'u"h".

For the inductive case, in whidh= a(go, g1) consider the following equalities:

"a(go.g1) +h'

= Ta(@+ho+h’

= (Tgo'+"h'n{sta¢s})u("a ' +"h'n{s:acs})

=in. ((@'U'h)n{stagshu((fa'u"h)n{s:acs})

=w ("go'N{stag¢sh)u("g 'N{s:aes}) U
("h'n{sta¢sp)u("h'n{s:acs})

= Ta(go,01) 'Uh.
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The equation indicated with the asterisk is based on the Boolean laws governing the
distribution ofn overU and their respective commutativity.
Finally, for the last case, the following equations take care of the basis:

"®Ohk"' = "h" = (Sn"hYue = (0'n"h)u(0'n"k’),
"®(Lhk ' = k' = ou(SNk) = ((I'n"h)uU("17n"Kk).
For the inductive case we have the following:

-

® (a(0o,G1) . h, k)
= "a(® (9o, h,k),® (g1, h,k))
= (" ® (g, k) 'N{s:ag¢s)u (" ®(gi,hk 'N{s:aecs})
=i (e 'n"h)U ("' N"kY))N{s:a¢s})u
(87 A W)U (e ) 1 {s: ac o))
—gsr. (o 'n"h'N{s:ag¢s}) U (Tg'n"k'N{s:a¢s}) U
(" 'n"h'n{staes}) U (g ' Nk n{s:acs})
—comm. (o 'N{s:a¢sin™h’) U (Tgi 'N{ssaesjn"h)) U
(("go 'N{s:ag¢stnk’) U ("1 'n{staestn’k’))
=gsr. (g0 'N{s:a¢st)u(Tg 'N{s:aes}))n"h’) U
(g 'n{stagst)u (‘e 'n{staes}t))nk’)
= ("a(@o,gr) 'n"h)u("a(g,g) 'n"k)
= (‘a(g.g) N"hY) U ("alg.o) Nk,

This concludes the proof. -

Corollary 5.3.6 The equivalence relatios on Boolean forms is a congruence rela-
tion onB and, consequentlyB /= is a properly defined quotient algebra.

Proof: Immediate from Lemma 5.3.5 and the fact thgt' is a set, for each Boolean
formg. o

On the basis of Lemma 5.3.5, the algebra of strategic fonoduloequivalence 5
is defined as follows:

%A —df. ({I—g—l : g S B(A)} 7®7 2A7 _7 Ua m)
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Suppressing the subscript the algebra®3, is afield of setd and, as such, also a
Boolean algebra. MoreoveB /= and®3 are (trivially) isomorphicvia the natural iso-
morphism, which maps eadb]_ onto" g . Let B(A) be a set of Boolean forms on a
set of binary decision variablésalong with the classical propositional langudagé.).
An inspection of Proposition 5.3.5 reveals tfa} coincides with the extension alge-
bra &, of the classical propositional languabeA) (cf., page 49). As the latter being
isomorphic to the Lindenbaum algelga for L(A) (cf., page 49), so are bofi/= and
B 4. Hence the following theorem.

Theorem 5.3.7 Let A be a set and(A) and B'A) be the classical propositional lan-
guage over A and the set of Boolean forms on A, respectively. Bhgnoincides with
the extension algebr@,. ConsequentlyBa, Ba/=, €4 and the Lindenbaum algebra
£ are pairwise isomorphic.

Sketch of proof:  Straightforward. The first claim is by a trivial inductive argu-
ment on the complexity of Boolean forms and propositional variables. MoreBver,
and*B are isomorphiwia the isomorphism that magg|_ onto" g '. Observe in this
respect, that this map is bijective in virtue of the definition=af Finally, the alge-
brasB,, Ba/=, € and the Lindenbaum algebf being pairwise isomorphic then
follows immediately from&, and£a being identical. =

In virtue of this theorem we can assume for each formut a classical proposi-
tional languagé.(A) there to be a Boolean fory,, and,vice versawith each Boolean
form g a formulayg such that:

B A1

] = "9, g = [edl-

As an immediate consequence of Proposition 5.3.5, the following fact is obtained.

and

Fact5.3.8 Let A be a setp, v formulas in L(A) and g h,k € B. Then:

"a(0,1) ' = [a] "®(ghk) = [(~egAen) V(g A ]
0" = [[J_]] ' = [[T]]
"9 = [l [-¢] = "g;"
"g+h' = [iwgV el [eveyl = "gp+ 9y
"g-h" = [pg A en] [eAd] = "gp-0gy

We say that the formulay representthe Boolean form g and that the boolean forpm g
representghe formulagp.
Proof: An immediate consequence of Proposition 5.3.5. o

On the basis of this fact and Proposition 5.3.3, for each Boolean doampropo-
sitional formula can straightforwardly be formulated that is equivalenpgo On

3A field of sets $ a collection of subsets of a nonempty Xetuch that both the empty setand the set
X are inSandSis closed unden, U and™ with respect toX (Chang and Keisler, 1973, p.39).
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page 125 we observed that the gaafb (1,¢(1,0)),b (0, 1)) of our example is iden-

tical to a combination of the Boolean forrag0, 1), b (0, 1) andb (0, 1) and the oper-
ations0, 1 and®. By Fact 5.3.8, we find if—aA (=b Vv (b A c)) ) v (aAb) a formula

that is equivalent to its logical representant. Some Boolean manipulations, gives the
equivalent but simplefa < b) v (—a A —c) as a suitable logical representative of the
Boolean form. The Boolean fornas(b (0,1) ,b(1,0)) anda(b(1,0),b(0, 1)) of the
typically indeterminate Boolean games can then be found to correspond to, respec-
tively, the formulasa <~ b anda < —b.

5.4 Evaluation Games

The considerations of the previous section give rise to the interpretation of Boolean
games as a kind of evaluation game. Each Boolean form corresponds to a proposi-
tional formula, the decision variables to propositional variables and the strategy pro-
files to valuations for the respective propositional language. Furthermore, the roles of
two players of a Boolean game can be construed as thoseesifier and of a falsifier
falsifier of the formula representing the Boolean form in question. The verifier endeav-
ors to satisfy the formula by finding appropriate values for the propositional variables
assigned to her control, and the falsifier tries to make the formula false by choosing
appropriate values for the propositional variables in his control. Whether a player has
a winning strategy or a winning response given a particular formula then depends on
the set of propositional variables assigned to her.

At this point a remark is in order with respect to the logical evaluation games ad-
vanced by Hintikka and Sandu (Hintikka, 1973 and Hintikka and Sandu, 1997) and
their relation to Boolean games. They suggest a game-theoretical semantics for first-
order logic, in line with their observation that “... mathematical logicians have sponta-
neously resorted to game-theoretical conceptualization practically every time they have
had to deal wiht a kind of logic where Tarski-type truth definitions do not apply, in-
cluding branching quantifiers languages, game quantifier languages and infinitely deep
languages” (Hintikka and Sandu, 1997, p. 363).

Game-theoretical semantid&TS) defines for each first-order formulg each
first-order modef(, and each assignment functibna two-player game of strict com-
petition — denoted bys (¢, 2, ). This definition is by recursion on the formuja
The two players of the game play the antagonistic roles of verifier and falsifier of a
formula. LetR(to,...,t,), be an atomic formula. Then, the verifier wins the game
G(R(tg,...,tn), A, f)if R(to,...,ty) is satisfied irkl with respect to the assignment
functionf. For molecular formulas the principal logical constant involved determines
which player is to make a move. In the ga@éyp, A 1,2, f) the falsifier chooses a
conjunctyp;, after which the game is continued playing the gare;, 2, f). The game
G (vo V 1,2, 1) is similar to that for conjunction, except that now it is up to the veri-
fier to choose a disjunct. For games for the quantifiers follow the same pattei@.a_et
universal or an existential quantifier. Then, in a ga@€Qx) ¢, 2, f), one of the play-
ers selects an objeatirom the domain ofl, after which the game is continued playing
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Falsifier

Verifier

Figure 5.5. The propositional formula A (b V c) represented as, repsectively, a Hintikka-
Sandu evaluation game (left) and as a Boolean game (right). Wheghider has a winning
strategy in the former depends on the background model underlying the garge.in the
valuation{a, b} she has, but i{a} she has not. In contrast, whether a player has a winning
strategy in the Boolean game, depends on the control over the propostional variables assigned to
him. E.g, if Player1 has control over both andb, she has a winning strategy. Not so, if she

has control oveb andc.

G (¢, 2, f[x/a]). The verifier is to choose Qx is the existential quantifietx and the
falsifier otherwisej.e., if Qxis the universal quantifierx. In the gameG (-, A, )

the players swap roles and play is continued v@ihy, 2, f). The result that forms

the point of departure for the researches in GTS is then that for the classical first-order
languages there is an intimate link with the Tarskian or truth-functional interpretation.
For F the Tarskian satisfaction relation it is then the case that:

A, f E ¢ iff the player in the role of verifier has a winning strategyGrip, 2, ).

As a consequence a formufais logically valid if the verifier has a winning strategy
for the evaluation game fas on all models2l.

Like in Boolean games, in the evaluation games of GTS a verifier and a falsifier
vie for the truth-value of a formula. However, when restricted to a classical first-order
language, the GTS evaluation games are of perfect information, and, hence, they are in
general determined. The classical law of excluded middle is often seen as to reflect this
fact. In the Boolean framework, a formula of the fogmv —p defines a game that will
always be won by one of the players. We took, however, pains to point out that it is not
in general the case that Boolean games are determined. For propositional languages,
the GTS game determined by a formula differs structurally from the Boolean form
defined by the same formula, as Figure 5.5 illustrates. Furthermore, the ‘powers’ of the
players are determined by the logical constants in the GTS-framework. By contrast,
what a player can achieve in a Boolean game, also depends on the set of propositional
variables he has been assigned control over.

For languages other than that of classical first-order logic, however, the GTS-
framework does allow for imperfect information. Due to the linear representation of
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formulas in the classical notation, the scopes of two quantifiers are forced to be either
exclusive or nested. This restriction — which is equally arbitrary as spurious according
to Hintikka and Sandu (Hintikka and Sandu 1997, p. 366) — is lifted, if quantifiers are
allowed to “branch”, ase.g, in:*

VX Jy
(vz HU) ‘p (XJ y7 Z7 u) N

Here the quantifiefy is thought to be in the scope 6%, but not in that of/z. Moreover,
Vzis also thought to be independent=f This interdependence and independence of
quantifiers can also be given a linear representation using the so-sla$uhotation.
The formula above then becomes:

(VX) (V2) (3y/Vz) (3u/VX) p.

This notation can be generalized in that a quantifier can be “slashed” by any quantifier
of the opposite type that occurs to the left of it in the formula in question. The eval-
uation gameG ((Ix/Vyo, - - ., Y¥n) , A, f) is then an imperfect information game, in
which the verifier has to choose a value for the variablebeknownstf the values

her opponent has chosen for the varialyigs . . , y, earlier in the game.

If branching quantifiers are also allowed in quantified propositional logic, it turns
out that for each Boolean game we can find a formplauch that player 1 has a
winning strategy in the Boolean game if and only if in the evaluation g@rtig, s) the
verifier has a winning strategy as well, whesas any valuation of the propositional

language. Fofg, ) a Boolean game in the decision variablag . .., an, bo, ..., bm
andr assigning control ovedy, . . . , an to player 0 and that ovd,, . . . , by, to player 1,
the corresponding formula in quantified propositional logic is obtained as:
va{)v ce >Van
<3b0,...,Hbm>gog(a0’""an’bo’m’bm)'

We leave this claim here without a proof. In the quantified formula above, the pre-
fix (;g;”::;jgf;‘;) plays a similar role as the control assignment function in a Boolean
game: both determine which player has control over which variables. However, for our
purposes it turns out to be more convenient to deal with the distribution of control at
the meta-level, not in the least because it facilitates the generalization of the concept of
distributed control over propositional variables to situations in which multiple players
interact. This issue will be addressed in Part Il of this thesis.

In GTS the verifier having a winning strategy in the evaluation ga@®gs, 2, )
for all models2 and all assignment functiorismeans thaty is valid. For Boolean
games, likewise, there is a relation between a propositional formbleing valid and
player 1 having a winning strategy in a Boolean game on the Booleandornthis
correspondence, however, only obtains in general if player 1 has control over no propo-
sitional variables occurring ip. For the other distributions the propositional variables

4Branching quantifiers were proposed for the first time in Henkin (1961).
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we find that the correspondence holds only with respect to a generalized notion of log-
ical validity. In this way the notion of distributed control over propositional variables
assumes a logical significance.

The next chapter will be devoted to the issue of how distribution of control over
propositional variables relates to the logical properties of formulas. In particular the
logical counterparts of the game-theoretical issues mentioned in the introduction of this
chapter will be addressed. Firgiyen a Boolean form and a player, which distributions
of the decision variables yield a Boolean game in which that player has a winning
strategy? Second,given a distribution of the decision variables, in which Boolean
games complying with this distribution has the one player a winning strategy, in which
the other and in which neither of them?






Chapter 6

Propositional Logic for Control

6.1 Introduction

In the previous chapter Boolean games based on a set of binary decision vatiables
were proved to entertain an intimate relation with the formulas of the propositional
language with the same sAtas propositional variables. The isomorphism between
the algebra of (strategic forms of) Boolean form&i#\) and the Lindenbaum algebra

of the corresponding propositional languad#) elicited the interpretation of Boolean
games as a special kind of logical evaluation game. By choosing values for the decision
variables assigned to them, the two players construct a valuation with respect to which
the formula corresponding to the Boolean game in question should be evaluated. The
one player strives for a valuation that verifies the formula, whereas her opponent aims
at a valuation that renders it false. On this basis, game-theoretical and logical concepts
can be matched.

Boolean forms correspond to propositional formulas, strategy profiles to valuations
for the propositional variables and a win for player 1 in a Boolean form to the truth of
the formula associated with that Boolean form. Furthermore, the propositional connec-
tives obtain a game-theoretical significance as operations on Boolean forms. This kind
of correspondence is not peculiar to Boolean games; congenial ones are central to the
game-theoretical analyses of logical concepts in the framework of Hintikka and Sandu
(Hintikka (1973), Hintikka and Sandu (1997)) and in that of Lorenzen’s (Lorenzen and
Lorenz (1978)). The conformity of game-theoretic and logical notions reappear at the
level of the solution concepts. In a Hintikka-Sandu evaluation game for a forgnula
and a background mod#&{, Verifier having a winning strategy correspondsgddeing
true in the mode®l. In Lorenzen’s writings, a formula is derivable in a formal sys-
tem if and only if the so-calleBroponenthas a winning strategy in the corresponding
game.

The controversy between the two players of a Boolean game could be said to be
over the truth value of a propositional formula where both players exercise control

135
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over disjoint sets propositional variables. Thus, in a Boolean game are distinguished a
Boolean form and an assignment of the decision variables to the players. Generally, the
manipulative powers of the players depend on both of these components. The Boolean
form determines which player wins for each strategy profile and control over a greater
number of propositional variables will usually help a player attain his goals.

The classical logical notions of validity and satisfiability are to be reencountered in
the extreme cases where either the Boolean form assigns victory to one player for all
strategy outcomes or where control over the propositional variables is concentrated in
just one player.

In the first of these extreme cases, the Boolean form correspond to a propositional
tautology or a contradiction. Hence, the validity of a propositional formula signifies
that the corresponding game cannot otherwise but result in a victory for Player 1.

The other extreme is if one of the players has control over all propositional vari-
ables. If Player 1 disposes ovell propositional variables, the problem she faces is
that of classical satisfiability. If she has a winning strategy in such a game, values for
the propositional variables that render the formula true can be found and the formula
is classically satisfiable. If she is unable to find such values for the propositional vari-
ables, the formula is unsatisfiable. Similarly, the validity of a propositional formula
signifies that in the corresponding Boolean game the player 1 has a winning strategy
even if she has control over no propositional variable whatsoever. Hence, in these two
extreme cases the game-theoretical concept of a winning strategy has logical counter-
parts in validity and satisfiability.

From a game-theoretical angle the interest of these extreme cases is only limited. If
the Boolean form is tautology or a contradiction, the game hardly need to be played, as
the outcome is fixed from the outset. On the other hand, if control over the propositional
variables is concentrated in one player, the game reduces to a one-person game without
any interaction to speak of.

Strategic and game-theoretical reasoning is rather about what a player can achieve
relative to the powers and preferences of the opponent. The correspondence between
Boolean forms and propositional formulas, as enunciated in the previous chapter, is one
way of bringing strategic themes under the heading of classical propositional logic. We
will argue that the issue of limited control over decision or propositional variables, as
exemplified by Boolean games, motivates the study a generalized notion of logical
consequence.

From this point of view, of special interest are the intermediate cases in which each
player has control over a proper subset of the variables and in which the Boolean form
corresponds to neither tautology nor contradiction. Then, however, the concept of a
player having a winning strategy is no longer guaranteed to have a well-known coun-
terpart in a traditional notion of classical logic. Taking seriously the game-theoretical
perspective on logic as provided by Boolean games, this is an unsatisfactory state of
affairs. In an effort filling up this lacuna between logical and game-theoretical con-
cepts, one could parameterize the concepts of validity and satisfiability by a subset of
propositional variables. Intuitively, a formulais valid relative to such a subset, if
there is a choice of values for the propositional variabled isuch thaty holds in all
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valuations that comply with this choice. Dually, a formyds said to be satisfiable
relative to a subsef if, for each assignment of values to the variableg\ithere is a
complementary choice of values for the variables outsidrich that the resulting val-
uation satisfiep. Hencerelative to{a}, the formulaaV b is both satisfiable and valid,

a < bis satisfiable but not valid aralA b is neither satisfiable nor valid. Analogously,
the concepts ofA-refutability and A-unsatisfiability are introduced. In this manner,
the idea of partial control over propositional variables is accounted for. We find that
the classical notions of satisfiability, refutability and validity are all borderline cases
of bothrelativized validity and relativized satisfiability. For the intermediate, non-
borderline, cases, they correspond to the game-theoretical concepts of a player having
a winning strategy or a winning response in a Boolean gafng, Player 1 turns out

to have a winning strategy in a Boolean gafger) if and only if the formula corre-
sponding withg is valid with respect to the set of propositional variables thassigns

to Player 1. Player O has a winning strategydnn) if and only if the corresponding
formula is unsatisfiable relative to the set of propositional variablassigns to him.

In the theory of two-person games of pure conflict the concegét#rminacylays
a central role. A game is said to be determined if one of the players has a winning strat-
egy. One of the first game-theoretical results, due to Zermelo (1913), proved the deter-
minacy of two-person games of perfect information. In the previous chapter, we argued
that Boolean games are not determined in the above sense and had better be understood
as games of imperfect information. Hence, the question which Boolean games are de-
termined is not settled trivially by Zermelo’s theorem. Via the correspondence between
Boolean forms and propositional formulas, determinacy of Boolean games also has an
immediate logical counterpart. Fak a subset of propositional variables assigned to
player 1 by the control assignment functienwe say a formula is A-determinedf
and only if the Boolean gamg,,, 7) is determined.

Boolean forms correspond to formulas and in the remarks above (relativized) va-
lidity and satisfiability were likewise thought of as merely applying to formulas. The
central idea of distributed control over the variables of a propositional language can,
however, be extrapolated so as to apply to properties of theories as well. In particular,
logical consequence can also be relativized to a subset of propositional variables.

Rather than a binary relation between theories, relativized logical consequence is
introduced as a ternary relation obtaining between two theories and a subset of propo-
sitional variables. Classical logical consequence is a borderline case: it coincides with
the generalized notion if made relative to the empty set. Alternatively, the set of propo-
sitional variables could be seen agarameter Viewed thus, the relativizing of logical
consequence isfamily of consequence relatiofsyhich can be ordered as a complete
lattice. Classical consequence is then a limiting ceize,the bottom of the lattice.

The relativized concept of logical consequence is given a semantical definition in
terms of valuations and subsets of propositional variables. Two propositional theo-
ries I" and© thus connected relative to a subset of propositional variatilesll be

1Recall that we toolkany relation between the theories of a propositional language as a consequence
relation.
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denoted byl" F 5 ©. The demand for sound and complete formal characterizations of
this relativized consequence relation now pushes to the fore.

The issue of completeness, however, may be approached from two conceptually
different angles. On the one hand one may emphasize the consequence relation each
subset of propositional variables defines. The question is then, given a fixed subset of
propositional variableg\, between which pairs of theories the consequence relation
parameterized byA holds. This issue is analogous to the classical problem of formal
systems for propositional logic. As a matter of fact, any sound and complete formal
systems for classical propositional logic may also be deployed as a calculus in which
the desired results can be obtainedf.,, (Proposition 6.3.5, below). In Section 6.4 a
Gentzen-style system for relativized consequence is presented.

On the other hand, one may focus on the subsets of propositional variables relative
to which a particular theory follows from another. The problem is then to produce, for
any given pair of theories' and®, the subsets of propositional variabldsor which
it is the case thaf” £, ©.

The relevance of the latter system for Boolean games is that it provides a general-
ized answer to the question which are the minimal sets of decision variables over which
one should have control in order to be able to win a Boolean gamethe minimal
sets of decision variables that furnishes a player with a winning strategy. Moreover,
the system also specifies the winning strategy itéelf, not only does it give a set of
decision variables control over which suffices to win the game, but it also produces
actual values for those variables that win the game.

6.2 Relativized Validity and Satisfiability

A statement as to the classical validity of a formula makes a universal claim on the
set of valuations: a formula is valid if and only if it is forced a@fl valuations. In a
similar vein, the existential quantifier implicit in statements claiming the satisfiability
of a formula likewise ranges over all valuations.

Ifit were someone’s aim to construct a valuation that forces a particular a formula, it
may suffice to be able to set the values of only some propositional variables, leaving the
values of the other variables to the whims of Providence or even to the vindictiveness
of an antagonist. One may need control over even fewer propositional variables, if
in a similar situation one can make one’s choice for the values dependent on those of
one’s adversary. In either case, no control over any variables at all is required if the
formula in question is valid. By contrast, control over all variables may be needed if it
is merely satisfiable in the classical sense. Of course, similar remarks are in order if it
is someone’s ambition to falsify a formula rather than to satisfy it. Again, his success in
achieving his objective may depend on the set of propositional variables he has control
over.

These considerations suggest a refinement of the classical quadripartite classifica-
tion of formulas in terms of their being valid, refutable, satisfiable and unsatisfiable.
These logical properties of formulas can be made dependent on a set of propositional
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variables.
pis A-valid iff forsomesec Sforalls € S: s~ s implies s I ¢,
p is A-unsatisfiableiff for somese Sforalls € S: s~ S implies S ¥ .
As dual notions we then obtain:
v is A-satisfiableiff forall se S forsomes € S:s~, s and s IF ¢,

@ is A-refutable iff forall se€ S forsomes € S: s~ s and s ¥ .

If one has control over no variables whatsoever, then one is entirely at the mercy of
whethery is valid or not. On the other hand, with total control over the propositional
variables one can validate any formula provided that it be satisfiable. Similar remarks
apply to the concept of refutability and unsatisfiability. The following proposition re-
capitulates these observations.

Proposition 6.2.1 Let be a formula of some propositional languag@\L. Then:
piso-valid iff ¢ is A-satisfiable iffy is classically valid
p is o-unsatisfiable iff ¢ is A-refutable iff ¢ is classically unsatisfiable
v is p-satisfiable iff ¢ is A-valid iff ¢ is classically satisfiable
p is o-refutable iff ¢ is A-unsatisfiable iffy is classically refutable
Proof: Immediately from the fact that is the identity relation aney, the universal

relation on 2, the set of valuations fdr(A). %

The definitions of the relativized notions of validity and unsatisfiability of a formula
evince a strong resemblance with the definitions of a player having a winning strategy
in a Boolean game. This impression is vindicated in the following proposition.

Proposition 6.2.2 Lety be a formula in a propositional languagdA) and letw be
a partition of A, withr; the set of propositional variables assigned to play@nd m
those to playef. Then:

pismi-valid iff Playerl has a winning strategy ifg,, ),
@ is mo-unsatisfiable iff Played has a winning strategy ig,,, 7).
Proof: Almost immediately from the fact thety] = "g,, ', Definition 6.3.1, the

definition of a player having a winning strategsf.( page 120) and that of a player
having a winning responsef(, page 121) in a Boolean game. -

As an immediate consequence of this proposition and the fact at most one player
can have a winning strategy in a Boolean game, the following implications also hold.

pis A-valid implies ¢ is A-satisfiable,
@ is A-unsatisfiable impliesp is A-refutable
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Takinga < b ora < —bfor ¢ and{a} for A, moreover, provides a suitable
counterexample against the inverse claims.

So, a formula isA-valid if and only if in the corresponding Boolean form player 1
has a winning strategy if assigned control ovkr Similarly, a formula isA-unsat-
isfiable if player 0 has a winning strategy in the corresponding game, provided he
decide over the values of the variables/in This makes that the concept of a Boolean
game being determined can also be expressed in logical terms. A Boolearigyare
is determined if one of the players has a winning strategy, if the corresponding
formula ¢yq is eitherm-valid or me-unsatisfiable. It seems reasonable to extend the
application of the concept of determinacy to formulas. Thus defing ®formula of
some propositional languag€A):

¢ is A-determinediff ¢ is eitherA-valid or A-unsatisfiable

It follows that a formulap is A determined if and only if its being\-satisfiable implies
its beingA-valid and, equally, if and only if its being\-refutable implies its being)-
unsatisfiable. A formula is called\-indeterminateif it is not A-determined. This
then is a logical concept that is immediately inspired by the game-theoretical light
that Boolean games shed on propositional logic and one of which the investigation is
appropriate, if this perspective is taken seriously.

In the limiting cases in whicki is either the whole set of propositional variables
or empty, all formulas are determined. Because of Proposition 6.2.1, however, this is
merely giving expression to the bland propositional facts that a formula is either valid
or refutable, or that a formula is either satisfiable or unsatisfiable. For the intermediate
cases, however, the set of formulas of a propositional language will never be exhausted
by the set of determined formulas.

Proposition 6.2.3 Let L(A) be a classical propositional language and lat C A.
Then:

the set ofA-indeterminate formulas is non-empty ifb C A C A

Proof: The left-to-right direction is immediate by Proposition 6.2.1; merely consider
the contrapositive. For the opposite direction, we may assume there to be propositional
variablesa andb in A such thata € A andb ¢ A. Then, consider.g, a < b, which

is neitherA-valid nor A-unsatisfiable and hencé-indeterminate. .

Thus for each non-empty proper subgedf propositional variables, we have as arche-
typical examples of indeterminate formulas— b anda < —b, provided thaa € A
andb ¢ A.

6.3 Relativized Logical Consequence

The relativized concepts of validity and satisfiability of Section 6.2 can be seen as
appropriate notions of validity and satisfiability for a common relativized notion of
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consequence. Classical consequence is defined as a relation between thaodés
which, informally, holds whenever at least one formulgimolds whenever all of the
formulas inI” do. Formally, classical consequence was introduce as follows:

I =CPCoiffforall se S:if sl-~, forally e I, then si- 1, for somed € O.
This definition can also be given the more succinct formulation suggested on page 46:
I'ECPCo iff  [I'] C (O).

We propose to make classical consequence dependent on a subset of propositional vari-
ables, writingl” E © if the theory© follows from the theoryl™ with respect to the

set of propositional variabled. Intuitively, I" F 4 © holds if it is possible to assign
values to the propositional variablesdhsuch that any valuation complying with this
assignment forces at least one formulacinvhenever it forces all formulas if' as

well. Formally we have the following definition:

Definition 6.3.1 (Relativized consequencé&or I and © theories in a propositional
languagd.(A), define:

I'Ep©
iff
3s,Vs suchthas~5 S: Vy e I': §I-~ implies 39 € O: & I 9.

Each subsef\ of propositional variables iA determines a proper logit» defined as
Ap=q {(I.6): I'FA0O}.

As an immediate consequence of this definition, a fornguia A-valid if and only if
0 Fa @ andy is A-unsatisfiable if and only ib Fa . Similarly, ¢ is A-satisfiable if
and only ifo ¥4 @ andy is A-refutable if and only ifs A .

Despite its rather tortuous formulation, relativized consequence can more intu-
itively be understood as lacalized generalization of classical consequence. Rather
than requiring[I"] to be a subset of @), per se the relativized notion merely de-
mands that this inclusion holds in one of a distinguished set of subsets of valuations.
The relevant subsets of valuations fox are given by the partition ,. Recall thatr 5
is the partition of the set of valuations induced by the equivalence relationiz,, the
equivalence relation that holds between all valuations that agree on their values for the
variables inA (cf., page 40). A theory" entails another theor§ relative to a subset
of propositional variableg\ if there is some block ofr , within which the inclusion
of [I'] in {©) holds. The following is an equivalent characterization of relativized
consequencecf, Figure 6.1).

I'Epr© |iff forsomeXema: [ITNXC(O)NX

In the extreme case that is empty,r » is the trivial partition containing the whole set
of valuations 2 itself as the only block. Hence, the classical consequence relation can
readily be seen to coincide with thk,.
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L] \
el |/

Figure 6.1. Logical space partitioned bya. Here,I" Ao ©, because in each of the blocKs
within the area demarcated by the thick lifég N X C (©) N X.

Fact6.3.2 Let " and© be propositional theories in a propositional languageAl-
Then:
r'eoe iff I'k, 6.

Proof: As for Proposition 6.2.1, merely observe thats the identity relation anel,
the universal relation on2 =

If Ais a subset of\’, the partitiont 5/ refinesw . As a consequence, relativized
consequence is upward monotonic in the set of propositional variables, in the sense that
A C A impliesAa C Aar. Also, since it is still the case th§l"] shrinks and{I")
grows with I" becoming larger, relativized propositional consequence is monotonic.
The following proposition recapitulates this observation.

Proposition 6.3.3 LetI’, I, ©® and® be theories in [A) such thatl” C " and® C
©’. Let furtherA’ and A’ be subsets of A such that C A’. Then:

I'FA 6 implies I"Fa ©.

Proof: Straightforward. Assumé& =, ©@. Then, XN [I'] € XN (O}, for some
X € ma. Consider thiX. Since,A C A’, by Fact 2.2.6, als@ o < ma. Hence there
is someX’ € ma with X' C X. Consequently als¥’ N [I'] € X' N (©). Because
I' C I"and® C @ also[O'] C [I'] and{(©) C (O©'). We may conclude that
X' NI €X' 'n{e") and thereford” F A, O'. -

Relativized consequence can alternatively be construedf@sity {Aa} -, Of
consequence relations, indexed by subsets of propositional variables. Define the or-
dering < on {Ax} o4 by set-inclusionj.e, such that for all subsetd and A" of
propositional variables:

We then obtain the following fact.
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Fact 6.3.4 Let L(A) a propositional language with\, A” C A. Then:
Ap < Ap iff AC AL

Proof: The right-to-left direction is immediate by Proposition 6.3.3. For the opposite
direction assumel ¢ A’. Then, there exists songec A such thae ¢ A’. We then
findthato Fa a,i.e, (9,8) € Aa butp A aie, (0,8) ¢ Aar. -

As an immediate corollary, ther(,{AA}AezA,g) is a complete lattice — even a
Boolean algebra — with classical consequence as bottom element. The greatest lower
bound and the least upper bound of afséh, };, are given by, respectivelylmiEI A
andAy,_ o, ie,

/\ AA' = Aniel Ay \/ AA' = AUia Ai

i€l iel

Observe, however, that join and meet are not in general given by union and intersection,
respectively.l.e, it is not generally the case thdty A A4 equalsA, N A 4. or that
Aa V Ap coincides withA, U A /. For a counterexample consider latandb be
distinct propositional variables. Then,=(5; aV bas well as» =, aVv b. However,
@ ¥4 aV b, although clearly{a} N {b} = 0.

Each block in a partitiomr 5, whereA is a subset of propositional variables, can be
characterized by a theory consisting of literals o&eflhis makes that each statement
of the formI" E, O correspond to a statemeft =°PC © in classical propositional
logic.

Proposition 6.3.5 Let I" and © be theories of a propositional languagéA) and
let A C A. Then:

I'Ep O iff forsomed’ CA: Tu(A-A)YEOUA.

Proof: For the left-to-right direction assumé F, ©@. Then there is a valuatios
such that for all valuations’ with s ~, ¢, either for somey € I', s ¥ ~ or for
somed € 6,5 IF 9. Consider this valuatios and defineA’ =4 A —s. Then,
A— A" = Ans. Now consider an arbitrary valuatia and assume, for gductio
ad absurdunthat boths* € [I"U (A — A’)] ands* ¢ (©U A’). Observe thas* |+ d
foralld e A— A, ands* ¥ d, foralld € A’. Hence,s ~ s* and by the initial
assumptions* ¥ ~, for somey € I, ors* I ¢, for somed € @. This, however, is at
variance with the assumption that bathe [I" U (A — A’)] ands* ¢ (@ U A").

For the opposite direction, suppose there be saieC A such thatl” U
(A — A" E ©OUA'. Consider the valuatiosi* defined bys*™ =4 A — A’. Now con-
sider an arbitrary valuatios such thas** ~, . Then,s I d, foralld e A — A’,
ands W d, for alld € A’. Sitill, by the initial assumption, eithes' ¥ ¢, for
somep € 'UA— A, ors Ik ¢, for somep € © U A’. In view of what must
hold in s for the propositional variables irh — A" and those ind’, this ¢ should be
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sought amond™” and®, i.e,, eithers' ¥ v for somey € " or s I ¢ for somed € 6.
We may conclude that £, 6. =

In virtue of Proposition 6.3.5 many of the formal properties of classical propositional
consequence are inherited by each of the relativized consequence relations. Thus we
have the following corollaries.

Corollary 6.3.6 LetI"and© be theories ang and+) be formulas in a propositional
language I(A). Also letA be a subset of A. Then:

I'u{etEa© iff T'EaOU{—¢}
Iru{-ptEa© iff I'ExrOU{p}
Fu{p, v} EAO iff TU{pAY}EAO
a0 U{p, v} iff TEAOU{pVy}

Proof: Almost immediately from Proposition 6.3.5. Here, we only give the proof of
the first. Consider the following equivalences:

I'u{ptFa®
iff prop. 6.35 forsomeA’ C A: I'U{p}uA-A'FOUA
iff cpc forsomedA’ CA: TUA - A" EFOU{—¢p} Ul
iffprop.635 I'Fa OU{—¢}.
The other cases run along analogous lines. o
Corollary 6.3.7 Let L(A) be a propositional language containingand as for-

mulas sucHy¢'] C [¢] and[¢] C [¢'] Let further A be any subset of A. Then for
theoriesI” and©:

IF'u{e}EaO©U{y} implies TU{p'} EAOU{Y'}.

Proof: Immediately from Proposition 6.3.5. -

In a much similar fashion it can be argued that both of the following:
I'u{e vy} Ea O implies 'U{p} Fa ©@andl"U{Y} Ea O,
I'EaOU{pAy} implies I'Ea OU{p} andl'Fa O U{y}.

The converses of these latter two claims do not in general hold. Assume for instance
that bothI' FAo © U {p} andI” Eo © U {4 }. Then for some blockX andY of the
partitionm 4, we have thak N [I] € XN{@U{p}) andYN[I'] CYN{OU{y}).
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There is, however, no guarantee that the blolndY are identical or, indeed, that,
for any blockZ in 7, itis the case that botBN[I'] C ZN{OU{p} ) andZN[I] C
ZN (e uU{y}). Itis easy to find a direct counterexample. Observe that béth,, a
ando Fg, —a. Neverthelessp ¥, a A —a. Using much the same example, the
cutrule can also seen not to hold in general. Again, Both,, 0 ando Fa a, but

(%] ﬁ{a} a.

6.4 Formal Systems for Relativized Logical Consequence

The conclusion of the previous chapter held out the prospect of the resolution of three
issues relating to Boolean games. The first of these concerns the sets of decision vari-
ables control over which suffices for a player to have a winning strategy in a particular
Boolean game. The second issue concerns the Boolean games a player can win given
control over a particular set of decision variables.

Proposition 6.2.2 on page 139 establishes the correspondence between a player
having a winning strategy in a particular Boolean game and a formula being valid or
unsatisfiable with respect to a subset of propositional variables. This makes that the
issues mentioned above can be approached from a logical angle. The two issue can
also more generally be formulated in terms of relativized consequeizepor fixed
theoriesI” and ©, relative to which subsetsl of propositional variables does the
entailmentl” F» © hold good? andgiven a subset\ of propositional variables, for
which theoriesl” and © is it the case thatl” =, ©? This section deals, in reverse
order, with these two problems.

Sequent Calculus for Relativized Consequence

With for each subsef\ of propositional variables the proper logic, being semanti-
cally fixed, the question for which theoridsand@® it is the case that” k5 ©, has
already been answered trivially. This leaves, however, the matter of a sound and com-
plete syntactical characterization of the proper logics. This issue we take up in
this subsection, proposing for each lodgig a sound and complete sequent calculus —
denoted by GPG — which is very similar to the classical system GRS, (page 52).

The axioms and rules for GRCare those of GPCc{., page 52, above) with, in
addition, the following two axiom schemas:

(Ly) d=e¢ and (Ry) e=d,

whered is assumed to be id. Table 6.4 summarizes the system GRC
For each subset of propositional variabléshe system GPg inherits from GPC
the left rule for disjunction\(, ), the right rule for conjunctionr) as well ascut This
may seem odd as in the previous section we argued that the semantical counterpart
of cut does not in general hold and thatU {¢} FA © andI" U {¢} Fa © does
not generally entail” U {¢ V¢} Ea ©. Neither dol’ Fo O U {¢} andI’ Fa
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Axioms:
0)L=e¢ De=T (2Ja=a (Lg)d=e (Ry)e=d
Provided that dc A in (Lgq) and (Ry).
Logical Rules:
X=T, ¢ Xo=T
L X —mp=T R Y=T, -p
Yoo, =T Y=T, ¢ X=T,
AL S oAO=ST AR S=T,0 A
Yopo=T Yop=T X=T, 0,0
Vi S oV =T VR ST, 0V
Structural Rules:
X,oo,p=>T =T, 0,0
conty : Y. o=T contrg : YT,
Yoo, P=T 2=>T,0,0,7
PEIML: % g0, P=>T PR ST 90,7
hinr - X=T Rife - X=T
thing : 7E,<p:>T thing : 7E:>T,(p
X=T, ¢ Xopo=T
cut: SN

Table 6.4. The System GP@&. In each derivation for each € A at most one of the ax-

ioms (Lq) and(Ry) may be used.
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OuU{y}imply I' EA O U {p Av}. We find that a slight modification of the notion of
a derivation in GPG keeps in check possible ill-effects @f , Ag andcut.

A derivationof a sequent’ =, A T" in GPC,4 is defined as usuatf, page 51,
above), be it that for eacti in A at most one of the axiomd4) and (Ry) may be
employed. The intuition behind the axiorfls;) and(Ry) are that player 1 — who has
control over all propositional variables it — can set its value odl to either one or
zero. This is precisely what it means to control a propositional variable. It is, however,
impossible to set the value df to both one and zero, at the same time. This is reflected
in the restriction that only one of the axiorflsy) and(Ry) may be employed in each
derivation in GPG. It can now also be understood why the presence, ofAg and
cut does not jeopardize the soundness of GPO'he antecedents of these rules —
viz, T U{p} Fa ©@andI' U {¢} Fa O, Fao O U{p} andI'U Fo O U {¢}
andI’ Eao © U {p}andI" U {¢} Ea © — may be valid and hence also derivable in
GPCa. However, in the derivation of on of the members of any such pair an axiom
(Lg) may (will) occur for somed € A whereas(Ry) occurs in the derivation of the
other member. Then, these derivations cannot be combined so as to obtain a derivation
of the consequent of the rule.

In order to prove the soundness and completeness ofGH respect tal 4 we
first introduce some notation and obtain an auxiliary result.

For A and A’ disjoint subsets of propositional variabled; A’-consequencks the
relationkF s such that for all theorie§' and©:

T'Ean O ff AUTEPCOUA.

Now consider the sequent system GPE as the classical sequent system GPC aug-
mented with the axioméLy) for eachd in A as well as the axiom@Ry) for eachd

in A’. A derivation in GPG, 4 is defined as it was for GPC on page 51i-e-, with-

out the unusual restriction on the application of the axiding and (Ry). We write
IS efor ' -P%.4r o,

The system GPE 4/ is sound with respect tal-A’-consequence. With respect to
the rules also in GPC this is obvious. For the soundness of the two additional axiom
schemas, merely observe that classicallyu {a} FCP¢ A and A’ E°PC {b} U A,
if a € Aandb € A’. Therefore, by definition, alsfa} Fa o @ ando Fa A b. We
now have the following lemma.

Lemma6.4.1 LetI" and© be theories in a propositional languag€A). Let fur-
ther A and A’ be disjoint subsets of A. Then:

Aurrtfcoua it e e.

Sketch of proof:  First assumed’ U I F6P€ © U A. Without loss of generality we
may assumei, I', © and A’ to be finite. Observe that each derivation in GPC is also
a derivation in GPG . Hence, A’ UT" F§°%, © U A. For anyE U {d} € A and
any B’ U{d'} C &', we have{d} U E' U T F¥S, 6 UE aswellast’ U I" -5,
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© U E U {d'}. Both these claims hold in virtue of the axiorfls;) and(Ry ). Since,
GPCa, 4’ containscutwe can show by a simple inductive argument, here omitted, that
alsol" 575, ©.

For the opposite direction, assumie-S"S, ©. Then there is a derivatio@ in
GPCa 4+ witnessing this fact. Replacing i all axiomse = a anda= ¢ by a=-a
yields a derivationz* in GPC. An easy inductive argument to the lengthgf, here
omitted, reveals tha?* witnessesA’ U I" FCPCO U A. 8

The ground has now been cleared for the following soundness and completeness result.

Theorem 6.4.2 (Soundness and Completenes&81C,) Let " and© be theories in
a propositional language (A) and letA C A. Then,GPG, is sound and complete
with respect tal 4, i.e.:

I'HeP% 9 iff I'Ea 6.

Proof: For soundness, assume tiiat-C"© © and letZ be a derivation witnessing
this fact. Let furtherA? be the set of propositional variablésuch that the axiorfL)
occurs inZ. Similarly, let A7 contain precisely those propositional variabtesuch
that the axiom(Ry) is employed inz. By definition of a derivation in GRCboth AZ
and A7 are subsets of\. Moreover, by definition, for no propositional variatlehe
derivation 2 invokes both (Lq) and (Ry). ConsequentlyA? and A7 are disjoint.

It follows that 7 is a also derivation in GPG» 4o witnessingl” '_Z%C,A? 6. By

Lemma 6.4.1 thenA? U I" FCP€ © U AZ, and by completeness of GPC with respect
to CPC (Fact 2.3.12), alsa?Y U I' ESP¢ © U AZ. In virtue of Proposition 6.3.5
and A7 and AY being disjoint,I” Fazuaz ©. Then by monotonicity of relativized
consequence (Proposition 6.3.3), at§l andA{ both being subsets af, eventually,
I'EA0B.

For completeness, assumie= 5 ©. By Proposition 6.3.5, there exists somé C
A such thatdA — A’ U T ECPC © U A. Hence,A — A’ UT FC°PC © U A, because
of completeness of GPC. By Lemma 6.4.1 al36-37%,_,, ©. Now observe that —
with A" and A — A’ being disjoint subsets al — each derivation in GRS a_ - is
also a derivation in GPC Consequently]” -6P& @, which concludes the proof.

Minimal Propositional Bases

In the previous sections of this chapter the emphasis has been on the question which
theory follows from another theory relative to some given subset of propositional vari-
ables. Here, the emphasis will be shifted to the question relative which subsets of
propositional variables a given theory follows from another. Because of the mono-
tonicity of relativized consequence, this issue can naturally be rephrased as which are
the minimal subsets of propositional variables required to guarantee one theory fol-
low from another. Such concerns are reasonable in contexts in which the variables
are thought of as economic commodities, the acquisition of which might be expensive.
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Moreover, having procured the necessary resources — possibly at great cost — little
has been gained if one does not know how to deploy them.

A statement of the forni” E o © imparts the existence of a choice for the propo-
sitional variables inA that guarantees either one of the formulag/irto be false,
or, otherwise, at least one of the formulas@nto be true. Yet, it is left entirely
uncommented how this choice should be made. Similarly, the previous section was
devoted to formally characterizing those formulas that Argalid, A-unsatisfiable
and A-determined. Game-theoretically, this could be interpreted as a singling out of
Boolean games in which the player with control ov&has a winning strategy or in
which at least one of the players has a winning strategy. In the definition of a player
havinga winning strategydf., page 120) the strategy that is actually winning is quan-
tified away. Still, from the perspective of one of the players of a Boolean game, one
might be more interested in the actual strategies that win a game than in the abstract
existence of one. One could imagine a player getting a bit cranky at being told that
there is a winning strategy for him, without being told what it looks fike.

These considerations are the informal background to the remaining part of this
section. Here we will be concerned with an inductive definition that more generally
associates each pair of theories with a sqtaifs of subsets of propositional variables.
Any such pair(A, A’) in the set for the pair of propositional theorigs, ©), is such
that in all valuations that falsify all variables i, verify all those inA’ either one of
the formulas inl" is false or one of the formulas i is true,i.e,, if it is classicallythe
case thatdf., Proposition 6.3.5):

A'UuTrE Aue.
Adopting the notation of the previous section, what we are after is, for each pair of

theories” ando, the set{ (A, A") : I'E ar OF.
As an auxiliary notion define, far and® theories in a propositional languag@?):

;0] =« |J[Tu (| W1

yel' veo

Through writing out the definitions in full, we find for each valuati®im 2* for L(A)
that:

se[I';0] iff forall v € I, slk~ implies for some} € O, sl 9.

2There is also another reason. LAt(T", ©) be a temporary notation for séA C A: I' 5 6}, and
with A (¢) andV () for A (0, {¢}) andV ({¢},0), respectively. We find that it is impossible to
provide A () with a neat compositional definition ip. Then A (a A —a) coincides with the emptyset
and as such is distinct from (a A a), which is given by{ A C A: a € A}. This difference, however,
cannot be accounted for on the basisaf(a), A (—a), V (a) andV (—a) alone, which all are identical
to {A CA: aec A}. A similar argument shows that no compositional definitiondf(I", ©), depend-
ing only on the setsA (¢) andV (¢), for ¢ € I" U ©. To appreciate this considef ({a} , {a}) and
A ({a},{—-a}); the former is given by’2whereas the latter coincides with the distifict C A: a € A}.
It should be remarked, however, that the method we employ is not compositional either.
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Now define[[I"; O] as thesmallestsubseX of 2 x 2%, such that:

{(3): se[I;0]} CX, and
if E“CFE and (AU(E—E'),AUE")eX, forall E' C E, then (A,4") € X.

We then have the following proposition.

Proposition 6.4.3 Let " and© be theories in a propositional languagéA) and A
and A’ disjoint subsets of A. Then:

(A, A e[;0] iff AU EPCouUA.

Proof:  For the right-to-left direction assumd&’ U I" E°P¢ © U A and consider an
arbitraryY C AU A’. Lets" =4 A’ UY. Observe that\’ C s* and thatA ands* are
disjoint. We first prove thas* € [I"; O].

Assume thas* I v, for all y € I'. With A’ C s* alsos* I+, forally € A" U T
By the initial assumption then alss I+ ) for somed¥ € © U A. Since,s" and A
are disjoint,s* I- ¥, for somed € ©. Hences® € [I';0] and,a fortiori, (s*,s*) €
Ir;ej.

Then, withY having been chosen arbitrarilf,A’ UY, A’ UY) € [I’; 0], for all
Y C AUA’. SinceY C AUA, alsoA C Y and that, withA and A’ disjoint,
A C A’. Hence, A C A’ NY and with some Boolean reasoning:

ATUY = ANY =,canqy (AUA)N(AUY) = AU (4'NY)
= (AuA)N(Au(A'NY)) = AU(ANANY) = AU((AUuA)-Y).

Accordingly, (AU ((AUA") —=Y),A"UY) € [I;0], forallY € AU A7, and so,
eventually(A, A") € [[I'; 9]).

The opposite direction assuniél, A’) € [[I';©]. We prove by induction on
(A, A') thatthen alsa)’ U I" ECPCO U A.

So, first assuméA, A’) = (3, s), for some valuatiors € [I'; ©] and consider an
arbitrary valuatiort such that I ~, forally € A’ Us. In caset = s, we are done
immediately by definition. So assurhbe distinct froms. Still, t I- ~, forally € sU T
and, hences C t. With t distinct froms there should be somee € s such thata < t.
Thereforet I+ 19, for somey € © Us. With t having been chosen arbitrarily, we may
conclude thas U I" E€P€ O U's. Hence A’ U T ECPCO U A.

For the inductive step, assume tiiat, A’) € [[I"; ©] in virtue of the existence of
a subsetr of Asuch thatlAU(E - E'),A’"UE") € [I';0], forall E' C E. By
the induction hypothesis, alst/ U E' UT' E°PCOU AU (E — E'), forall E' C E.
Fact 2.3.11 on page 51, above, then yields) I' E¢PC O U A. .
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6.5 Conclusion

The framework of Boolean games evoke a number of logical quesi#the corre-
spondence between Boolean forms and propositional formulas. These considerations
gave rise a generalization of classical consequence to a notion of consequence rela-
tivized by a subset of propositional variables. This subset of propositional variables
was considered to be in the control of one player; the values of the remainder of the
propositional variables were left to the whims of an opponent with antagonistic pref-
erences. Thus the notion of distributed control over propositional variables has been
central to our approach.

So far, control over the propositional variables has been thought of as being di-
vided over two players. In the next part, we will consider the logical consequences of
distributing control over multiple players. This will require further modifications of
the logical framework. Moreover, it becomes natural to employ in the logical analysis
game-theoretical solution concepts better suited for dealing with multi-player environ-
ments than that of a winning strategy.
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Chapter 7

Winning Consequence

7.1 Introduction

Logical consequence is traditionally explained in terms of truth. We introduced classi-
cal consequence as a relation between theories. Intuitively, a thetolows classi-

cally from another theory’ if and only if the truth of all of the formulas i’ implies

the truth of at least one of the formulaséh Each theoryl” is associated the set of
extensions of the formulas it contains. This set of extensions is denot€d By and
formally defined a§[v] : ~ € I'}, where[y] denotes the set of valuations in whigh
holds, for eachy. In terms of the sets of extensions classical propositional consequence
a sound and complete semantics is obtained by defining:

re®Co it (\{ll: ver} c J{Wwl: veo}.

What this characterization comes down to is thatfoand©, two sets of valuations
are singled out— by taking the intersection and unio& 6f") andé&’ (©), respectively
— and subsequently compared with respect to set inclusion.

This part concerns a type of consequence relation that can likewise be character-
ized as set inclusion between sets of valuations associated with the respective theories.
These consequence relations, however, differ from the classical account in that the
sets of valuations associated with the theories are essentially selected on the basis of a
game-theoretical definition. The underlying idea is that, by distributing control over the
propositional variables among a number of players, logical space assumes the structure
of the frame of a strategic game, with the valuations as strategy profiles. We then argue
that theories and formulas can be seen as providing an additional preferential structure,
enabling us to use game-theoretical solution concepts to select sets of valuations. For
different distributions of control and different theories these sets can be compared. The
role of the solution concepts is thus analogous to that of union and intersection in the
classical semantics.

In the informal interpretation that accompanies classical propositional logic, the

155
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variables are thought of as conveying information about the state the world is in. A
valuation for the language could then be seen as a kind of oracle — used here in the
informal sense of the word — yielding the values of the propositional variables for
some possible state of affairs. As oracles befits, it is quite beside the point how they
are possible.

Here, as in the previous part on Boolean games, we assume a different perspective.
The world can very well be thought of as something we can change and manipulate.
What is true of a certain situation then depends on the actions and decisions of the
individuals that live and act in it. The relative manipulative powers of the individuals,
however, may widely diverge. Some may be able to change the world in certain ways,
others in other. These considerations give rise to the idea of propositional variables as
binary decision variables controlled by individuals. A valuation is thus construed as
resulting from particular choices individuals may make with respect to their decision
variables, rather than as a record of some possible unalterable state of affairs. Assum-
ing, moreover, that individuals in a social context do not usually operate in isolation, the
decisions they make in this respect can be thought of as the result of an interactive pro-
cess. Our point of departure is that this notiorcoftrol over propositional variables
can be made subject to logical analysis and that the employment of game-theoretical
techniques in this comes naturally. Since there is nothing in the notion of control over
propositional variables that requires its distribution to be restricted to one or two play-
ers, our logical analyses need not be restricted to the two-person case. Eventually they
well comprise the general case in which control over the propositional variables may
be distributed over any countable number of players.

This way of viewing propositional variables as controllable by individuals has its
precursors in the field of Artificial Intelligence. A good example is Boutilier’s distinc-
tion between controllable and uncontrollable propositicsfs Boutilier (1994) and
also Cholvy and Garion (2001)). Also in recent studies in distributed constraint sat-
isfaction problems (Yokoo, Durfee, Ishida, and Kuwabara (1998), Walsh, Yokoo, Hi-
rayama, and Wellman (2001)) the set of propositional variables is partitioned and the
control over the values of the variables in each block is assigned to an agent. Their
quest is for appropriate algorithms and protocols for groups of agents who jointly at-
tempt to satisfy a propositional formula by choosing suitable values for the variables.
If there is only one agent with control over all, these problems reduce to classical con-
straint satisfaction problems. This could be taken as an indication that in a sense the
notion of control is not entirely foreign to classical logic.

By contrast, our concern is with the definition and investigation of consequence
relations defined semantically by means of game-theoretical solution concepts. In our
analyses we make the idealizing assumption that each variable is under the control
of precisely one individual. If need be, an additional individuale-g, Nature or
Providence— could be introduced, assigning values to variables that are normally
thought to be beyond any individual’'s control. The different choices an individual
can make with respect to the variables in her control then coincide with the strategies
of some strategic game. A strategy profile then, collecting particular choices of the
individuals, determines the values of all propositional variables and as such can be
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identified with the valuations of the respective propositional language.

A set of strategy profiles alone, however, does not define a game by itself. In order
to conceive of the valuations not as mere the strategy profiles, but rather as the strategy
profilesof a specific strategic gamalso the preferences over the possible outcomes of
the players should be specified. Formulas and theories provide this additional structure
on logical space. The role of formulas and theories is thus analogous to the one they
have in the classical semantics for classical propositional logic.

In a classical setting, the set of valuations constitute the logical space; it exhausts
the possible ways in which the world can be fully described by means of a proposi-
tional language. Formulas and theories single out particular possible states of affairs,
intuitively, by putting constraints on the possible ways the world looks like. Semanti-
cally, a formula demarcates those possible states of affairs in which that formula holds
from those in which it does not.

In this part, however, we consider the valuations as the possible outcomes of games
in which agents have control over the propositional variables. In this context, formu-
las and theories constrain tigame-theoreticapossibilities. Formulas and theories
fix the preferences of the players over the possible outcomes and game-theoretical
solution concepts are then applied to single out the valuations the outcomes that are
game-theoretically likely, interesting or otherwise distinguished for particular social
purposes. Pursuing this line of thought, we will eventually come to interpret theo-
ries and formulas semantically as relations over the valuations, rather than as sets of
valuations.

In Boolean games, like in other game-theoretical approaches to logic, these ideas
have already been present, be it perhaps in a rudimentary fashion. The interests of
the two players are captured by the truth values a formula may take. The truth value
of a formula, however, is no longer thought of as something that is somehow given
independently; it is dependent on the decisions the players make. In a similar fashion,
theories can be employed to define the players’ prefereriegs.given a theory one
could assume the one player to vie for its satisfaction, whereas the other rather saw
at least one, or perhaps even all, of them false. There are, however, numerous ways
in which theories can be used to define the preferences of the players. In the next
chapter, we define a player’s preferences on the basis of the relative logical strength of
the formulas making up a theory.

In each Boolean game the players’ preferences were assumed to be antagonistic.
This made that a single formula sufficed to define the preferendestioplayersyviz.,
the preferences of a verifier and those of a falsifier of that formula. In the interests
of greater generality, we will come to lift the restriction that the players’ preferences
are necessarily related by a structural principle suck.gs,antagonism. The players’
preferences are then specified by a theory for each individual player separately.

Whatever choice is made with respect to how the preferences of the players are
extracted from theories or formulas, for each propositional language, any such choice
defines a class of strategic games. Which strategies a player at his disposal has in such
a game is determined by the propositional variables he controls. His preferences are
fixed by formulas (or theories) of the language. The strategy profiles of any game in any
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such class are identified with the valuations of the respective propositional language.
In this manner the valuations provide the basis on which different games in the same
class can be compared. Moreover, given a suitable game-theoretical solution concept
for a particular class of such games, the valuations are divided into those that comply
with the solution concept and those that do not. As such, a solution concept singles out
a set of valuations in much the same way as intersections and unions of extensions of
formulas do in a Tarskian semantics for classical propositional logic. The question that
pushes itself to the fore is then which formulas hold in the valuations thus singled out
by a solution concept and which do not.

An issue that now suggests itself concerns the formulas that hold in the valuations
that result if one of the players plays a winning strategy in a particular game. Suppose
that a player has control over the propositional variabknd overa only. Assume
further that all she wishes is the formwda/ b to be true. Then, setting the value af
to 1 is a winning strategy for her. Settirggto 0 is not, even though doing so does not
entirely eliminate her chances of a favorable outcome. If her opponent happens to set
bto 1, she still wins, but then without playing a winning strategy herself. Accordingly,
in all strategy profiles in which she does play a winning strategy, obviaislyholds,
but also the stronger formuéa At this point it be emphasized that this issue is different
from the one that was addressed in the previous section on Boolean games. There the
focus was not so much on the properties of winning strategies in a game as on the mere
existence of a winning strategy for one of the players in Boolean games.

More in general, one could not so much be interested in the formulas that hold in the
valuations singled out by a particular solution concept in a game of a particular class,
as in how these valuations relate to those singled out by the same solution concept in
anothergame in the same class. The strategy profiles a solution concept singles out for
any two games in the same class, are drawn fronsdéimeeset of valuationsi.e., they
constitute subsets of a common and more comprehensive set of strategy profiles. This
makes that the set of strategy profiles a particular solution concept selects in one game
can be compared with the set of strategy profiles thus distinguished by the same (or
another, for that matter) solution concept in another game in a direct way. In particular,
they can be compared with respect to set-theoretical properties, like set inclusion or
disjointness.

For example, one could investigate whether the Nash equilibria of one game are
disjoint from those of another. Figure 7.1 gives a graphical representation of three
games for the propositional language contaird@gdb as only propositional variables.

In these games each of two players is assigned control over one of the variables. Let
the preferences of a player be given by a formula that player aims to satisfy. Thus, for

the player with control ovea these are given by, — (aA b) and— (b — a), for the

game on the left, the game in the middle and the game on the right, respectively. For
the other player the preferences are then given by, respectvelp, —a anda — b.

The Nash equilibria of the game on the left and those of the game on the right are then
disjoint. Relative to the assignment of the propositional variables to the players, this

set-theoretical relation translates to a logical one between the pair of foranalad

a A b, on the one hand, and the paifa A b) and—a, on the other. Similarly, the
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{a} {a} {a}

Figure 7.1. Three two-player games, in which the row plajgowhas control over the propo-
sitional variablea and the column playeZolumnoverb. In the leftmost gam&ows preferences
are given by the formula andColumris by a A b. In the game in the middIRowprefers valua-
tions in which— (a A b) holds to those in which that is not the case &wumnmerely wishes
ato be false. In the rightmost gamiepws andColumris preferences are given by, respectively,
- (b — a) anda — b. The Nash equilibria are in boldface.

Nash equilibria of game on the right are included in those of the middle game and says
something different about the pairs of formutagb — a) anda — b, and— (a A b)
and—a.

Having assumed the games of each class being defined in a uniform fashion, each
particular way of comparing the valuations complying with a particular solution con-
cept can be elevated to a relation between pairs consisting a (collection of) theories or
formulas and a distribution of the propositional variables. We propose to think of such
relations between theories and formulas defined by game-theoretical solution concepts
as consequence relations. In this manner the mutual dependencies between games with
respect to a particular solution concept are studied through logic. This facilitates a
purely formal treatment of the relations that hold between the games in question. The
commensurability of the games such an analysis requires is guaranteed by the the fact
that all games defined for one language share the same set of strategy priafjlése
valuations of the respective propositional language.

The two fundamental ideas in the above — distributing control of the propositional
variables over volitional agents and the interpretation of theories and formulas as pref-
erence relations — do not presuppose the logical analyses to be restricted to two-person
games. Neither do they presuppose that the preferences of the players are of the binary
kind that merely distinguishes wins from losses. These considerations have repercus-
sions for the notion of logical consequence. We introduced classical consequence as
a relation between theories. If distributed control over the variables is taken seriously,
however, the relevant relations are of a more complicated nature. For one thing, the
distribution of the variables itself should be accounted for. If, moreover, one does not
assume the individual preferences of the players to be structurally interdependent, one
may come to consider relations of a syntactically more complex kind.

In the next chapter, we will argue that theories can be employed to define a wide
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range of preference relations over the valuations. As such our proposal relates to a
considerably more comprehensive class of games than that of two-player games of
complete antagonism, which allow for only two different outcomes. The investigations
of Chapter 9 below concern a relation between families of theories which is defined
on the basis of these games and the solution conceptragb@mum equilibrium We

will argue that this notion is in an important sense a conservative extension of classical
propositional logic: classical consequence reduces to the game-theoretical relation if
the control over the propositional variables is concentrated in one agent.

For the remainder of this chapter we adopt a more conventional course and inves-
tigate a logical consequence relation indexed by two subsets of propositional variables
defined on basis of the notion ofwéinning strategy Moreover, the focus will as yet
be on one player only. The purpose of this exercise is to illustrate formally the general
idea of a consequence relation defined in terms of a game-theoretical solution concept.
The formal elaboration of this exercise relies on an extensive use of the machinery pro-
vided byrough setsas introduced in Section 2.2, as it will be in the formal analysis of
game-theoretical consequerioeChapter 9, below. The players’ preferences, however,
are still thought of as distinguishing victories and defeats only.

7.2 Consequence Based on Winning Strategies

Giving content to the underlying ideas put forward in the introduction, we consider
in this section a type of game in which a player is assigned control over a subset of
propositional variables and in which the preferences of that player are defined by a
theory of the respective language. The player is thought of as preferring valuations
which satisfy the theory to those that do not, and being indifferent otherwise. Formu-
lated thus, this gives only partial specification of a game, rather than a fully-fledged
description of a game, as the preferences of the other players nor their manipulative
powers are not specified. However, even so, the game-theoretical notion of the player
having awinning strategys applicable to these partial game-like structures. Moreover,
without loss of generality a complete game description may be assumed by stipulating,
e.g, the existence of an antagonistic player who has control over all of the remaining
propositional variables.

We introduce a family of consequence relatiars, a family of relations between
theories, in terms of these games and the concept of a winning strategy. This family we
callwinning consequenamnd its formal properties are investigated in the remainder of
this chapter. Eventually, a Gentzen-style system is presented and proved to be sound
and complete with respect to winning consequence.

Suppose a player has control over a subset of propositional varidbée®l aims
at verifying a particular theory'. Then either there is a clever choice for the variables
in A that renders the theorl true no matter what values are chosen for the proposi-
tional variables outside\, or there is no such choice. In the former case, the player in
the possession ofwinning strategyand in the latter she is not. Observe that whether
a strategy for the player is winning or not, does not depend on how the propositional
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variables outsidel obtain their values. These may be determinedPbyvidence by
malicious or benevolent demons, by other players, or by whatever.

Formally, we define for each theofyand each subset of propositional variabiges
a gameG(I, A) with two players 1 and 0, of which the former has control over the
propositional variables im\ and the latter over the remaining ones. The strategies of
player 1 are given by2 and those of Player 0, likewise, by*2 The strategy profiles of
any such game can thus be identified with the valuations for the landu{Ageas any
strategy of Player 1 and any strategy of Player O taken together determine the values
of all propositional variables. The winning conditions for any gaB{é’, A) grant
Player 1 a win in all valuationsin the extension of, i.e, if s € [I"]. In any other
valuation Player O wins. A valuatiosis saidto be a winning strategy for Player
in G(I', A) if for all valuationss' that coincide withs on the values of all variables,
player 1 wins the gameg., in a gameG(I, A):

sis a winning strategy for player 1 iff foraf € S s~ s impliess’ € [I7].

The solution concept of a winning strategy singles out a set of valuations in on the
basis of a theory and a subset of propositional variables, in an analogous fashion as set-
theoretical intersection did for each theory in the model-theoretical semantics for CPC.
In the classical setting the focus was on the valuatiorj$ infor each theory”. Here,
the selected valuations are the winning strategies of a ga(fieA) for each theory”
and each subset of propositional variabl®sA obvious question to ask is then which
formulas hold in the winning strategies of a ga@®@", A).

In the introduction to this chapter we saw tl@atvould hold in all valuations that
result if Player 1 has control over the variakléself and if I" is taken to bela v b}.

In the previous sentence the phrase ‘hold in all valuations that ..., however, hints at
a rudiment from the classical framework. Taking the game-theoretical point of view
seriously, one could wish for a firm grip on how the valuations containing a winning
strategy for Player 1 in one gar®I", A) relate to those containing a winning strategy
for Player 1 in another gan®(©, A').

There are different ways in which this can be achieved. An obvious choice would
be to compare the strategy profiles containing winning strategies for Player 1 in dif-
ferent games with respect to set-inclusion. This, however, would give rise to a rather
inconvenient and lopsided formalism. For any pair of theofiend® and subsets of
propositional variableg\ and A’, we propose to compare the strategy profiles contain-
ing a winning strategy for Player 1 in the gar@él", A) with those strategy profiles
that donotcontain a winning strategy for Player 1 in the ga@(e{ﬂﬂ HVENCIN A’).
However unnatural and contrived this definition may strike the reader at first sight, it
succeeds in comparing a player's winning strategies in various games within a neat
and symmetric formal framework. Moreover, it gives rise to a natural interpretation in
terms of rough setsc{, Proposition 7.3.1 and Corollary 7.3.3, below). This charac-
terization of the notion of winning consequence manifests its formal resemblance with
the semantical definition of classical consequence, of which it happens to be a gener-
alization ¢f., Corollaries 7.4.2 and 7.4.1, below). Accordingly, the relatiowinining
consequences defined as follows:
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Definition 7.2.1 (Winning consequencdjor L(A) a propositional language define the
relation =" such that for all theorieg” and© and all subsets of propositional vari-
ablesA andA’:

e o 0
iff
player 1's winning strategies i8(1", A) andG( {0 : 9 € ©}, A’) are disjoint.

Each pair of subsetsl and A’ of propositional variables i#\ determines a proper
logic A ,, defined asty ,, =ar {(I,0) : I'EX 5 O}.

For an example, consider once more Figure 7.1. Let in all games Player 1 be as-
signed control ovea. Then, the matrix on the left represe@s${a} , {a}) and the mid-
dle one the gam& ({— (aA b)},{a}). Observe that i5 ({a}, {a}) playing{a} is a
winning strategy for Player 1, whereass a winning strategy i ({— (aA b)}, {a}).
Consequently, the sets of valuations containing a winning strategy for Player 1 in both
games are disjoint and therefcmel=‘{"’a}7{a} a A b. Now assume that Player 1 is as-
signed control oveb. Then, the righthand matrix depidgs({— (b — a)}, {b}). Then,
the sets of valuations containing a winning strategy for Player@ (ifia} , {a}) and
G({—-(b— a)},{b}) overlap. Both sets contain the valuatifey b}, in which botha
andb are set to “true”. Hencea,}f‘{";} p b—a

Some informal understanding 0 befinition 7.2.1 may also by gained by consider-
ing some extreme cases as to the choice of the paramétarsl A’. The definition
is chosen in such a way that the classical relation of consequence coincidefﬁ,ﬁfﬂjth
whereA denotes the full set of propositional variables of the language in quesfipn (
Corollary 7.4.1, below). Hence, winning consequence could in a loose sense be said to
be a conservative extension of the classical concept of consequence. The special cases
in which @ is a singleton and\’ is taken to beA, moreover, have quite natural read-
ings. It so happens thdt Y , {¢} holds whenevep is true in all strategy profiles
of G(I', A) in which Player l7plays a winning strategy.

7.3 Winning Consequence and Rough Sets

Winning consequence is defined in game-theoretical terms. An alternative character-
ization is possibly using rough set approximations of the extensions of formulas and
theories. In this fashion, the firm set-theoretical grip propositional logic is regained that
made the Tarskian account of classical logic so attractive. The formal development of
the theory of winning consequence relies on its rough-set characterization.

The set of strategy profiles of a gar@¢l’, A) in which Player 1 plays a winning
strategy coincides with the lower approximation of the extension wfith respect to
the equivalence relatiomn,.

Proposition 7.3.1 Let I" be a theory in ILA) and let A be a subset of A. Then
the set of valuations containing a winning strategy for Playén G(I', A) coincides
with apr , ([17).
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Figure 7.2. Logical space partitioned by, indicated by the continuous lines, and by,
indicated by the dotted lines. The circle on the left depj¢t} and the one on the right©o)).
The boxed area then demarcasgs , ([I']) and the dashed aregr ,, ({©)). Although obvi-
?usI);,g;;PC ©, we find thatl” £ , ©, becausepr , ([I']) C apr, ((©)) (cf. Proposi-
ion 7.3.2.

Proof: Immediate from the definitions of a valuation containing a winning strategy
for Player 1 inG(I, A) and that of the lower approximation of a set. Consider an
arbitrary valuatiors. Then,s contains a winning strategy for Player 1@{1", A) if an
only if for all valuationss' withs ~» s s' € [I'],i.e, ifand only ifs € apr  ([1]) .
This concludes the proof. o

This observation gives rise to the following characterization' &f ,, © as the inclu-
sion of the lower approximation ¢ff"] with respect tar 4 in the upper approximation
of (@) with respect tara/ (cf.. Figure 7.2).

Proposition 7.3.2 LetI" and®© be theories of [A) and letA and A’ be subsets of A.
Then:
reX o6 iff apr ([I') Capra((6)).

Proof:  Proposition 7.3.1 establishespr , ([I]) and apr , ([{-¢: ¥ € O6}]) as
the set of valuations that contain a winning strategy for Player G(if, A) and
inG({—v: ¥ € O}, A"), respectively. Observe thdt{— : ¥ € 6} | = Nyce [V]
and take notice of the following equalities:

@A/([[{_‘ﬁ: 1969}]]) = a_prA/(ﬂﬁe@m) =
ata (Myeo 1) = @PTa (Useo []) = apra ((O)).
This concludes the proof. -

Recall that in casé” is the empty theory{I'] = [o] = (N, [7] = 2* le, itis
notin general the case that" ,, ©, for all theoriesO and all subsets), A’ C A,
Because of the distribution @fpr over() and that ofapr over| J (cf., page 38, above),
as an immediate result of Proposition 7.3.2 we also have the following.
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Corollary 7.3.3 LetI" and®© be theories of [A) and letA and A’ be subsets of A.

Then:
ref 0 ifft () apr, (Iv]) € | apra ([9])-

yel veo

Proof: Immediate by Proposition 7.3.1 and the distributionapf over () and that
of apr over|( J (cf., page 38. o

7.4 Formal Development of Winning Consequence

The remainder of this chapter is devoted to the development of a Gentzen-style formal
system for winning consequence in a propositional langu&édé. The system sum-
marized in Table 7.5 on page 173 below, is proved sound and complete with respect
to winning consequence. First, however, we review some of the formal properties of
winning consequence, which form the basis of the soundness-direction of the above
claim.

Properties of Winning Consequence

Proposition 7.3.2 and Corollary 7.3.3, above, have a number of other useful corollaries,
the proofs of which almost invariably depend on the interaction between the laws of the
theory of rough sets and the classical notion of the extension of a propositional formula.
First and foremost, the claim that the relation of classical consequence coincides with
A‘gﬂ A If A and A’ both equalA, as it was tentatively put forward in the previous
section.

Corollary 7.4.1 LetI” and®© be theories of [A). Then:

FENA© ff TENp) ae) © iff TEFCO.

Proof: Consider the following equivalences:
r ’:X\{A S iffprop. 732 apr,([1']) € apra([©])
iffractzse  apry . (I1']) S aPlae) ([6])
iffprop. 732 I ?XV(F)’A(@) O.
Similarly, also the following equivalences hold:
r ':X\{A C iffprop. 732 apr,([1']) € apra((O))

iff Fact2.3.6 [ € (O)
iff I'ECPCo.
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This concludes the proof. o

Conversely, also each validity statement involving winning consequence of the
form I" W ,, © has its counterpart in the classical notion of consequence. This
phenomenon is due to the fact that in genenal , ([¢]) is expressible in classical
propositional logic ¢f., page 55).

Corollary 7.4.2 LetI" and®© be theories in [A) and letA and A’ be subsets of A.
Then:
FeX 0 it {[Alv: ye}EFC{(A)9: veo].

Proof: Consider the following equivalences:

I'EW 0 0 iffcoonzas () apr, < |J apra(on)
yel’ Ve
iff page 55 m [141~] < U [(a)9]
yer 9eO
iff {14]~: VEF})ZCPC{<A/)19: Ve o}
This concludes the proof. -

Recall thafA] ¢ and(A) ¢ abbreviate the formula,A\UEEZ o (v) and \/UEEZ o (),
respectively €f., page 57). Hence, we also have:

ref o it |J{om): ce sz} B {o(): o2y}
yel YeO

In virtue of Corollary 7.4.2, some important structural properties of classical conse-
quence are inherited by winning consequence. Here we merely mention in this respect
compactnesand consistency— i.e., in general,I” I:A A © implies there bdinite
I'" C I'and®’ C © such thatl” £ ,, ©' and, respectively EX A 0.

Another property of classical consequence that also holds more in general for win-
ning consequence is that oferlap anda fortiori, also that ofreflexivityanddiago-
nality.

Proposition 7.4.3 (Overlap) Let!” and® be theories of [A) such thatl” and© are
not disjoint, i.e.,[' N © # ¢. Let furtherA and A’ be subsets of A. Then:

reX o 0.

Proof: SinceI” and © are not disjoint, there is some formulain I" N ©; con-
sider thisp. Then observe that in genempr , ([¢]) < [¢] < apra ([¢]). Hence,
apr, ([1']) napr, ([¢]) < apru ((O)) Uapra ([¢]). Corollary 7.3.3 clinches the
proof. -

The concept of consequence as based on winning strategies is further upward mono-
tonic in the sense that if EYY ,, © then alsal™” '} ,, ©' for any theoried” and©’
that includel” and®, respecuvely
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Corollary 7.4.4 (Monotonicity) Letl’, I/, © and ©' be theories of [A) such that
' C I"and® C @'. Let furtherA and A’ be subsets of A. Then:

reX o © implies I"EX 5 O

Proof: Straightforward. Becaus&€ C I” and® C ©', we have[l'] C [[]

and (©) < (€’). Hence alsoapr,([I"]) < apr,([I']) andapr,. ((©)) <

apr,, ((@')). Now the claim follows immediately from Proposition 7.3.2. Alterna-
tively, the claim can be considered an immediate consequence of Corollary 7.4.2 and
monotonicity of CPC. -

By contrast,AVAV, A/ 1S downwardmonotonic inA and A’. Informally, this is because

the more propositional variables Player 1 has control over, the more likely she is to
have a winning strategy available and the less likely it is that the set of strategy profiles
containing one of her winning strategies to be included in another set.

Corollary 7.4.5 LetA” and A"’ be subsets of A such thal” C AandA” C A,
Then:
e o © implies I'EX, ,0 6.

apr,.({©)), are a special instances of Fact 2.2.4 on page 39, above. The proof is
then immediate by Proposition 7.3.2. a

Proof: Observe thatapr,,([I']) < apr,([I]) and thatapr, ((©)) C

Although upward monotonicity imd and A’ fails for winning consequence in general,
the validity of a statement’ Yy ,, © is not affected ifA and A’ are extended with
propositional variables that do not occurirand®, respectively. Hence, the following
proposition.

Proposition 7.4.6 LetI  and® be theories of [A) and letA and A’ be subsets of A
such thatd” C A, A C A’. Let furtherA” NA(I") = ANA(I") and A NA(O) =
A'NA(O). Then:

IFEX) Am © iff TEX A 6.

Proof: Consider the following equivalences:
IEX 4 0 iffprop. 731 apr, ([I'1) Capra ((6))
iffraci2as apr, (pr,  (I71)) C @PTL (3PTae)((6)) )
ffbrop. 228 ATy (I7]) € BPTarace) ((6))
iff () Ay (L] € BPTA a0 ((O))
iff prop. 2.2.8 @pr ,,, (LWA(F)([[F]])) C apram (a_F’rA(@)(<<@>>))
iff Fact236  @Pr,, ([17]) € @pram ((€))

iff Prop. 7.3.1 I ’:\gl”,A’” 6.
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The equation marked with the asterisk holds, of course, in virtue of the assumptions
thatA” NA(I") = ANA(') and thatd”’ NA(O) = A’ NA(O). 4

On basis of the Corollaries 7.4.4 and 7.4.5, we find that the proper |ﬂ®%, for
all subsets of propositional variablesand 4A’, constitute a complete lattice ordered
by the relation< as defined on logics in general on page 45.

Fact 7.4.7 LetL(A) a propositional language and let"’ denote the subset of proper
logics defined byf A% ,, : A, A’ C A}. Then,(A4",< ) is a complete lattice.

Proof: It suffices for a proof to show that for all subsets A’, A” and A" of A:
AN o € AR p iff A C AandA” C A

Corollary 7.4.5 already takes care of the right-to-left direction. The opposite di-
rection is proved by contraposition. Without loss of generality we may assume
there to be some propositional variatdein A with a € A” buta ¢ A. Ob-
serve thata_prA([[a]]) =Fact2.3.10 a_m@([[a]]) =Fact2.2.10 9. By Corollary 7.3.3, then

akQ ., ©. However,a ¥, .., . To appreciate this last claim first observe that
apr , ([a]) =Fact2.3.1oa_m{a}([[a]]) =Fact2.3.53Pl, ([a]) =ract2210[a]. Also, evidently
apr .. ({@)) = ©. Hence, we are done by Corollary 7.3.3. -

Corollary 7.4.1 establishes CPC as the bottom of the latic, < ). The topA,, ,
of this lattice is not the inconsistent logic. Rather, itis characterized by the consequence
relation that holds between any two theoriEsand © if and only if I" containing
tautologies only implies tha® contains at least one satisfiable formula. Rephrased to
some extent, this gives rise to the following fact.

Fact 7.4.8 LetI" and®© be theories in a propositional languagéA). Then:

rey,o iff [IT#2%or(0) +#o.

Proof: Consider the following implications:
[I] #2* or (©) #0 impliesg,z210 @@(HFH) =g or apr,((6)) =2*
implies apr ([1) C apr, ((6))
impliesp, 732 1" FY, ©.

For the opposite direction:

I'E), © impliespq, 75, apr ([I']) < apr,((6))
implies apr ([I]) #2* or apr,((6)) # 0
impliesgacip010 [I] # 2% or (6) # 0.
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This concludes the proof. 4

An important property of classical consequence that nevertheless fails to hold in
general for winning consequence is thataf For a simple counterexample, observe
that botha ’:X)\{{a} o andg I:‘(Q{{a} a. The former holds becauser ([a]) = . By con-
sistency of winning consequence, howewe#,f‘v’}f{a} ®. Here, the reader be reminded
that for the empty theory, it is the caseapr ([¢]) = apr (N 0) = apr (2*) = 2*
and tha@pr,,, ((0)) = apri,y (U 2) = apri, (0) = 0.

Some form of transitivity, however, still holds for winning consequence. For any
validity statement of the forni” H’A’)A, O, any formula inI" may be replaced by a
classically stronger one. Similarly, any formuladhmay be replaced by a classically
weaker one. As a special case, formulas that are logically equivalent in the classical
sense may be substituted for one another in Bondo.

Corollary 7.4.9 LetI" and®© be theories in [A) and letA and A’ be subsets of A.
Let furthery and« be formulas in ILA) such that]¢] C [+]. Then:

Iy ER o © implies IpEX A 6,
I=4 4 0.0 implies I'EX 4 6,4

Proof: Observe thatfy] C [¢] implies bothapr, ([¢]) < apr,([¢]) and
apru ([el) < apra([¢]). Then,apr, ([I]) N apr,([¢]) € apra ((©)) implies
apr, ([I']) napr,([¢]) < apra ((O)). Similarly, apr ,([I]) < apra ((©)) U
apr o ([«]) impliesapr , ([I']) € apr, ((©)) Uapra([¢]). The result then follows
almost immediately from Proposition 7.3.2 and Corollary 7.3.3. %

As to the interaction between the theories flankingite,,,-sign and A and &
we have the following proposition. It captures the informal idea that a player cannot
guarantee a propositional variable to hold if she fails to have control over it. Inspec-
tion of the proof will reveal that this holds in general for atigssically satisfiable
formulay containing no variables in the player’s control.

Proposition 7.4.10 Let A and A’ be subsets of propositional variables in A. Let
further a be a propositional variable in A such thattaA. Then both:

aF\ 0 and  oFX ,a

Proof: First observe thaf\(a) = {a}. This makes that under the conditions spec-
ified AN A(@) = 0. Also, [a] # ¢ and[a] # 2~ Hence,a_prA([[a]]) =Prop. 2.3.10
apr ([a]) =prop.2210 . Similarly, apry({{at)) = apra([al) =prop.2310
apr,([a]) =ract2.2.102" =

The next number of propositions reflect the behavior of winning consequence with
respect to the propositional connectives. These propositions are quite reminiscent of
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analogous ones holding for classical propositional logic. The latter cannot in general be
extrapolated as to hold for winning consequence as well, unless certain conditions be
observed. Yet, the first two of the following results are inherited without qualification.
The first establishes that for winning consequence from absurdity anything follows and
that anything entalils triviality. The second concerns the introduction of conjunction in
the antecedent and that of disjunction in the consequent. For the subsequent results for
the remaining cases and connectives, however, the classical rules need to be modified
to some extent, by imposing some constraints on their applicability.

Proposition 7.4.11 LetI" and© be theories in a propositional languag¢A) and A
and A’ subsets of A. Then:

I LEX,© and TEX,0O,T.

Proof: Obviously [L] = o and[T] = 2. Hence, both['U{Ll}] = ¢ and
(@ u{T}) = 2°. Now recall that for rough sets in general, batpr () = o
andapr(S) = S, whereSis the universedf., page 38, above) and we are done by
Proposition 7.3.2. -

The behavior ofA at the lefthand side and that of at the righthand side df" is
as in classical propositional logic. This holds in virtue of the laapr ((X) =

ﬂxex apr (X) andapr ( U X) = Uxex apr (X).

Proposition 7.4.12 Let I" and © be theories andr and ¢ formulas in L(A). Let
further A and A’ be subsets of A. Then:

Lo wEX A 6 iff DoAypEX 4 0,

Fh‘g’ﬁA,Q,w,w iff F’:\A/7A/@,(p\/1/).

Proof:  Straightforward by Proposition 7.3.2 aagr distributing overu andapr over
M. Observe the following equivalences:

F,%w ':\X,A’ e If'fProp 7.3.2 apr Iy {@71/}}]]) C TrA'(«@»)

(I
iff apr, ([1']) napr, ([«]) Napr, ([¢]) < apra ((©))
iff apr, ([1']) napr, ([el N[ ]])QfT ((e))
iff apr  ([I']) napr, ([ A¢]) < apra ((O))
iff apr, (["U{e A i) S apra ((O))
iffprop. 732 I, o A EX A O.
The other case goes by duality. -

However,I’, o EY 4, © andI’,¢) E ,, © do notin general imply’, o vy EX 4, ©.
Neither is it in general the case thﬁt):W A O,pandl’ I:A A O, 0imply I Y
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O, o N. Inview of Proposition 7.3.2, this corresponds to the failure of the inclusion
of apr(XVvY) in apr(X) U apr(Y) and that ofapr (X) U apr(Y) in apr(XNY) to
hold in general for rough sets. Nevertheless, Propositions 7.4.13 and 7.4.14 specify
special conditions under which one may introduce a disjunction in the antecedent and
conjunction in the consequent.

Proposition 7.4.13 LetI" and© be theories ang ande be formulas of [A). LetA
and A’ be subsets of A. Then:

T PVXUW),A/ © and I',v #VXUW),A/ © imply I'pVyER A O,
r ':VAV,A’UA(@) O,p and I’ ?VX,MA(W O,¢ imply I'EX \ 6,0 AV,
Proof: The proofs of both claims are analogous. Here we only give that of the former.
Assume bottT”, o F 5,y o © @NdIL Y FX ) 4 ©- Then both:
apr ., (IFD) N apr, , ([e]) S apra((e)), and
apr (0D Napr, (WD) S 3T ((6)).

Sincemauae) < ma as well astauay) < ma, by Proposition 2.2.4 on page 39,
both apr  ([I]) < a_prAuA(w([[F]]) andapr , ([I]) < a_prAuA(w)([[F}]). Because

obviously aIsm_prAuA(w([[@]]) = [¢] anda_prAuA(w)([[zﬁ]]) = [¢], both:
apr, (I N vl Capra ((©))  and apr ([IT) N [¢] < apra ((O)).

Therefore,apr , ([1']) N ([¢] U [¥]) € apra ((6)), i.e, apr, ([I']) N [p V] C
apr, ((©)). Sinceapr, (¢ v ¥]) € [¢ v ], alsoapr, ([1]) Nnapr, ([v vV ¢]) €
apr, ((©)) and we may conclude that o v ¢ EX 4, ©. 8

Proposition 7.4.14 LetI" and© be theories ang ands) be formulas in [(A) such
that A(p) and Alv) are disjoint. Then:

FoEX A0 and Iy EX 1 6 imply IoViyEX A 0,
IF'EX, A 0,0 and T'EX, , 0,9 imply I'EX, 1 0,0 A

Proof: It suffices to prove that under the conditions Specif@A(ﬂ@ vy]) C
apr, ([¢l) U apr,([¥]). By duality then alsoapr,([¢]) N apra([v]) <
apr, ([ A ¢]). Consider an arbitrary valuatiand assume for contraposition both
s ¢ apr,([»]) ands ¢ apr ,([]). Hence there are valuatiosSands” such that
s~ s ands ¢ [¢],ands~, " ands’ ¢ [¢]. Now define yet another valuatiah
such that for alb € A:

S(a) ifaeA(p)—A,
s'(a) =4 (S'(a) ifaeAW)— A,

s(a) otherwise
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Note thats* is well-defined in virtue ofA(¢) and A(v)) having been assumed to be
disjoint. It can easily be established tisat s,y s* ands” ~x(y) s*. Hences" ¢ [o]
ands* ¢ [¢]. Therefores* ¢ [¢] U[y] ands* ¢ [ V ¢]. Since, moreoves ~ 4 s,
we may conclude that¢ apr , ([¢ v ¢]). =

In classical propositional logic, formulas may be transposed to the other side of
the turnstile provided that they are appended to a negation syirdpl]", ¢ EPC€ O
implies I" ECP€ ©, —p. This holds on basis of the Boolean truism tan Y C Z
impliesX C ZUY. This principle, of course, also holds for rough sets and so we have in
particular thapr _(X) Napr (Y) C apr,,(Z) impliesapr (X) C apr...(Z) Uapr _(Y)
as well asapr_(X) C apr,.,(Z) U apr.(Y). If now 7 is finer thant’, i.e, if 7 < 7/,
thenapr_(Y) C apr,..(Y). As another consequence, it then also holds @t (X) C
apr,., (Z U 7). Itis this principle of rough set theory which the next proposition invokes
to account for the behavior of negation. The condittdp) N A" C A(p) N A enforces
that the partitions involved in the approximations are suitably related as to coarseness.

Proposition 7.4.15 Let A and A’ be subsets of A ang a formula in L(A) such
that Ap) N A" C A(p) N A. Thent

IpEX o © implies T'EX 4, 6,-,
e A 6,9 implies I,-~pEY, , 6.

Proof: Consider the following implications:

I ':VAV,A’ © impliespy, 73, a_rA([[Fﬂ) ﬂﬂ'd([[%’]]) Capry ((e))
implies apr, ([I']) € apra ((€)) L apr , ([¢])
implies apr,,([I']) < apra ((©)) Uapt, ([¢])
implies.. apr ,([I]) € apra/ ((0)) UaPTann,) ([¢])
implies . apr, ([1']) Capr, ((©)) UapTaqay) (&)
implies ., apr,([I']) < apra ((€)) uapta ([4])
implies e, 6,-e.

The implications indicated with«] are valid because in generaprg([¢]) =
aprg (a_pTA(g,)([[ga]])) = APTgna(y) ([]). The implication indicated with+) holds
in virtue of the assumption tha(¢) N A’ C A() N A and henc@pr s, ([¢]) €

aprana(y) ([]). The argument for the second claim runs along analogous lines.

1Beware of the order afA and A’!
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7.5 A Sequent System for Winning Consequence

The results of the previous section are the makings of a sound and complete formal
Gentzen-type system W for winning consequence.

Definition 7.5.1 (The SysteriV) LetL(A) be a propositional language. ForandT
finite sequences of formula &{A) and A and A’ finite subsets of, an expression of
the formX =4 4/ T is asequenbf W. The axioms and rules of W are given in Ta-
ble 7.5. If a sequent = s T is derivable in W, this is denoted by x =aaT.
For, possibly infinite, theorieE and® of L(A) and, possibly infinite, subsets of propo-
sitional variablesA and A’ we have:

ref 0 it BV 2= a0am)a0am T,

for X' is a sequence of formulas ii* and7" a sequence of formulas &* and X' and
T denoting the sets of formulas occurringlihandT’, respectively.

The soundness of W is established by a straightforward inductive argument.

Proposition 7.5.2 (Soundness o) LetI" and© be theories in [A) and A and A’
subsets of A. Then:
r'+% o © implies I'EY 5 O.

Proof: Observe that in virtue of the definition 6tV ©, Corollary 7.4.4 and Propo-
sition 7.4.6 and , it suffices to prove that in general:

Y 2 = anas)acay T implies X EX a5 voae T

We find that both the axiomg) and (1), as well(2) are sound in this respect be-
cause of the Propositions 7.4.10 and 7.4.11. The logical, structural and replace-
ment rules all preserve winning consequence. Propositions 7.4.12 through 7.4.15
prove the soundness of the left- and right introduction rules for the Boolean con-
nectives. The contraction and permutation rules are valid in virtue of winning con-
sequence being stated in terms of theorigs, unordered sets of formulas. Mono-
tonicity of winning consequencef(, Proposition 7.4.4) vindicate the rulésn_ and

thing. Corollary 7.4.5 grants the soundnessAfslim_ and A-slimg. Finally, the
substitution rules are sound in virtue of the Corollaries 7.3.3 and 2.4.7, the latter
stating the identity ofapr , ([» (a/L)] N [ (a/T)]) andapr ,([¢]) and that of

apr, ([ (a/L)] Uy (a/T)]) andapr,([¢]), if a ¢ A (cf. page 57). .

Inspection of the sequent system for W reveals that it contains obvious pendants for
the axioms and structural rules of G#?.(Table 2.4 on page 52), above. The restrictions
on the rules for the connectives are satisfied triviallAjfA’, A* and A** are all taken
to be identical toA.

Fact 7.5.3 LetI’ and®© be theories in [A). Then:
re"o iff rep,e.
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Axioms:

(0) L:>A’A/6 (1) €:>A,A’T (2) a=a . a

Logical Rules:

2:>A;A’ T7SD 27S0:>A’;AT
e 27 _‘@:A;A/T R EiA/;ATa @
Provided that Ap) N A C A(p) N A, in - and in—r.
A 27 @7¢:>A;A’ T Ve : 2:>A;A/ TMPJ/’
L XioNp=ana T R Y=2aa T, oV
E,Lp:>A*;A/T E,Q/J:>A**;A/T
Vit
) 27§0vw:>A;A/T
Y=aa T Y= T
AR :

Y=araT, 0 N

Provided that inv, and Ar either (i) A" = AU A(p) and A™ = AU A(v),

or (i) A* = A** = Aand Ap) NA) = 0.

Structural Rules:

contr - Yoo p=aa T contr Y=aa T o0
b 27@:>A;A’T R Z:>A;A’ va
27@7w7P:>A;A’T Z:>A;A’ T7§07¢7T
I : I :
pe rn_ 27¢7§07P:>A;A’T pe nk E?A;A’ T7¢7§07T
hi 2:>A;A’T hi 2:>A;A’T
thing : —27 §0:>A;A/ T thing : —2 :>A;A/ T, "
sl Y= augay;ar T sl Y=a a0 T
-Shim: -SIIMR:
m 2:>A;A’T MR E:>A;A/T

Substitution Rules:

Yiop@/L),p@/T)=aaT
Yoo=aaT

subst:

Y=aaT,0@/L),p@/T)
2:>A’,AT750

subsk:

Provided that a¢ A.

Table 7.5. The System W.
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Proof: For the left-to-right direction, assunie-P ©. Then there is a derivatio@

of a sequent = T" witnessing this fact. LetZ* be the sequence of sequents that
results if each sequent’ = 7" in Z is replaced by~ =5 s o) T. Some reflection
reveals thatz* is a derivation in W. In particular observe that the restrictions on the
rules—, —r, VL and Ar are complied with trivially, because we may assumdo

have the subformula property. The opposite direction, follows by soundness of W,
Corollary 7.4.2 and completeness of GP with respect to CPC. =

As we present it, the proof of the completeness of W with respect to winning con-
sequence parasitizes on the completeness of classical propositional logic with respect
to GP. Proposition 7.4.2 establishes that for each statemeht-sf ,, © there is a
corresponding statement in CPC. In virtue of GP’s completeness with respect to CPC,
it thus suffices for completeness of W with respect to winning consequence to show
that there is a denvatlon in W witnessidg -3 4, (9, for each derivation in GP wit-
nessind ), {0 (7) : o€ 5} F*° Uyeo {a : 0 € Y4 }. In demonstrating
that this is indeed the case, we invoke the foIIowing lemma.

Lemma 7.5.4 LetI' and® be theories of a propositional languagéA).

Iru{o(p): o€ Xz} R o © implies I'u{p} X 1 O,
It A 0U{o(p): o€ Xz} implies I'%X 1\ OU{p}.

Sketch of proof:  The proofs of both claims run along similar lines; here we only
give that of the former. The proof is by induction ¢\ N A(p)||, viz, the cardinality

of ANA(y). If [ANA(p)|| = 0, the case is trivial because thém () : 0 € X5} =
{¢}. For the induction step, l8tA N A(p)|| = n+ 1 and letA N A(p) be given by
{ao,...,an}. Assumel’ U {o (¢) : o€ L5} F} 1 6, then:

FW X = Anam),anam) T

for some sequences € (I'U{o(¢): o € Zx}) andT € O*. In virtue ofthin_

and the other structural rules, we may assume Hat X7 1)1, ..., P, Where
{1, i } = {a . o€ EA} and none ofy, ..., ¥ OCCUrs INXY.
Observe tha{o (¢) : o e Yxt={o(p)(an/L),0(p)(an/T): 0 € T5_ an}}

By 2" appllcatlons of the subst|tut|on ruﬂmbs{ — and a finite number of apphcatlons
of the structural rules — then:

W S, e = aracs), aoa) T

where {91,..., ¥} = {o(p) : 0 € Y5 51} Hence,'U{o(p) : o €
53 (ay ) T4, ©. By the induction hypothesis then eventuallyu {} - 6. -

We are now in a position to give the completeness proof for W with respect to winning
consequence.
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Theorem 7.5.5 (Completeness &F/) LetI” and® be theories in (A) and A and A’
subsets of A. Then:
Ir'eX o 0 implies T'HFY 4 O.

Proof: Assumel” EY ,, 6. In virtue of Corollary 7.4.2 and the subsequent remark,

then:
U {o(v): 025z} CPC U {o(¥): o€ X5}
yerl VeO

By completeness of GP, then:

U {o(7): 0€X5} |-GP U {o(¥): o€ Xz},

yel Ve

and by Fact 7.5.3 also:

U {o(7): 025z} }—X\{A U {o(9): o€ Xz}

yer veO

Let  be a derivation of a sequedt=-5(s) () 1" Witnessing this fact, for some se-
quencest andT'in (U, {0 (1) : 0 € ¥x}) and(Uyee {0 (9) : 0 € X5},
respectively. Employing the ruled-slim. and A-slimg, the derivationZ can be ex-
tended to a derivation of the sequents sqa(x), arnacr) T'- HENce:

U {o(v): 02z} I—\Q‘VA, U {o(¥): o€ Xz}

yer vee

Now let 2’ be a derivation of a a sequeit = sna(x),anar) T Witnessing
this fact, for some sequences and 7' in (U, {c(7) : o € ¥x})" and
(Ugeo {0 (¥) : o € E57})", respectively. In virtue of the weakening rutésn
and thing, we may assume tha¥ = | .. {o(y) : ¢ € Yz} andT =
Ugeo {0 (9) : o € X4}, for some finiteI” C I and©®’ C ©. Accordingly,
3 FX o T. By Lemma 7.5.4, thed” - ,, ©’. Hence, alsd” -Y ,, ©, which
concludes the proof. =

7.6 Conclusion

In this chapter we took the view that distributed control over the values of proposi-
tional variables is a notion worthy of logical analysis. We came to regard the valua-
tions of propositional languages as the strategy profiles of a strategic game. Thus a
game-theoretical perspective on logical space was acquired, giving rise to new issues
in propositional logic.

This chapter presentasiinning consequenc® illustrate how these ideas can be
elaborated formally in a relatively simple setting. From a game-theoretical point of
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view, moreover, the theory of winning consequence provides a formal framework in
which a particular type of game can be studied with respect to the winning strategies
they contain for one of the players. In short, every validity statement of the form
r I:"A"’A, © can be interpreted in terms of the winning strategies of one of the play-
ers has in the game3(I, A) andG(©, A’). Moreover, a semantic interpretation of
winning consequence is advanced, facilitating the formal development of the theory.

The notion of a winning strategy, however, takes into account precious little inter-
action between the players. Whether a particular strategy profile contains a winning
strategy for a player only depends on the winning conditions and the pafwtbat
player. To which extent the other player or players can achieve their goals is quite
irrelevant, in this respect.

In the next two chapters we continue the analysis of of distributed control over
the variables in propositional logic. In doing so, however, we will come to consider a
considerably more extensive class of games and a more sophisticated game-theoretical
solution concept than that of a winning strategy. The preferences of the players in the
games by means of which this analysis is performed define a finer-grained relation over
the valuations. Moreover, the solution concept involwad, maximum equilibrium,
is of a more social and interactive nature.

In order to achieve this greater generality, we will come to revise the way theories
determine the preferences of players. So far, outcomes have been divided between wins
and losses and the players have tacitly been assumed to prefer the former to the latter.
In the next chapter, we will argue how the notion of logical strength (in the classical
sense) can be employed to define partial preorders as the players’ preferences over the
outcomes of a game.

The development of the logical framework will be analogous to that of winning
consequence, yet the framework itself will be of a considerably wider scope because
the games involved constitute a more comprehensive class of strategic games.



Chapter 8

Relational Semantics

8.1 Introduction

In the previous chapters we made a case for the conception of propositional variables
as binary decision variables controlled by individuals. It then becomes natural to view
a valuation for a propositional language as the combined result of the choices the indi-
viduals make with respect to their variables, rather than as a state of the world somehow
given independently. If, moreover, the individuals are assumed to entertain individual
preferences over the outcomes, some of the strategy profiles become salient from a
social point of view. In particular, some can be distinguished from others by particu-
lar game-theoretical solution concepts, such as containing a winning strategy for one
of the players or being mmaximum equilibrium Taking this perspective commands a
predominantly game-theoretical view on the semantics of propositional logic.

In order to make plausible the view that valuations are the strategy profiles of some
strategic game, players, their strategies and preferences should be specified. The play-
ers and their strategies are given by a partitioning of the propositional variables. A
strategy for a player is then a choice for the values of the propositional variables as-
signed to her and the valuations can be thought about as strategy profiles. Thus, logical
space assumes the structure of a frame of a strategic gdumeage 27).

In the classical setting, theories could be thought of as imparting information about
the way the world is. On this conception, a theory demarcates the valuations that are
consistent with the information it conveys from those that are not. If, however, we think
about a logical possibility as a possible outcome of a decision making process, the clas-
sical image is less attractive. In interactive situations of which the outcome depends on
the decisions of individual agents, the most relevant information concerns what makes
the individuals decide in one way rather than in another. Thus, we come to view upon
theories as imparting information about the players’ preferercgshy reporting the
goals they aim to achieve. Instead of interpreting a theory as the intersection or the
union of the extensions of the formulas it contains, as in a traditional Tarskian setting,

177
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a theory will be thought of as determining a playgiteference relatiomver the valu-
ations. Conceiving of logical space as the frame of a strategic game, theories provide
the complementary relational structure required for a fully fledged strategic game. In
this manner, moreover, solution concepts become available to distinguish valuations on
game-theoretical grounds.

Many, if not most, game-theoretical approaches to logic — such as Hintikka’s
Game Theoretical Semantics, Lorenzen’s dialogue games and, in particular, the Boolean
games as introduced in Part Il of this thesis — concern two-player games in which
players are, moreover, thought of as complete antagonists. One player strives for ver-
ification of a formula, the other for its falsification. It has been argued in a more gen-
eral context that by imposing this restriction one passes by some of the most essential
and vitalizing aspects of the situations of conflicting interests, witness Schelling in his
Strategy of Conflict

But, in taking conflict for granted, and working with an image of participants who
try to “win”, a theory of strategy does not deny that there are common as well
as conflicting interests among the participants. In fact the richness of the subject
arises from the fact that [...] there isutual dependence as well as opposition
Pure conflict, in which the interests of two antagonists are completely opposed, is a
special case; it would arise in a war of complete extermination, otherwise not even
in war. For this reason, “winning” in a conflict does not have a strictly competitive
meaning; it is not winning relative to one’s adversary. It megeiging relative to

one’s own value syster..]. (Schelling (1960), p.4 (emphasis mine))

The antagonism in Boolean games — as well as in other game-theoretical analyses
of classical logic — is due to the two players taking up the contrary roles of verifier
and falsifier of one particular formula. Clearly, in a classical framework for a language
containing negation, the falsifier could equivalently be understood as the verifier of the
negation of the formula the verifier strives to bring about. Taking the game-theoretical
perspective on logic as primary, an obvious generalization resolving the antagonism
now suggests itself. Each player could be considered a verifier of a separate formula.
It is then only a small step to lift the restriction that the formula of the one player
be true whenever the one of the other is false. Rather, there is little need to assume
these formulas to be related by any structural property whatsoever. Emancipated thus,
both players acquire their own “value system”. Within this setting mutual dependence
can just as well be made sense of as antagonism, a pure coordination problem,
the extreme case of mutual dependence, arises if both players try to verify logically
equivalent formulas. Also mixed forms of mutual dependence and opposition can be
represented. Suppose that one player tries to verifg — b) and anothera A b.
Thenabeing true furthers the interests of both players, but they are in conflict as to the
truth-value of b.

However straightforward it may seem to lift the assumption of antagonism from
a game-theoretical perspective, this move has some significant logical repercussions.
With the preferences of the players being assumed to be independent of one another,
a single formula no longer suffices to define the preferences of all players simultane-
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ously. In the general case, for each player there may be need for a separate formula
capturing his preferences. Once this has been conceded, however, there seems little
point in limiting the number of players to two. One could distribute the propositional
variables over any (countable) number of players, and consider any of these players the
verifiers of separate formulas. Then, an assignment of the propositional variables over
the various players together with a formula for each player defines a game.

This setup could be taken a step further. A formula on its own defines an order over
the valuations of quite a rudimentary type. The player who is supposed to be its ver-
ifier may be thought of as preferring those valuations that satisfy the formula to those
that do not, and being indifferent otherwise. This makes that a player either wins or
loses, without the possibility of an intermediate outcome. However legitimate in itself,
this is slightly unsatisfactory from the perspective of the game-theorist. An essential
feature of social environments is that the eventual outcome depends on the choices of
all players taken together. Each player has control over only a limited number of the
relevant variables. It may very well depend on the choices of the other individuals,
whether an individual is in a position to bring about an outcome that she prefers most.
The achievement of the best possible outcome for a player may very well depend on the
other players choosing particular values for their variables. As one cannot in general
rely on one’s opponents to be lenient in this way, sometimes a player will have to settle
for a suboptimal outcome. A player’s strategy may be optimal with respect to particular
values for the other agents’ variables, but be inferior to what she can achieve relative
to other values for the other agents’ variables. Still, such a relatively (or locally) op-
timal but absolutely (globally) lesser outcome constitutes an important game-theoretic
datum. In this respect it be observed tha, the important solution concept of a
Nash equilibrium is characterized as the combination of best-response strategies of all
players, where a strategy is a best-response if it is the optimal cioiee a particular
choice of strategy by the other playeifs. social environments it is thus important to
know, not only the most preferred outcomes of an agent, but also her preferences over
the lesser preferred outcomes. In this chapter we will argue how theories together with
the notion of logical strength of their constituent formulas can be employed to deter-
mine such finer-grained preferences over the valuatiogs,strategy profiles. Thus a
more comprehensive class of games is brought within the scope of propositional logic.

This chapter leads up to a definition of the clasglistributed evaluation games
in Section 8.4. A distributed evaluation game is a strategic game specified by count-
able number of players, a function assigning propositional variables to the players —
defining their strategies and manipulative powers — and a function assigning theories
to players — defining their preferences over the valuations. In Section 8.5 an effort is
made to demarcate the precise scope of the class of distributed evaluation games. We
find that the class of distributed evaluation games for a propositional landwage
are those strategic games with the valuations as strategy profiles and for which each
player’s preference relation is the ‘limit’ of the finite approximations of a proto-order
(i.e., the empty relation or a reflexive and transitive relation) over the valuatins (
Theorem 8.5.15 on page 207).

Distributed evaluation games will form the semantical basis of the game-theoretical
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notion of consequence to be advanced and investigated in Chapter 9. This notion of
consequence integrates the two main ideas on which this part pivots. First, it encap-
sulates the notion of distributed control over the propositional variables. Secondly,
propositional theories are interpreted as reflexive and transitive relations over valua-
tions rather than as mere sets thereof. These may seem rash departures from the tradi-
tional canons of logic, if no heed is taken. Nevertheless, the game-theoretical notion of
consequence derives some of its respectability from the fact that classical consequence
happens to be a special instance.

First, however, we proposeralational semantic$or classical propositional con-
sequence, which is phrased in terms of particular relations formulas define over the
valuations rather than in terms of their extensions. From a classical point of view re-
lational semantics has little to offer over and above a Tarskian semantics, in terms of
extensions of formulas, as the latter is sound and complete with respect to classical
propositional logict Still, it constitutes a natural starting point for the development of
a game-theoretical concept of consequence.

The call for a richer structure on logical space has had many precursors in the field
of artificial intelligence and philosophical logic. Semantical treatments of non-standard
reasoning mechanisms often appeal to a richer ordinal structure on the models. Formal
analyses of default reasoning g, Veltman (1996)) and studies in non-monotonic con-
sequence relationsf( e.g, Shoham (1988), Kraus, Lehmann, and Magidor (1990) and
Makinson (1994)) come under this heading. In this context, also qualitative decision
theory €.g, Boutilier (1994)) and belief revisiore(g, Gardenfors (1988)) should be
mentioned. In each of these cases the models that are sonogtiavalwith respect to
these structures, play in one way or another a role in the definition of the key semanti-
cal concepts. Our proposal for a game-theoretical notion of consequence is in line with
these researches, be it that the structure imposed on logical space is that of a distributed
evaluation game and that the notion of optimality is understood in terms of compliance
with a game-theoretical solution concept.

8.2 Relational Semantics for Propositional Logic

A propositional logic is introduced as a pélr, -) whereL is a propositional language
over a countable set of propositional variables arigl a relation on theories @f. For
classical propositional logic(CPC); -°P¢ @ informally reads “if all formulas inl”
are true, then so are some@®f. This notion can be given a formal semantics in terms
of valuations. Assuming classical consequence being given independeritlytbyg
following soundness and completeness result is obtained:

r+ce it (Vi< Y M.

yel Y€

10Observe that on page 46 we defined soundness and completeness relative to an abstract relation between
theories. As such neither a deductive system nor a semantics is primary in the definition of a logic and the
notions of soundness and completeness apply to both.
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Also other fundamental logical notions — such as validity, satisfiability and re-
futability — can be couched in terms of extensions of formulas or theories. In this
manner, a formulg is said to be valid if its extension coincides with the set of all
valuations; otherwise is refutable.

The extension of a theord/ could be seen as semantically summarizing the infor-
mation contained id". Yet in doing so, much structure of the _ﬁty]] Y E F} may
be lost. In an attempt to retain more of the structure of the{ge} : ~ € I'} we
suggest an interpretation of a thedryas a relation over valuations, rather than a mere
set thereof. For a natural definition the conceptedditive logical strengths resorted
to.

The relative logical strength of two formulas can also be captured in terms of the
extensions of the formulas involved. Formally, a formuylas said to be at least as
strong as another formuta if any formula that follows fromy is also a consequence
of . In terms of sets of valuationg, is then at least as strong &sf and only if the
extension ofp is included in that ofy. This definition of relative logical strength can
straightforwardly be extrapolated as to hold between theories. A tlig@\said to be
logically at least as strong as another thebrif the consequences d@f are contained
in those of©. In this manner, relative logical strength induces a reflexive and transitive
relation,i.e., a preorder, on the subtheories of a theory.

For each theory”, this ordering in turn engenders an ordering over the valuations
as follows. Letls be the subtheory af containing exactly those formulas fromsat-
isfied bys. Then, I is easily recognized as the (unique) logically strongest subtheory
of I" satisfied bys. On this basis, we might define a valuat®to be at least as strong
as a valuatiors’ with respect ta” if and only if I's is logically at least as strong d% .

This ordering on the valuations is reflexive and transitive.

For an example, lef” be the theory{aV b, —a, —aA —b} and consider the val-
uations{a} and{b}. Then{aV b,—a} is the strongest subtheory &f the valua-
tion {b} satisfies. The valuatiofa}, on the other hand, satisfies no subtheory stronger
than{aV b}. BecausdaV b, —~a} is logically stronger thafa \ b}, the valuation{b}
is ranked higher with respect 0 than the valuatioda}. For a similar reason, the val-
uations{a} and ¢ are incomparable with respectfa Also consider Figure 8.1 for a
pictorial illustration of these considerations.

Tarskian semantics for classical propositional logic disregards much of this ordinal
structure a theory imposes on the valuations. This, of course, can be no censure of
Tarskian semantics as a semantics for classical propositional logic, as its very sound-
ness and completeness would belie this. However, recent semantical studies in non-
standard reasoning mechanisms had need for an ordinal structure on the set of valua-
tions. A good example is Veltman’s update semantics for default reasoning. Moreover,
classical logic treats all inconsistent theories on a par. In particular, anything follows
from an inconsistent theory. This distinguishes classical logic from paraconsistent log-
ics. The orders two inconsistent theories induce over the set of valuations, however,
may be very well be different. Let be a valuation that forces but nota ands’ a
valuation that forces both andb. Consider again the theoka \ b, —a, —a A —b}
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Figure 8.1. The extensions of three formulas ¢ andy in logical space. The ordering on

the valuations determined by the thedry, ¢, x} on the basis of relative logical strength is
indicated by the different shades of grey. The darker the area a valuation is in the higher that
valuation is in the ordering on valuations determined by the three formulas, on the understanding
that the valuations ifiv] — [¢] and those iffe’] — [¢] are incomparable. The valuations in the
darkest area satisfy all of, 1) andy and are ranked highest; those in the lighter areas satisfy no
so strong a subtheory §fp, ¢, x } and are consequently ranked lower.

along with the theory{a, —a}. Both theories are classically inconsistent. However,
with respect to the formes will be ranked higher thas'. Observe that any subthe-
ory of {aV b, ~a, -a A —b} satisfied bys will also be satisfied bg'. The valuatiors,
moreover, also satisfies the subthedayv b, —a} whereass' does not. However, with
respect to the inconsistent thed, —a}, the valuations ands’ are incomparable, the
former satisfying the subtheofy-a} but not{a} and the latte{a} but not{—a}

The relation on the valuations based on the notion of logical strength as it was in-
troduced above, however, has a drawback: it does not allow for a neat compositional
definition. The malefactor is here the fact both theories containing merely contradic-
tions and theories solely made up of tautologies induce the universal relation over the
valuations.

In the next subsection we propose a relational semantics for classical propositional
logic, in which formulas and theories are associated velitionsover the valuations.

The relation a theory is associated with is very similar to the relation its subtheories
define on the valuations as based on their relative logical strength. It differs however
from the latter in that it does allow for a compositional definition. The merits of this
relational semantics are that it provides a natural point of departure for the formal anal-
ysis of game-theoretical consequence in Chapter 9. It provides a natural interpretation
of theories if they are taken to reflect the interests, goals and preferences of individuals.

Set Induced Relations

In the next subsection a relational semantics for classical propositional logic is ad-
vanced. The set-theoretic basis for the semantics is provided by relations on a uni-
verseSthat sets and sets of sets give rise to. With each sixbsta setSwe associate

a relationpg(X), which relates all elements outsideo any other element @as well
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as all elements iX to one another. Intuitively, the objectsinare considered ‘higher
than those outsidX. Formally we define for each subsétof S and all elementx
andx of S

(X, X) € po(X) iff xe X implies X € X

On this basis we also define for each Xeif subsets oS a relationp, (X) onS

po(X) =ar [ po(X).

XeX

As can easily be checked, for ea¥hC S, the relationpo(X) is a total pre-ordei,e., it

is reflexive, transitive and connected. For eactXset subsets 08, the relatiorp, (X)

is apartial pre-order ovesS, i.e, it is both reflexive and transitive but not necessarily
connected. As auxiliary notions we hawg(X) and p, (X), defined as, respectively,
po(X) and(ycx Ao (X).

Of particular interest are the relations on the valuations induced by the extensions
of formulas of a propositional language. Letbe a formula and™ a theory. We de-
notepo([¢]) by po(¢) and(, < po(v) by po (I"). Observe that, defined thus, (17)
does noin general coincide witho([17]).

For I" a theory,p, (I") is exactly the relation the subtheories Bfdefines over
the valuations relative to their respective logical strength. To appreciate this, define
for each theoryl” the relationp, (I") over the valuations, such that for all valuatians
ands’:

(s,8) e py(l) iff Cn({yel: slk~y})CCn({yerl: sIFv}).

Intuitively, p,(I") relates a valuatios with anothers' if the latter satisfies at least alll
those subtheories df thats satisfies as well. As such, it is in effect the relation on
the valuations based on the classical notion of logical strength that was proposed in the
introduction to this chapter. We now have the following easy proposition.

Proposition 8.2.1 Let I" be a theory in a propositional languaggA). Then the
relationsp, (I") and p,(I") coincide.

Proof: First assumés,s’) € py(I"). Then, for ally € I', if sl ~ thens' IF ~.
Hence{v e I': slk~y} C {yeI: §I-~}. By monotonicity ofCn, immediately
Cn({yel: slky})CCn({yel: slk~}),ie,(ss) e py(I'). For the oppo-
site direction, assum@én({y € I": sl-~}) CCn({yeI': §IF~}) aswell as for
an arbitraryy € I" thatsI- . Then,y € {y € I : sl ~} and by monotonicity o€n
alsoy € Cn({y € I': sl-~}). By the assumptiony € Cn({y e I': s IF~}).
Then{y e I': s I} EPC 4, i.e, for all valuationss”, if s I- ¢ for all p €
{yeT': dIF~} thens’ I v. Since trivially,s' IF pforallp € {y e I': S Ik},
in particulars’ I ~. Therefore(s,s') € py (I') and we are done. -

For formulasp, however, the relatiopy(¢) does not have in general a neat compo-
sitional definition in the complexity op. To appreciate this, observe that bet{ T)
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andpo(L) are the universal relation over the valuations. In contrast, for each proposi-
tional variablea, the relationpg(a) is not universal. Whenever a valuatisriorcesa
but another valuatios' does not, the paifs, s') will not be in pg(a). This is in partic-
ular the case for the valuatiods} andg, which are guaranteed to exist for any lan-
guage witha as a propositional variable. Now consider the formulas aand T A a.
Since[T A a] = [a], it should also be the case that the relatipgiST A a) andpo(a)
coincide. So, withpp(a) not being the universal relation, neitherjgT A a). How-
ever,po(L A a) is the universal relation on the valuations, in virtuelofa and_L being
logically equivalent, and as such having the same extension. Hg(icen a) is dis-
tinct from po(L A &). However, withpo(T) andpo(-L) being identical, this distinction
cannot be made on the basis of the relatiog{S ), po(.L) andpo(a) alone.

The problem here of course is thaf(@) andpo(S) are the same relation. For any
two non-empty subseb$ andY of Sthe reader can easily verify thag(X) andpo(Y)
coincide if and only ifX andY are identical (also compare Fact 8.5.1, below). By
treating the empty set as a special case, many of the problems dissolve. So, define, for
each subseX of a setS, the relatiorp (X) on Sas follows?

{{(x, X): xe Ximpliesx' € X} if X # 0,

p(X) = _

(%) otherwise

Defined thusy (X) coincides withpg(X) for non-empty subset¥, and is empty oth-
erwise €f., Fact 8.5.2 below). FoA a set of propositional variables, 1%, (A) denote
the set{p (p) : yaformulainL(A)}. Similarly, for each seX of subsets of5, we
define the relatiop (X) overSas:

p(X) =a [)p(X).

XeX

Let furtherp () and p (I") denotep ([¢]) and(), . p ([7]), respectively. Observe
thatp (X) = py (X) ifand only if ¢ ¢ X (cf., idem). Forg € X, the relationp (X) is
empty. As a dual notion we also introduce for each suKs#tSthe relation (X) onS
defined ag (X). Also, for each seX of subsets 08, let 5 (X) denote the relation o8
given by(yx p (X). We havep () andp (I") abbreviate ([¢]) and(,c - o ([7])-
We mention in passing that, in contradistinctiorptdy), the relatiorp (¢) does allow
for a compositional definition i (cf., Harrenstein (to appear-b)).

2]t might seem that the identity relatidd would have been an equally suitable choiceddp), as there
is no subseX of Ssuch thapy(X) = Id. Had the definition been chosen thus, however, an exception should
be made in Proposition 8.2.3 below for propositional languages with no propositional variables. For such
languages there is only one valuatioiz., ¢, and agairp (¢) would coincide with the universal relation
over all valuations. Then it would have been the casetheat(p (L)) = {0} andmax(p(T)) = ©.
Hence,max(p (L)) Q max(p (T)). In classical logic, however|. - T, even for languages lacking in
propositional variables.
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Relational Semantics

We are now in a position to furnish classical propositional logic with a relational seman-
tics. With each formula we associate the relatiopgy) andp () over the valuations
and, similarly, with each theory' the relationsp (I") andpg (I"). Denoting the set of
maximunelements of a relatiop by max(p), we have the following proposition.

Proposition 8.2.2 LetI" be atheory in a propositional languagéA). Then:
[[] = max(p(I)) and  (I) = max(p(D)).

Proof: First assumd’] to be empty. Assume further forraductio ad absurdum
thatsis a maximum element g# (I") and consider an arbitrary € I". Then,(s,s) €

p (), for all valuationss'. So, in particular(s,s) € p(y) and from the definition
of p () then follows thafly] # . Hences" € [y], for somes*. Then alsq(s*,s) €

p () and consequentlg € [y] as well. With~ having been chosen as an arbitrary
element off", we have thas € [I'], which is at variance with the assumption thaf

be empty.

So, for the remainder of the proof we will assufidg to be not empty. Consider an
arbitrary valuatiors. First assume that¢ [I']. Thens ¢ [v], for somey € I". With
[I'] not empty, we may assume there is sa@he [v]. Then, howevers’,s) ¢ p (v)
and (s,s) ¢ p(I'). Hence,sis no maximum element op (I'). Finally, assume
s € [I']. Now consider an arbitrary valuaticsi along with an arbitraryy € I
Then,s € [vy] and so(s,s) € p(v). With v having been chosen arbitrarily, also
(s,s) € p(I') and we may conclude thatis a maximum element gb (I"). This
concludes the first part of the proof

The second part of the proof can be obtained using the first one (duality). Merely
consider the following equalities:

©) = Usco I = Nyeo T = [{-9: Ve O}]
— max(p (-0 7€ 0})) = max{(Vyeo([0]) = max5(0)).

This concludes the proof. -

As an immediate consequence of this result, we have the following corollary, which
characterizes classical logical consequence in terms of the relations theories define.
A theory © follows classically from another theor¥ if and only if the maximum
elements of the relatiop (I") areno maximum elements of the relatigh(©).

Corollary 8.2.3 Let!" be atheory and a formula. Then:
I'FePCo iff max(p (1) € max(5(0)).
Proof: Immediate by Proposition 8.2.2. o

As an alternative to classical consequence, one could define a consequence rela-
tion* as follows in terms of the maximum elements of the relatijgnd”) andp, (I):

I'=* 0 iff max(py (L") € max(pg (O)).
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This consequence relation is as the classical one, except for its behavior with respect
to classical contradictions and tautologies. In virtue of Fact 8.5.2 below — which
states thap (I") = py (") if and only if » ¢ X — it can easily be appreciated that

I' - @ if and only if I" F°P€ @, provided thatl” contains no contradictions art

no tautologies. We have already seen, however, dfat) andpo(T) are both inter-
preted as the universal relation over the valuations. Consequehttyeats classical
contradictions on a par with classical tautologies. This makes étgtthe classical
rule ex falso quod libefails for =*. For a counterexample, letbe a propositional
variable of a languagke(A). Then observe that ¥* a, asmax(p, ({L})) = 2* and
max(p, ({a})) = max(p, ({—a})) = [a]. A similar remark would have applied, had
F* been defined in terms of thmaximalelements of the relations, (I") andp, (O).
Observe in this respect that the maximal elementpdff L }) exhaust logical space
just as well as the maximum elementsgf({_L}) do. The consequence relations de-
fined in terms of maximal elements also exhibit non-monotonic features, but we will
not pursue this issue here.

The advantage of the relational semantics is that it preserves more of the structure
that formulas and theories impose on logical space. From the extefiSjouf a the-
ory I' the extension§y] of the formulasy in I" cannot in general be recovered; this
structure may have been lost beyond repair. In a strict sense a similar thing can be
said of the relatiomp (I") and the relationg (v): it is not in general the case that from
the relationp (I") the theoryI” can be reconstructed. Nevertheless, the relaioh)
can distinguish valuationsands’ even if neither of them is maximum in (I"), in-
dicating thatl" contain a formula that is validated in the one but not in the other, or
if I" is inconsistentE.g. the valuations is strictly less than the valuatiofa} in the
relation p ({a, b}), yet neither of them is a maximum element in this respect. This
feature of the relational semantics is especially serviceable when one is interested in
the maximal or maximum elements of the relation determined by a theory as restricted
to a subset of valuations, even if the maximal or maximum elements of the unrestricted
relation are disjoint from that subset.

In our proposal for a game-theoretical notion of consequence, the theory induced
relations are viewed upon as reflecting the preferences of a player. Moreover, we will
be interested in the maximum elements of a relation induced by a theory within certain
subsets of the valuationsijz, those subsets that are still possible outcomes given a
particular choice of strategy for all but one player. In view of Proposition 8.2.2, the
extension of a theory, however, merely contains a player's most preferred outcomes,
independently of her powers or the others players’ preferences. In game-like situations,
however, a player has generally control over only a limited number of the relevant
variables. Whether she is able to achieve an outcome she prefers above all others,
may well depend on the decisions of the other players. Moreover, even if a particular
choice of values for the variables in an agent’s control may achieve such a consummate
outcome given certain partisan choices by the other players, it may have another, if
not opposite, effect in case the other players decide differently. The best an agent can
achieve relative to some fixed values for the other players’ variables may be inferior



VELTMAN'’S UPDATES FOR DEFAULTS 187

Figure 8.2. Let the preferences of a playebe captured in the theorftp, ¢, x}. Playeri’s
preference relation over the valuations is then as in Figure 8.1, above. Here, each block represents
a particular choice of strategy Ib opponents. The darkest areas indicate where the maximum
responses afare to be found. Observe that a block may contain no maximum responses for
and also that a valuation may contain a maximum responsefen if it is outside the extension

of the theory{y, ¥, x}.

to what she can achieve relative to other values for the other players’ variables. Such
a locally optimal outcome is a significant detail from a game-theoretic point of view.
Intuitively, what we are looking for are an agent’s optimal outcomes given particular
choices of strategies by the other agents. Let the preferences of an agent be represented
by a theoryl". Fixing the values of the variables outside the control of an agent, gives
us a set of valuations, sa§ If now the extensions of andX are disjoint, the former
provides us no information whatsoever as to which outcomes are most preferred by
the agentwvithin X. The relationp (I"), however, does. In particular, it enables us to
identify for each particular choice of strategy by the opponents, which are a player’s
maximum responses. In our proposal we will therefore refer to the maximum elements
of the relation representing an ageist preferences in the subsets of valuations in
which the values of all variables are fixed except for those whadntrols. Figure 8.2
illustrates this point graphically.

8.3 Intermezzo: Veltman’s Updates for Defaults

The additional ordinal structure the relational semantics for propositional logic engen-
ders over the set of valuations, is quite superfluous if one’s concerns are with classical
consequence only. However, the semantics of a considerable number of nhon-standard
variants or extensions of classical propositional logic appeal to a relational structure
over the valuations or possible worlds. We have already mentioned qualitative deci-
sion theory €.g, Boutilier (1994)), belief revisiong.g, Gardenfors (1988)), and non-
monotonic consequence relatioesy, Shoham (1988), Kraus, Lehmann, and Magidor
(1990) and Makinson (1994)). The prime example in this respect is, of course, Kripke
semantics for modal languages. As in Kripke semantics, this relational structure is
often assumed to be given independently by the semantics, rather than induced by syn-
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tactic objects, such as formulas.

Veltman’s analysis of defaults (Veltman (1996)), however, is different in this re-
spect. There it is suggested that in a proper treatment of defeasible reasoning, some
formulas are interpreted as imposing a relational structure on logical space. This en-
ables one to distinguish among any subset of valuations those that are optimal with
respect to this structure. In the semantics of formulas of another logical form these
optimal valuations play a crucial role. There being a clear parallel between the con-
cluding remarks of the previous section and Veltman’s semantical ideas, we will here
give a synopsis of the third section of ‘Defaults in Update Semantics’.

Classical logic is monotonic in the sense that if a conclusion follows from a col-
lection of premisseg’, then the same conclusion also follows from any collection of
premisses that includds. If premisses are taken to represent the information available
to an agent and conclusions the inferences that agent may reasonably draw from the
premisses, it has been argued that much of human reasoning exhibits non-monotonic
features. In the face of new evidence one may be happy to withdraw conclusions ar-
rived at on the basis of information obtained previously. The new evidence is then said
to defeat the conclusion and the conclusion itself is said to be defeakilgeif the
only piece of information available is that it normally rains, one could arguably infer
that it presumably rains. However, if one obtains as an additional piece of informa-
tion that it as a matter of fact does not rain, one might be quite willing to retract the
conclusion that it rains, as it does not.

Veltman gives a formal account of these and similar phenomena having to do with
defeasible reasoning and the order in which information is received. Using a dynamic
framework Veltman can account for the contrast betweeratiteptabilityof texts as
(1) and (2), and thenacceptabilityof the sequence (3):

Q) “Normally, it rains. ... Presumably, it rains.”
(2) “Normally, it rains. ... Presumably, it rains. .. dbes not rain.”
) “Normally, it rains. ... Itdoes not rain. .. Presumably, it rains.”

Although many of the merits of Veltman’s approach lie in its ability to deal with such
examples using a dynamic framework, we concentrate on some of its static aspects.
The intuition behind Veltman’s approach is that a sentence'Rkesumably, it rains”
signifies that it rains in all of the most normal states of affairs that are consistent with the
information available. This presupposes that the possible states of affairs can somehow
be ordered with respect to normality. A distinguishing mark of Veltman’s proposal is
that this normality order over the possible states of affairs is determined by sentences
like “Normally, it rains” that occurred earlier in the text, rather than merely fixed
exogenously.

Veltman proposes a propositional modal langubg®, {normally, presumably),
wherenormally and presumablyare modalities operating on formulas of the proposi-
tional languagé.(A) only. l.e,, the formulas of.(A, {normally, presumably) are given
by the Set{<p, normallyy, presumablyy : ¢ a formula ofL(A)} and there is no nest-
ing of the modalities. The intended readingsofmally, andpresumablyy suggest
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themselves.

The formulas ofL(A, {normally, presumably) are interpreted in terms of states
consisting of a so-calleexpectation patterp and aninformation set X An expecta-
tion pattern is a reflexive and transitive relation over the valuation& fay and the
information seiX is a subset of valuations, intuitively, containing the possible states of
affairs that are compatible with one’s factual information about the world.Veltman dis-
tinguishes the minimal stateand the absurd stafe defined by(Sx S 'S) and(ld, 8),
respectively. The valuatiorsthat are minimal with respect jp—i.e., such thas’ < s
in p, for no valuations' — are callechormal If the set of normal worlds in an expec-
tation patterrp is not empty, is said to becoherent A state(p, X) is aninformation
stateif p is coherent an& non-empty, or if(p, X) is the absurd state

Semantically, formula in L(A, {normally, presumably) is interpreted as a post-
fixed operation[y] on information states. For each formylan L(A), the operatioriy)
performs an update on the information set of an information state, accommodating the
information conveyed by without changing the expectation pattern. That is, pro-
vided that the update does not render the information set void, for then the absurd state
results.

By contrast, ify is of the formnormallys) and the extensiofy] contains a normal
world with respect tg, we have[p] operate on the expectation patterof an infor-
mation statgp, X). It leaves the information set as it was bufp by removing from
it all edges(s,s') with ¢ holding ins but not ins. This renders any valuatiasnthat
forcesy strictly more normal than any valuation in whighdoes not hold but that was
as normal as in the original expectation pattern. As sugtormally:)| imposes ad-
ditional structure on logical space renderingvorlds more normal that nog-worlds
without affecting the agents factual information about the world. Rathermally?]
refines the expectation pattern by intersecting it with the inverse of the relatign,
as defined in the previous section. If, howeyeéi] fails to contain a normal world with
respect tg, then updatingp, X) with [normally] will result in the absurd statke

Finally, [presumablyy] performs a test on information states. In caseolds in all
valuations that are minimal with respect to the expectation pattern of the information
state,[presumablyy] returns the original information state. Otherwise, it returns the
absurd state. Let be a formula irL(A). Then — employing notations used throughout
this thesis — Veltman’s formally definitions are given by:

(. XN [e]) i XN [e] # o,
1 otherwise

(ps X) 0] =at. {

(pNpo(p)”,X) if [¢] contains a normal world

X)[normall =
(p, X)] yo| =dt. {1 otherwise

(p,X) if se [¢], for all sminimal in X w.r.t. p,

X bl =
(p X)lpresumably] =g {1 otherwise

(Here,po(p)~ denotes thénverseof the relationpg(p).)
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®{a} m'{a}

{a,b} U{a b}
. e {b} °

Figure 8.3. The figure on the left depict8 for a language witta andb as the only propo-
sitional variables. The dashed box and the grey balloons indicate the subset of valuations and
the expectation patter, respectively. From left to right the figures depict the minimalOstate
O[normally g andO[normally g§[—b]. The valuation{a} is now minimal in0O[normally g[—b], but

for instances is not. HenceP[normally g[—b] I- presumablya A —b) butO[normally g[—b] ¥
presumably— (aV b)).

For formulasy of L(A, {normally, presumably) and information states define
o IF ¢ if and only if [p] = 0. Moreover, consequené€ for this particular system is
defined as a relation between geguencesf formulasyy, . . . , ¢, and a formula) as
follows:

©0s - -5 Pn FYoop o iff O[wo] - - - [¢n] IF 9.

The sequential order of the formulas, . . . , ¢, here makes a differenc&.g, as the
formal counterparts of (1), (2) and (3), above, we find:

@) O[normally d[presumablya # 1,
2) O[normally d[presumably §—a] # 1,
3) O[normally d[—a][presumablyp = 1.

The reader be also referred to Figure 8.3 for further illustration.

The guiding principle behind Veltman'’s update semantics for defaults is that Boolean
formulasy and those of the formormallyy build up an information state. Suppose
thatO[yo] . . . [¢n] is an information state that is being constructed in the course of an
update process and distinct from the absurd state. The constituent expectation pat-
tern is then precisely the inverse of the relatig(©), where® is given by exactly
those formulag) such that the formulaormally: is amongyo, . . ., ¢n. Formulas of
the form presumablyy are then evaluated with respect to the information state con-
structed. A formulgresumablyy holds in a non-absurd information stdje X), i.e.,

o IF presumablyp, if ¢ holds in alloptimal states inp that are compatible with the
factual information represented By Optimality is here taken as minimality with re-
spect to the information pattern, but could equally well be defined as maximality with
respect to its inverse.

In the next section distributed evaluation games are introduced as a special kind of
strategic game. The strategy profiles of these games are the valuations of a proposi-
tional language, each player having control over a set of propositional variables. Each
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playeri is associated with a theo#dy, which is interpreted as the relatipn(;) on log-

ical space and intuitively reflect the player’s preferences. Thus the theory determines
the player’s preferences in much the same way as formulas of therformallyy

build up an expectation pattern in Veltman’s default logic. The manipulative power
of a player is relative to the propositional variables assigned to her. For each player,
logical space is partitioned in blocks that contain valuations that coincide on the val-
ues of the variables assigned to her opponents. If it is given that the outcome of the
game will be in one particular block, it is then up to her which of the outcomes in that
block will prevail. To determine her best response strategies, she has thus to look for
the valuations within each block that are optimal with respect to her preference order.
As such, each of these blocks of a player’s partition relates to her preference order
in much the same way as the information set to the expectation pattern in Veltman'’s
framework. Also in the game-theoretical setting, it is the optimal valuations that seem
to be relevant.

In order to determine her best-response strategies, however, a player has to find
the optimal strategies iall of the blocks. If one is interested in the Nash equilibria,
one should, moreover, take into account the best-responses for all plagerane
has to investigate all blocks in all of the players’ partitions with respect to the players’
individual preference orders. In Veltman’s semantics for defeasible reasoning there is
only one information set to be considered. However, in essence the principle remains
the same.

8.4 Distributed Evaluation Games

In the Preliminaries atrategic gamavas introduced as a tup{®, {S};cy - {pi }ien)
with N as set of players, and for each playén N a set of strategie§ as well as a
reflexive and transitive, or empty relatipnover the strategy profilel]; ., § which is
usually denoted b.

In this section we define, for each propositional langula@®, a special class of
strategic games, which we refer todistributed evaluation gamesienceforth we will
assume the set of propositional variab?® be non-empty. The distributed evaluation
games provide a formalization of the interactive situations that result if the variables
of the propositional languadgA) are construed as binary decision variables the con-
trol over which is distributed over a number of individuals. The sets of propositional
variables assigned to the players are assumed to be pairwise disjaigt, -re joint
control over a propositional variable occurs — and to exhaust the set of propositional
variablesA. If A is non-empty, moreover, each player controls at least one variable
and each variable is controlled by one player. The strategies available to each player
are given by the different binary choices he can make with respect to his propositional
variables.l.e., if A is the set of variables assigned to the control of playtre set of
strategies available fds given by 2V.

With each propositional variable controlled by precisely one player, each strategy
profile of a distributed evaluation game determines an assignment of a binary value to
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each of the propositional variables. Thus each strategy profile can be seen as a valuation
of L(A) and each valuation as a strategy profile, there being no further restrictions on
the strategies available to the players. This is the reason why h&dagote both the

set of valuations and the set of strategy profiles of a distributed evaluation game is a
harmless ambiguity.

Each player of a distributed evaluation game is thought of as the verifier of a sep-
arate theoryl; of L(A) and to aim at an outcome of the game that satisfies as much
as possible of ; by choosing appropriate values for the propositional variables in his
control. This leaves us the issue of a criterion to measure the degree to which a valua-
tion satisfies a theory. The considerations of Section 8.2 concerning the relative logical
strength of a theories enable us to be precise in this respect. Accordingly, the prefer-
ences of a playerin a distributed evaluation game are given by the relapdi;).
Consequently, the preferencesi afre considerably more gradated than merely distin-
guishing valuations that satisfy the wholelgffrom those those that do not. Formally,
we have the following definition.

Definition 8.4.1 (Distributed evaluation gamed)etL(A) a propositional language on
a non-empty se of propositional variables. A strategic gari®, {S};cy , {i}ien)
is adistributed evaluation gamfer L(A) if for eachi € N:

S =g 2N and  pi =4 p (L),

where ] is a term of a family{ I}, of theories inL(A) andA; a term of a fam-
ily {Ai};cn Of non-empty and pairwise disjoint subsets of propositional variables that
partitionsA.2

For each distributed evaluation ganil, {2%}icn, {pi}ien) for L(A), a natural
isomorphism exists between its strategy proffigs,, 2% and 2, the set of valuations
for L(A). Accordingly, we will generally let the latter go proxy for the former.

In the context of distributed evaluation games, we will frequently identify the play-
ers with the propositional variables they control. Thus, a partitiaf A is taken as
the index seN of players and the familyf A }icn itself, which assigns control over

3For the propositional languagd€ ) without propositional variables this definition would leave the set
of strategies for a player undefined and as such would not deliver well defined distributed evaluation games.
One could, however, tredt(p) as a special case and define strategic games with one player that has no
control over any propositional variables at all. This player could be defined as having only one strategy at his
disposalyiz, @. Accordingly, any such game would have merely one strategy preiilethe empty sep.
Observe in this context that is the only element oPart (). The preferences of the player could be given
by the relationp (I") induced by a theory™ of L(©) over the strategy profiles. There are then essentially
two of such distributed evaluation games EgA). In the one game the player’s preferences are given by the
universal relation over the strategy profiles,, by {(2, @)}, in the other by the empty relation, depending on
whether the theory defining the player’s preferences is consistent or inconsistent. Neither of the two games is
particularly interesting from our perspective. Most, if not all, of the subsequent results regarding distributed
evaluation games and game-theoretical consequence would also hold if the notion of a distributed evaluation
game were extended as to include these two gamds(for as well. Yet, including these games fofo)
would complicate the formulation of the proofs, as each of them would have toLtfeatseparately as a
special case.
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Bonnie: Clyde:

Figure 8.4. The extensions of the formulas in the theories by means of wiaimiés and
Clydes preferences are defined.

propositional variables to the players, the identity functide., for eachX € =, we
haveAyx = X. Depending on whether the emphasis is on the player or the set of propo-
sitional variables he controls, we usand, respectivelyd; or 7 to denote members
of the partitionz. Also, w_; is short for the ser#i 7j. In the sequel we will usd
to denote a family of theories indexed hyFurthermore(I”;, I3), is an abbreviation
of the family of theoriesI7" such that for alj # i, I}* = Iy andIy" = I'. Form
a partition of the propositional variables aifitd a family of theories indexed by,
we denote byG(I';) the distributed evaluation game withthe set of players. Each
playeri in = has control over the block; and her preferences are given pyI3). In
short,G(I’;) is the strategic gamer, {2 }icr, {p (I1) }icr ). We haveG(I;) denote
the gameG(I';), with I = {—v : ~ € I}, for eachi € 7.

Definition 8.4.1 is illustrated by the following example, which is the representation
of the infamous Prisoner’s Dilemmaf( page 8, above) as a strategic evaluation game.

Example 8.4.2 (Prisoner’'s Dilemma)Consider the languade(A) with A = {b,c}
andN a set of players containing as sole elemaé&usnieandClyde Let Bonniebe
assigned control over the propositional variabland Clyde over c, i.e., Agonnie =

{b} andAcyee = {c}. Let further theorylgonnie be given by{c — b,-c,-c A b}
andIcyge by {b — ¢, =b,—b A c}. These stipulations define a distributed evaluation
game, in which the strategies availableRonnieare given by ' = {¢, {b}} and
those toClydeby 2{¢} = {¢,{c}}. Intuitively, the binary decision variabldsandc
represenBonnies and Clydés respective choices between denying and confessing.
For both players, setting a decision variable to 0 means denying and setting it to 1 is
to confess. The presence of the formala: b in I'gonnie cCONVeysBonnies preference

to confess ifClydedoes so as well andc A b that she prefers above all the outcome
in which she confesses b@yde refrains from doing so. Taking the extensions of
the formulas in the theorieBgonnie and I'ciyde We obtain the following sets of sets of
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{b}

Figure 8.5. The game matrix of th@risoner’'s Dilemma The typical Pareto dominated Nash
equilibrium is the outcome bottom right. The figures indicate didinal preferences of the
players.

valuations:

Bonnie:  { { {b},{b.c},0}.{{b}, 0}, {{b}}},
Clyde: {{{c},{b,c},@},{{c},@},{{c}}}.

Figure 8.4 serves as a graphical representation of how these extensions are related to
one another with respect to set inclusion. The preferencBemfieandClydeover the
valuations 2°¢} are then given by the relatiops( I sonnie) andp (Iciyde), respectively,
i.e:
Bonnie: {c} < {b,c} < 9 < {b},
Clyde: {b} < {b,c} < @ < {c}.

Thus, we obtain the strategic game depicted in Figure 8.5, with the characteristic
(Pareto dominated) Nash equilibrium in bold face. Observe that this distributed evalua-
tion game has a maximum equilibrium, although unioBofniés and Clyde’s theory,

i.e., the theoryl gonnieU I ciyde, IS Unsatisfiable.

Since distributed evaluation games are fully fledged strategic games, game-theoret-
ical methods can be used to investigate them. Solution concepts may be employed to
distinguish valuations that are somehow significant from a game-theoretical perspec-
tive. Each familyI” of theories and each partitionof propositional variables can thus
be associated the set of valuations that comply with a particular solution concept in
the distributed evaluation gant&I;). The role of the solution concept can be seen
as analogous to that of set-theoretic intersection in the definition of the extension of a
theory on basis of the extensions of its constituent formulas. In the next chapter the
notion ofmaximal equilibrium(cf., page 28, above) is used in this manner to formulate
a game-theoretical concept of consequence. Distributed evaluation games provide the
semantical basis of this definition.
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{a {a} {b}

Figure 8.6. LetI' = {a— b,aAb} and® = {a«< —b}. The left matrix represents the
gameG(I'(a}, O v} ). The matrix in the middle results if the preferences of the row and column
player are interchanged. In the one on the right, the row and column players have exchanged the
propositional variables they control. From our perspective this difference between the latter two
games is immaterial and both are represente@® 8,4y, vy ). Their maximum equilibria (in
boldface) differ from the game on the left.

The concept of maximum equilibrium pivots on the notion of unilateral deviation
of a player from a strategy profile. In a distributed evaluation g&tE;) it can be
expressed in neat set-theoretic terms when a plagan achieve a strategy profie
by unilaterally deviating from another strategy progleSince the strategy profiles of
a distributed evaluation game are taken to be the valuations of the respective proposi-
tional language and because valuations stripped to their bare essentials are mere subsets
of propositional variables, we have in general for any strategy prafiesls’ an any
playeri in a partitionr:

(S,i,Sl) = (Sﬂﬂ',i) U (S’ﬂm).

A gameG(I';) abstracts, as it were, from the identity of its players and only takes
into account their relative powers and their preferences. The following fact states that
such an abstraction is quite immaterial for our purposes, in which we focus on maxi-
mum and maximal responses and their equilibria. Since itis quite obvious that maximal
and maximal equilibria are independent of the identity of the players, we leave the fact
without its proof.

Fact 8.4.3 Consider the distributed evaluation garfll, {24 }icn, {p (I3)}ien) for
a propositional language (A). Letw be the indexed set of the famifp }, . and
let {Ox }x.. be the family of theories such that, for eackeXr, we havedx = I if and
only if X = A;. Then the maximum (maximal) equilibria @, {2* }icn, {p (17) }ien)
coincide with the maximum (maximal) equilibria @f, {2*}xcr, {p (Ox)}xer).

To illustrate this point, consider the languagg{a,b}) and let the partitionr
be given by{{a},{b}}. Let the theoried” and© be given by{a — b,a A b} and
{a < —b}, respectively. Consider the distributed evaluation g&\&(a;, 61 ). In-
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dexingI” with {b} and®© with {a} gives rise to the gam@(Oyp;, I'(a}). The maxi-
mum equilibria of these games diffexf( Figure 8.6), illustrating that control matters.

The gameG(Q{a}, F{b}) could be seen as the result of the players either adopt-
ing one another’s preferences or swapping the propositional variable they have control
over. Focussing on maximum equilibria as we do, however, both scenarios can be seen
as different manifestations of the same phenomenon, witness Fact 8.4.3 on page 195.
For our purposes, the important thing is the extend to which control over a set of propo-
sitional variables is conductive to the achievement of a desirable outcome relative to a
preference order defined by a theory. Tidentity of the player who has control over
those propositional variables and who entertains those preferences is quite immate-
rial. Distributed evaluation games precisely capture this formal dependency between
preferences and control.

As presented here, the players’ preferences in distributed evaluation games are fixed
by the relations induced by theories. One could, however, prefer the image of theories
describingthe preferences, in a possibly partial fashion, rather than fixing them. On
this conception, a distributed evaluation game would not so rbeehstrategic game,
but rather it wouldrepresenta class of strategic games in which the preference re-
lations comply with the constraints imposed by the theories. Theories could then be
understood as partially specifying a preference relations. Making this idea precise, it
seems reasonable to stipulate that a preference rejatomplies with the constraints
imposed by a theory, if the relationp is included inp (I").* The following fact es-
tablishes that the two conceptions of distributed evaluation games make no difference
with respect to the formulas that hold in all maximum equilibria of distributed evalua-
tion game conceived as as strategic game and those that hold in all maximum equilibria
of all strategic games in a distributed evaluation game, conceived of as a collection of
strategic games.

Fact8.4.4 Letr be a partition of the propositional variables of a languageAlL
Let furthery be a formula andl’; a family of theories of [A). Then,y holds in all
maximum equilibria of GI;) iff ¢ holds in all maximum equilibria of each strategic
game(m, {24 }icr, {pitiex) With p; C p (I}), for eachic .

Proof: From right to left the proof is trivial. The left-to-right direction follows im-
mediately from Proposition 2.1.1 on page 28, above. %

Both the extension of a theory and the maximum equilibria of a distributed evalua-
tion game single out subsets valuations on the basis of information in the form of for-
mulas. In the truth-theoretical semantics this information comes in the form of a single

4Construed thus, a distributed evaluation game is not a strategic game as such; it rather represents a
collection of strategic games. In this thesis we employ a notion of a strategic games that is slightly more
liberal than the usual notion in that the preference relations need not in general be connected and may even
be empty. One may, of course, confine one’s attentioa.tn,the subclass of games in which all preference
relations are total preorders. Each distributed evaluation game could then be understood as defining a set of
such games. Restricting one’s attention on such subclasses of strategic games, however, may have serious
repercussions for the concept of game-theoretical consequence to be developed in the next chapter. Here we
leave it as a subject for future research.
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set of formulas, which, intuitively, describe a part of the world. In the game-theoretical
case the information is couched in a family of theories, each member of which con-
cerns the preferences of one player. The valuations that are singled out as maximum
equilibria of a distributed evaluation gan® I";) on the basis of a collection of for-
mulasy, i.e., provided that J;,. It contains formulas i only, will always include

the valuations in the extension &f. Intuitively, this vindicates formally the intuitive
presumption that simultaneously accommodating all of each players’ preferences is a
sufficient condition for a strategy profile to qualify as a maximum equilibrium, though
not a necessarily necessary one.

Proposition 8.4.5 Let I'; be a family of theories in (A) indexed by a partitionr
of A. Then(),,. [I1] is contained in the set of maximum equilibria offG ).

Proof: Straightforward. If(;,_. [I']] is empty, the proof is trivial, so assume
Mic [I'i] to be non-empty. Assume for an arbitrary valuatgimats < (.. [1i].
Consider an arbitrary € = and an equally arbitrary € I;. Then,s € [v]. Hence,
[~] is non-empty, and therefores',s) € p(y), for all valuationss. Hence, also
(s,s) € p(I). It follows thatsis a maximum response for With i having been
chosen arbitrarilysis a maximum equilibrium ifs( ;) as well. #

The inverse of this claim, however, does not hold in general. Example 8.4.2 shows
that a distributed evaluation gant& ;) may have maximum equilibria although
Niex [11] is empty.

An interesting issue is thi@rmation of coalitionsn a distributed evaluation game
G(I',). Our concern is then which game results if the players of a distributed evalua-
tion game join in coalitions and how its formal properties relate to those of the original
game. Here we will make the natural but not necessary assumption that each coalition
assumes control over the propositional variables that were previously controlled by its
individual members. In virtue of Fact 8.4.3, the players of a distributed evaluation game
may then be identified with the union of the propositional variables under the control
of its members. This leaves the question of how the coalitional preferences relate to
those of its constituent members.

On page 33 we described a particular way in which the players of a strategic
game can join in coalitions. We had,, denote the game in which the players of
the gameG have formed the set of coalitioms The coalitional preferences of eagh
in k were fixed as the intersection of the preference relations of its menileeras
pr =dt. [ic, Pi» for eachs in k. This way of combining individual preferences into a
coalitional preference relation preserves siveng Pareto propertyi.e., if all players
strictly prefer one outcome to another, the coalition as whole will do so as well.

This method of coalition formation is also applicable to distributed evaluation games.
Let G(I';) be a distributed evaluation game and suppose that a set of coalititns
formed in this manner. This results in a new distributed evaluation game with the
coalitions as players. Each coalitierin k can then be identified with the set of propo-
sitional variables J;,. 7 and its preferences are given b)(UiER Fi) (cf., Figure 8.7).

This observation is laid down formally in the following fact.
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Figure 8.7. lllustration of coalition formation with each of the coalitional preferences the inter-
section of the preferences relations of its members. Each pléyet i < 6) has control over the
variablesy; andi’s preferences are captured by the theBiryNow suppose that 0, 1 and 2, 3 and
4, and 5 and 6 decide to join in coalitions, respectively. Tleeg, the coalition{3,4} obtains
control over the propositional variables {@g,, as,, a4,, as,, a4, }. The coalitional preferences
are then given by the relatiops(1o U I1 U I%), p (I3U I4) andp (I's U Is), respectively.

Fact8.4.6 For 7 a partition of the propositional variables of(B), let G be the
distributed evaluation gamér, {2}, {p(I}) };_,). Letx € Part(m) a coali-

tion partition ofw. Let further G be the gamdr*, {2%}, _ ., {p (I¥) },...), with
™ =¢. { Uk : K €k} andforeach ke 7*:

r; =« Yo
iem
ick

Then, the maximum (maximal) equilibria of Goincide with those of &

Sketch of proof: By definition 2.1.5, for eachx € « we haveS, = [[i.,. S.
Because§ = 24 and the propositional variables assigned to the players being pairwise
disjoint, then there is a natural isomorphism betwggn, § and 2~ A. Then the
claim follows from Fact 8.4.3 as a corollary. o

Thus, for distributed evaluation gamégI’;) andG(O, ) with 7 < 7/, we may say

that in the latter players of former have joined in coalitions. Ejpeh 7’ then rep-
resents the coalitioi € 7 : i C j} have been formed. The way in which for each

j € =’ the theory®; relates to the theories i{wFi 0 C j} reflects how the coali-
tional preferences depend on those of the members of the coalition. LEXfihg

the union of the theories irﬁl“i 0 C j} corresponds to intersecting the members’
preference relations. In virtue of Fact 8.4.6, Corollary 8.4.7 presents a special case of
Proposition 2.1.8 specifically for distributed evaluation games.

Corollary 8.4.7 Let L(A) be a propositional language and letand =’ be partitions

of A such thatr < 7’. Let further GI';,) and G ©.-) be distributed evaluation games

such that®y =4 [Jie~ I3, for each ke #’. Then, the maximum equilibria in(® )
iCk

are also maximum equilibria in @).

Sketch of proof:  Observe that in general for each set of subX¥etsd each family
of sets of subset§Yi},, such thatX = [ J;, Yi we have thafp (X) = (., p (Yi).

i€l
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Hence, in particularp (@) = ﬂieﬁpm)' for eachk € #’. The claim then follows
ic
immediately from Proposition 2.1.8 on page 35 and Fact 8.4.6. %

Other ways of combining individual preferences have been studied within the field of
social choice theorylt is an interesting issue how these correspond to ways of com-
bining theories and the theory of game-theoretical consequence advanced in the next
chapter may provide a suitable logical framework. Nevertheless, we will not pursue
the matter here. The account of coalition formation presented in this section, however,
will play a noticeable role in the formal analysis of game-theoretical consequence.

8.5 Formal Properties of Set-Induced Relations

In the previous section distributed evaluation were introduced as a class of strategic
game. The strategy profiles of these games coincide with the valuations of a propo-
sitional language and the strategies of the players were given by the possible binary
choices they could make with respect to the propositional variables they are assigned
control over. The preferences of each players are specified by rejatibn a the-

ory determines over the valuations. In the next chapter a game-theoretical concept of
consequence is proposed, which semantic formalization depends on the notion of a dis-
tributed evaluation game. There the relatipr(d”) play a much similar role in defining
players’ preferences as the the extensions of the formulas making up a theory did in
the traditional semantic account of classical consequence.

This section concerns two formal issues relating to the class of relations induced
by theories over the set valuations of a propositional language. The first pertains to
the formal delineation of this class within the class of all reflexive and transitive, and
otherwise empty, relations over the valuations. The second relates to closure properties
of set-induced relationsg., it concerns the problem to which setsa setX of subsets
can be extended such thatX) equalsp (X).

We first review some of the more elementary properties of the relapdghg
and p (X). As a first fact we find that no two different subsésandY of a setS
such thaip (X) andp (Y) are identical relations o8&

Fact8.5.1 Let X and Y be subsets of some set S. Then:

p(X)=p(Y) iff X=Y.

Proof: The right-to-left direction is trivial. For the opposite direction suppdsg Y.
Without loss of generality we may assume there be spraeX for whichx ¢ Y. In
caseY is empty,(x, X) & p (Y) but(x, x) € p (X) anda fortiori p (X) # p (Y). If on the
other handy is not empty there is somee Y. Then,(y,x) ¢ p(Y) and(y,X) € p (X).
Again we may conclude that(X) # p (Y). 4

By contrast,po(X) and po(Y) may be identical even for distine¢ andY, be it only
if either X or Y is the universe and the other the empty set. BaftX) and po(Y)
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are then the universal relation. F¥rany subset other than the empty set, the rela-
tions pp(X) andp (X) coincide. This observation also sustains a corresponding result
for relationsp (X) induced by sets of subsexs

Fact 8.5.2 Let X be a subset of some non-empty set S. Then:

po(X) =p(X) iff X#o —and  po(X)=p(X) iff o¢X

Proof: For the first claim, the proof from right to left is trivial. So assuXe= @.
Then,p (X) = @ andpo(X) = Sx S SinceShad been assumed to be non-empty, also
po(X) # p (X). For the second claim merely observe the following equalities:

poX) = [roX) =sgx [r(X) = p(X). .

XeX XeX
We also have the following equally easy fact.

Fact 8.5.3 LetX be a set of subsets of a non-empty set S. Then:

pX)=0 iff oeX

Proof: Straightforward. From right to left the proof is almost trivial. Merely observe
that thenp (0) € {p(X) : X € X} and, sincep (9) = 0, p (X) = Nxex p (X) = 0.

For the opposite direction assume that X. In virtue of Fact 8.5.2, thep (X) =

po (X). With the latter begin reflexive, it follows that(X) is reflexive as well. Having
assumedsto be non-empty, we may conclude thatX) is non-empty. o

For any subse, the relatiorp (X) is notin general monotone iX. To appreciate
this, letX andY be two non-empty proper subsets of aSstich thatY is also a proper
subset ofX. Assume thay € Y, x € X—Y andz ¢ X. Then,(y,x) € p(X) but
(y,X) ¢ p(Y). Moreover,(x,z) € p(Y) but(x,z) ¢ p(X). More in general we have
the following fact.

Fact 8.5.4 Let X and Y badlistinctsubsets of some set S. Then:

p(X)Cp(Y) iff X=@ orY=S

Proof: From right-to-left the claim is trivial. The opposite direction is by contraposi-
tion. So, assumi¥ # ¢ andY # S Hencex € Xandz ¢ Y, for somex,z € S. In case
Y is empty, we are done immediately, for thenx) € p(X) and(x,x) ¢ p(Y). So
for the remainder of the proof we may assume there to be som8such thay € Y.
By Fact 8.5.2, moreover, boih(X) = po(X) andp (Y) = po(Y), which simplifies the
reasoning.

With the assumption tha¢ andY be distinct, eithe¥ ¢ X, orY C X. In the former
casey € Yandy ¢ X, forsomey € S Hence,y,z) € p(X) and(y,2) ¢ p(Y).
In the latter casex’ € X andx ¢ Y, for somex € S. Becauser C X, alsoy € X.
Therefore(y,X') € p (X) wheready,X') ¢ p (Y). .

By contrast, bottp, (X) andp (X) are tidily downward monotone iX.
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Fact 8.5.5 (Monotonicity) LetX andY be sets of subsets of a set S. Then:

X CY implies pg(Y) C po(X) and p(Y) C p(X).

Proof:  Straightforward. Assum C Y. Then alsofpo(X) : X € X} C {po(Y) :
Y € Y}. Hence:

po(Y) = M{po¥): YeY} Sxev N{rpX): XeX} = po(X).

The reasoning fop (Y) C p (X) runs along analogous lines. o

The Scope of Distributed Evaluation Games

The main purpose of this section is to demarcate the class of distributed evaluation
games for a propositional languagéA) within the comprehensive class of strategic
games that can be defined on the frames of distributed evaluation games. Thus, for
each strategic game in the comprehensive class, the players and their strategies are
those of some distributed evaluation gamelfoh). Moreover, the strategy profiles are
given by the valuations fdr(A). Restricted thus, the issue boils down giving a precise
characterization of the class of the players’ preference relations that the definition of
distributed evaluation games allovis., of the set{p (I") : I'is atheoryinL(A)}.
For the propositional languad€o), with no propositional variables, the issue is trivial.
Theng is the only valuation and the two preference relations that are possibje¢he
empty relation and (2, )}, are represented by ({L}) andp ({T}). In case the
number of propositional variables Ais finite, we find the set relations induced by the
theories ofL(A) is complete with respect to the transitive and reflexive, or otherwise
empty relations over the valuations. Matters are different if the set of propositional
variables is infinite. Then the relations induced by theories on logical space constitute
a proper subclass of all preference relations. This phenomenon is comparable with the
fact that for a language with a countably infinite number of propositional variables, the
extensions of theories do not exhaust the powerset of valuations.

The relationsp (X) have a neat characterization in terms of general properties of
relations. We say that a relatiprnon a sefSis bisectiveif it is transitive and moreover
satisfies the following condition:

/

(*) forall x,x',x" € S: x< X implies X" < xorx ¢

<X
Observe that the empty relation qualifies as bisective, as in that case both transitivity
and () are satisfied trivially in virtue of vacuous quantification. Any other bisective
relation, however, is both reflexive in addition to being transitive.

Fact 8.5.6 Any non-empty bisective relation over a set S is reflexive.
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Proof: Let p be a non-empty bisective relation over a SefThenx < X/, for some
x,X' € S Consider an arbitrary in S In virtue of p satisfying &), then,y < x or
X' < y. In both cases the reasoning runs along similar lines; here we deal with the
former case only. Iff < x, again in virtue of §), eithery <yorx <y. If y < ywe are
done immediately. Otherwise, we hayel x < y and by transitivity ofp alsoy < y. 4

The following proposition characterizes a bisective relation over a unieseone
which coincides wittp (X) for some subseX of S In its proof, as elsewhere in this
section,, x denotes the sefy € S: (x,y) € p}, for all elementsx of and all rela-
tionsp on a seS.

Proposition 8.5.7 Let S be a set. Then the sgi(X) € Sx S: X C S} coincides
with the set of bisective relations on S.

Proof: In caseSis empty, the empty relation is the only (bisective) relationSn
Also, ¢ is the only subset o6. Now, observe that (@) is the empty relation as well.
So, for the remainder of the proof we may assu#ite be non-empty.

First consider an arbitrar{ C Salong with equally arbitrarx, X', x’ € S. We
prove thatp (X) is bisective. For transitivity first assume that béthx') and (X', x”)
are inp (X) as well as thak € X. Since(x,X) € p(X), alsox' € X and because
(X, X") € p(X), moreoverx’ € X. We may conclude thdix,x”) € p (X). To show
that p (X) satisfies conditions) as well, assuméx,x') € p(X). Eitherx” € X or
X" ¢ X. If the former, (X', X") € p (X); if the latter (X, x) € p (X). In both cases we
are done.

To prove that for an arbitrary bisective relatipnon S there is a subseX such
thatp = p (X), assume to be bisective and consider the §&f 5T, x. Suppressing
the subscripp in 1,x, we prove thatp = p ((,cs1X). In casep is empty, | x is
equally empty, for ank € S Having assume& to be non-empty(), s TXx = @.
Hence,p (ﬂxeST x) = p(¥) = . For the remainder of the proof, we may accordingly
assume to be non-empty. In virtue of Fact 8.5.6, the relatijpmay be assumed to be
reflexive as well.

For theC-inclusion, assume for arbitragyy’ € Sthat(y,y’) € p. Assume further
thaty € (,.sTx and consider an arbitrary € S Theny € 1x, i.e, (X,y) € p.
By transitivity, also(x,y) € p, i.e, y € 1x. With x having been chosen arbitrarily,
Y € (yes T X and we are done.

For theD-inclusion, assume for arbitragyy’ € Sthat(y,y) ¢ p. Theny ¢ 1y
and, thereforey’ ¢ (1,51 x. It suffices now to prove that € (. TX. So, consider
an arbitraryx € S, we prove thaty € 1Tx. By reflexivity, (y,y) € p. In virtue of
(y,Y) ¢ pand &), then(y',y) € p. Again because of, either(x,y’) or (y, x) € p. In
the former case(x,y) € p sincep is transitive andy’,y) € p. Also in the latter case
we have(x,y) € p, becauséy,y’) ¢ p and (). With x having been chosen arbitrarily,

Y € Nyes T X We may conclude tha,y’) ¢ p (Nyes TX).- !

For a classical propositional language with a countably infinite number of propo-
sitional variables, the relations(y) for formulase of the language, exhaust the set
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of bisective relations on the valuations just as little as the extensions of the formulas
exhaust the set of subsets of the valuations. Recall that the number of relations over
the valuations of a countably infinite propositional language is uncountable, whereas
the number of formulas remains countable. Corollary 2.4.2 on page 54 characterizes
the set of extensions of a language as the approximations of the subsets of valuations
by means of a finite subset of propositional variables. Proposition 8.5.10, gives a sim-
ilar result for the relational semantics for classical propositional logic. Before getting
there, however, we make some more general remarks concerning approximations of
relations.

The approximation operatoepr andapr on the powerset of some s®&iare rela-
tive to an equivalence relaticnon S. The coordinate-wise squdref an equivalence
relation overSis again an equivalence relation over the Cartesian produst dhe
coordinate-wise square ef— denoted by: ® ¢ — can in turn be used to approxi-
materelationson S by means of rough sets. Thus, we have faoa relation over a
setS

(X, X') € apr_g.(p)
iff for some(y,y) € Sx S: ((x,X),(y,y)) €c®e and (y,y) € p
iff forsomey,y € S: (x,y),(X,y) € and (y,Y) € p.

When no confusion is likely, we will denote the approximation operations on the rela-
tions of Srelative to the squares of an equivalence relatipmlso byapry anda_prx.
l.e., we will write apry (p) for apr_, ., ().

The approximation operaticapry on relations does not in general preserve tran-
sitivity. For a counterexample one consider a base set of three eledeemis}.

Let p be the smallest reflexive transitive relation of#-2° containing(¢, {a}) and
({a,c}, {a b}). Transitivity fails for the relatiorapr, ,, (p). Observe in this respect
that both(o, {a, c}) and ({a,c}, {a,b}) are inapr, ,,(p). The latter because C
apriap (p). For the former, observe that both~ 5y and{a} ~apy {a,c}. Asa
consequence alggo, {a}), (9, {a,c})) € e(ac) Veqac)- Nevertheless(o, {a, b} ) ¢
apriapy (p). Ina similar fashion it can be shown that the upper approximation operation
does not preserve reflexivity.

Since, every relatiop (X) is transitive, witness Proposition 8.5.7, the set of bi-
sective relations is not closed under taking approximations. The following proposition,
however, establishes a general connection between bisective relations and their approx-
imations.

®In Preliminaries. Le{S};., be a family of sets. Let further for eacte I, p; be a relation or§. We
define thecoordinate-wise productyr the product relation, of{ pi };, as the relatiop™ on the generalized
Cartesian order over tf® such that for alk, y € [T, S:

(X,y) € p* iff foralliel: (x,Vi) € pi

Thecoordinate-wise square® p of a relationp on Sis the coordinate-wise product relationmith itself.
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Figure 8.8. Counterexample agairapr_ . (p (X)) C p(@pr.(X) ). Letthe partition be given
by e. Becaus€Xx,y) € p(X), immediately alsdx,y) € apr.(p(X)). However,x € apr.(X)
andy ¢ apr, (X). Therefore(x,y) & p (ap. (X)).

Proposition 8.5.8 Lete be an equivalence relation on some set S ange its coor-
dinatewise square. Then for eachcXS:

p(a_pra(X)) C apr.g. (p(X))

Proof: In caseX is empty, in general, bothpr (X) = apr (0) = ¢ andp (apr (X)) =
p(@pr (o)) = p(o) = o. Therefore, in particular, bothp(apr.(X)) and
apr... (p (X)) are empty, and we are done immediately. Hence, for the remainder
of the proof we may assunm¥éto be non-empty.

Assume(x,X') € p(@pr.(X)). Ifalso (x,x') € p(X), then(x,x') € apr_.(p (X))
follows immediately. So, assume that X') ¢ p(X). Thenx € X andx ¢ X.
Hence x € apr.(X), and having assumed that X') € p (apr. (X)), alsox’ € apr.(X).
Consequently there is aff € X such thai’ ~. x”. Then alsqx,x”) € p (X). Since,
bothx ~ xandx’ ~ x’, that(x,x’) € apr_q.(p (X)) follows, and we are done. -

The opposite inclusion, however, does not hold in general. For a counterexample,
consider a situation as pictured in Figure 8.8, in which there is a sibseE and an
equivalence relation such that there are some elementndy of Ssuch that neither

x nory are inX. Let there further be an equivalence relatiowith (x, z) € ¢ for some

zin X and(y, z) € ¢ for no zin X. Accordingly,x € apr.(X) andY ¢ apr.(X). Then,

(X,y) € apr_q.(p (X)), becauséx,y) € p(X) ande ® ¢ is reflexive. Howeverxis in

apr. (X), whereay is not and, thereforéx,y) ¢ p (apr.(X)).

We say a relatiorp on 2* is of finite characterif and only if p is a fixed point
of the operatiorapry on relations for soménite subsetX of A, i.e, if there is some
finite X C Asuch thap = apry(p) . We find that the bisective relations of finite charac-
ter on the set of valuations of a classical propositional languéggcoincide with the
relationsp (), for formulasy of L(A). In analogy with Theorem 2.4.1 on page 53 we
have the following theorem. Recall that(A) denotesp (¢) : ¢ aformulainL(A)}.
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Theorem 8.5.9 Let L(A) be a propositional language with A as propositional vari-
ables and S deno. For each finite subset B, A, let further Fix(aprg) be defined
asthe se{p € Sx S: pis bisective angh = aprg(p) }. Then:

ZA) = | Fix(aprs).

BCLA

Proof: First consider an arbitrary relatiop in Z(A). Then there is some for-
mula ¢ of L(A) such thatp = p(p). By Proposition 8.5.7p (¢) is bisective; we
show thatapry,, (p(p)) = p(p) proving that it is of finite character as well. As

p(p) C apla, (p(»)) is immediate, assumg,y) € @pra,) (o (¢) ). Then, there
arex,y € 2% such thax ~a(,) X,y ~ae) Y and(X,y) € p(p). Now assume
X € []. Thenx € apty([#]) = [¢]. It follows thaty’ € [¢] as well, and, hence,
y € apia, ([¢]) = [#]. Therefore(x,y) € p(¢).

For the opposite direction, consider an arbitrary bisective relatioffinite char-
acter. We may thus assume there to be a finite subset A such thaty = aprg(p)
as well as a subsét C 2* such thatp = p (X). If X is empty, we have = p (o) =
» = p(L). So, for the remainder of the proof, we may assufn® be non-empty.
We prove thaiX = aprg(X). Thenp (X) = p (a@prg(X)). In virtue of Corollary 2.4.2
on page 54 an® being finite, there is also a formulasuch thaf[¢] = aprg(X) and,
hencep (X) = p (@prs(X)) = p (#).

BecauseX C aprg(X) is immediate, we assumee aprg(X), for an arbitrarys
and prove thas € X. Then there is somg such thats ~g s ands € X. It follows
that(s,s') € p(X). Moreover, since ~g S and, trivially, boths’ ~g s and(s,s) €
p (X), also(s,s) € aprg(p (X)). By the initial assumptiongprg(p (X)) = p (X) and
therefore(s', s) € p (X). With s’ € X, finally, we may conclude thate X as well. -

The following corollary has a certain likeness with Corollary 2.4.2 on page 54
above, which characterized the extensions of the formulagAf¥ in a much similar
way.

Corollary 8.5.10 Let L(A) be a classical propositional language. Thef(A) coin-
cides with the set of bisective relations of finite characte2drthe set of valuations,
i.e.:

Z(A) = {aprg(p(X)): X C 2*and BC,, A}.

Proof: The inclusion of% (A) in { aprz(p (X)) : X C 2* andB C,, A} follows
immediate from Theorem 8.5.9. The inclusion in the opposite direction is an immediate
consequence a@prg(p (X)) = aprg(@prs(p (X))), which is an instance of a rough set
law, and again Theorem 8.5.9. -

As another corollary we find that, for propositional languagés) on afinite set of
propositional variablesz (A) is complete with respect to all bisective relations 6n 2

Corollary 8.5.11 Let A be a finite set of propositional variables on whicfAL is
defined. Thenz (A) is complete with respect to the bisective relation2tn
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Proof: Immediate Theorem 8.5.10. =

The relation aheorydefines over the valuations, however, can be characterized as
the limit of thefinite approximations of a proto-ordei.€., an empty or reflexive and
transitive relation) over the valuations. With a finite approximation of a relation over
the valuations we mean here the approximation of that relation relative to the equiva-
lence relation defined over the valuations by a finite set of propositional variables, ie,
relative to the coordinate square of a relatignwhereB is a finite subset of proposi-
tional variables. First, we prove two preliminary facts.

Fact 8.5.12 Letp be arelation over S. Assumdo be either reflexive and transitive
or empty. Then:

p = p({TpX: XGS}).

Proof: First assume that be empty. Then[, x = ¢, for eachx € S Hence,
p({1,x: xeS}) = {o}andp ({0}) = p(9) = . So, for the remainder of the
proof we may assumeto be both reflexive and transitive.

First assume thdly,y') € p ({1 x: x € S}), for arbitraryy,y € S Then,y € 1Tx
impliesy € 1x, for all x € S By reflexivity of p, we have(y,y) € p,i.e,y € 1y.
Withy € S thenalsg/ € 1y, i.e, (y,Y) € p.

For the opposite direction, assume tkwaty’) € p as well as thay € 1x, for an
arbitraryx € S Then,(x,y) € p. By transitivity then alsax,y’) € p, i.e, y €
1 x. Therefore|y,y') € p(1x), and withx having been chosen arbitrarily, eventually,
(v.Y) € p({Tx: x€S}). .

This fact has the following corollary, which says that the class consisting of the
reflexive and transitive relations over a set together with the empty relation can be
characterized as intersections of bisective relations.

Corollary 8.5.13 Letp be a relation over some set S. Then:

p is either transitive and reflexive or empty iff for soe 25, p = p(X).

Proof: The left-to-right direction is immediate by Fact 8.5.12. For the opposite direc-
tion, assume = p (X), for someX C 25, If X contains the empty set, then{p (X) :

X € X} containsp (), i.e, the empty relation. Hencgs (X) = Nyexp(X) = 0

and by the initial assumptiom, is empty as well. So, hencefor¥ may be assumed
not to contain the empty set. By Fact 8.5/X) is both reflexive and transitive, for
eachX € X. An easy check then establishes thaX) = [y p (X) is reflexive and
transitive as well. o

This result has as an immediate corollary that for a langudde on afinite set of
propositional variables, the class consisting of the relati5) for all theoriesI”

in L(A) is also complete with respect to the reflexive and transitive and otherwise empty
relations over the valuations.
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Corollary 8.5.14 LetL(A) be propositional language on a finite set A of propositional
variables. Then:

p is either transitive and reflexive or empty iff for sofi®f L(A), p=p(I).

Proof: Immediately by the Corollaries 8.5.11 and 8.5.14. o

The relationsp (I"), as defined by the theories of a languagé), however fall
to exhaust the set of reflexive and transitive, or otherwise empty relations over the
valuations ofL(A), if the setA of propositional variables is infinite. For, in any such
case, the subsets of valuations of langula@®) outnumber its formulas and for some
X C 2A there is no formulg in L(A) such thafly] = X. We find that for any suck,
there is no theory” of L(A) such that relatiop ({X}) equals the relatiop (I"). To
appreciate this observe tha{{X}) = p (X) and assume for eeductio ad absurdum
that there be somE such thap (X) = p (I"). Consider an arbitrary € I". By choice
of X, thenX # [y]. Moreover,p(X) C p(v), for otherwisep (X) Z p(v), which
would be absurd becaugg ") C p (7). By Fact 8.5.4, then eithet = ¢ or [y] = 2*.
Since[L] = @ and_L is a formula ofL(A), the former cannot obtain by choice Xf
Hence,[y] = 2" and, consequently, () is the universal relation over the valuations.
With + having been chosen arbitrarily and the initial assumption, it follows jpdth)
andp (X) coincide with the universal relation as well. HengdX) = p(T). This
however yields a contradiction, because, by Fact 8% .4, [T] would follow, which
is absurd withT being a formula of.(A).

As the next best thing, the following theorem characterizes the set of relations de-
fined over the valuations by the theories of a propositional language in the general
case.

Theorem 8.5.15 Letp be areflexive and transitive relation or the empty relation over
S, with S= 2* and A a set of propositional variables. Then:

p= ﬂ aprg(p) iff for some theory”in L(A): p=p ().
BCLA

Proof: If p is the empty relation, then so is any relatiapr (p). Hence,p = 0 =
(ec_a@PTs(p). Now observe that for the theoiyl }, the relationp ({_L}) is empty
as well. Thus, for the remainder of the proof, we may assyrteebe transitive and
reflexive.

For the left-to-right direction, assume= (g _,apfg(p) and letX =g {Tps :
s € S}. (Henceforth in this proof we omit the subscrijpin T,s) By Corollary 2.4.2
on page 54 above, there is a formylauch thatff¢] = aprg(X), for eachX € X and
each finiteB C,, A. Now let:

r* = |J{p: forsomeB c, A [¢] =aprg(X) }.
Xex
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We prove thap = p (I').

For the D-direction, assume an arbitrary p&s;s'’) to be inp (I"). Consider an
arbitrary finite subseB of A; we show thats, s') € aprg(p). Also considerf ,s. Then,
there is somey in I'* such thaf]y] = aprg(1s). Since(s,s) € p(O), in particular
(s,8) € p(y) and sos € [v] impliess’ € [y]. By reflexivity of p, trivially, s € Ts
anda fortiori s € aprg(1s) = [v]. Hence, als& € [y] = aprg(1s). l.e., for some
s’ € S boths ~g s" ands” € s, i.e, (55') € p. As trivially, s ~g S, we may
conclude thats, s') € aprg(p).

For theC-direction, observe that with reflexive and transitive and Fact 8.5.12 we
havep = p ({1s: se S}). Hence:

p = m aprg(p) = m a_pl’B(p({TS: SGS}))-

BCLA

Assume for arbitrary valuations and s’ that (s,s') ¢ p(I'*). Hence, for some
v € I'*, boths € [y] ands ¢ [v]. By definition of I'*, there is some finite
subsetB C, A and somes, in S such that[y] = aprg(1 ). Then, for all val-
uationss” such thats ~g s, 8" ¢ 1. Also, by transitivity ofeg, s” € T,
for all valuationss” with s ~g s”. Hence,(s,S) ¢ aprz(p(T%)). Since
p({Ts: s€S}) C p({T0}), we obtain(s,;s) ¢ aprz(p ({Ts: s€S})). Ac-
cordingly,(s,s') ¢ Ngc_a@PTs(p ({1s: s€S})).ie,(sS) ¢ p.

For the opposite direction assume= p (I") for some theoryl” of L(A). Then
p € Nec_a@Plg(p) is immediate. Assume thds, s') ¢ p; we prove thats s) ¢
Nec_a@Pfg(p). In virtue of the assumption, there is somesuch thats ¢ [v]
ands ¢ [v]. Now consider the finite seA(vy). For arbitrary valuations”’ and
s” such thats ~a(,) s’ ands ~a(,) s”, we haves’ € apiy. ([v]) = [V]
ands” ¢ apra.,)([v]) = [v]- Therefore,(s’,s”) ¢ p(y). It follows that
(s.8) & aptay(p (7). Asp(I) C p(v), also@pra.(p (1) S @ty (p (7).
Therefore,(s,s) ¢ apra,(p (I")) anda fortiori (s, ') ¢ (g _a@PTa(p (I)). Hav-
ing assumed that = p (I"), eventually(s,s') & (gc_a aPls(p)- -

Thus we find that the class of relations induced by theories of a propositional language
contains the empty relation as well as those partial preorders over the valuations that
can be considered the limit of their own finite approximations. Theorem 8.5.15 sets a
bound on the preference relations that can be expressed as a rplafigrior some
propositional theory" and, indirectly, demarcates the class of distributed evaluation
games from the more general class of games wWita2set of strategy profiles.

Closure Conditions for Set-Induced Relations

In classical logic a theory may be closed under its consequences without affecting its
deductive properties. At a semantical level, this fact is reflected in that the extension of
atheoryl" is identical to the extension of its closure under logical consequércen
generallI'] = [Cn(I)].
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Figure 8.9. Three intersecting set¥,, Y andZ. A pair (x,y) is in the relationp ({X, Y, Z})

the set of setgX, Y, Z} defines over the universewhenever one can reaghfrom y without

ever moving from an area to an area that is colored ligleg. (x,y) € p ({X,Y,Z}), for all
elementxin area 1 ang in the darker colored area 5. But any elementin area 2 and any element
in area 5 are incomparable with respecptg X, Y, Z}). Some reflection reveals that closing the
set{X, Y, Z} under intersections and unions would not distort this relation.

The relations over the valuations induced by theories, however, are more sensi-
tive in this respect. In particular, it is not in general the case that the relghiohi$
and p (Cn(I")) are identical. For an easy counterexample consider a propositional
language containing the propositional variabéesnd b. Obviously we havea Vv
b € Cn({a}). For the valuations» and {b} clearly ({b},0) € p({a}). How-
ever, ({b},0) ¢ p({a,aVvb}), because{b} I av bbutg ¥ av b Hence,
({b},2) ¢ p(aVvb). The same argument holds fpg. It is obvious, however, that a
theory I" may generally be closed under formulas thatlaggcally equivalentn the
classical sense without affectipg(I").

At a set-theoretic level, a set of se€cannot in general be closed under supersets
without affecting the relatiop (X). On the other hand, different sets of sets may very
well induce the same relation on a univerise, p (X) andp (Y) may be identical even
if X andY are distinct. This subsection aims at making precise the conditions on sets
of setsX andY that have to be satisfied for the relatignéX) andp (Y) to be identical.
Closure conditions on theories that preserve relations induced by theories then follow
as a matter of course. We find that relatigngX) are slightly better behaved than
relationsp (X) and, therefore, we will focus on the former first.

As an example of monotonicityy, ({X, Y}) includespy ({X,Y,XNY,XUY}).

The opposite inclusion, however, also holds in general. For a generalization of this
fact, define fotX a set of subsets of a s&t

XY =gt {lei X/QX} X =g {ﬂx/: X/QX}.

The following proposition says in effect that, for any set of sétselation p, (X) is
invariant under taking arbitrary intersections as well as under taking arbitrary unions.

Proposition 8.5.16 Let X andY be sets of subsets of a set S such that Y C
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Proof: By monotonicity immediately, (Y) C p, (X). Therefore, it suffices to prove
thatpg (X) C pg (Y). Consider arbitrarg, X' € Ssuch thai(x, x') € p, (X). Consider,
furthermore, an arbitraryy € Y and assume that € Y. We prove that< € Y.
EitherY = N X' orY = JX/, for someX’ C X. Consider thisX’. In the former case,
consider an arbitrarX € X’. Then bothX € X andx € X. Since(x,X) € pg (X), in
particular(x,x') € po(X). Hencex € X. With X having been chosen as an arbitrary
element ofX’, finally x € (| X’, and we may conclude thatc Y.

In the latter case —e, if Y = [JX’ — we havex € X, for someX € X'
As X' C X, alsoX € X and with(x,x') € py(X), in particular(x,x’) € po(X). It
follows thatx’ € X and, subsequently, € X', i.e,X €. 4

Corollary 8.5.17 LetX andY be sets of subsets of a set S. Thei Y C X"
impliespg (X) = po (Y). Similarly, if X C Y C X thenpg (X) = pg (Y).

Proof: In virtue of monotonicity it suffices to show that, (X) = p, (XY") and
that po (X) = po(XY). Evidently, X C X" as well asX" C X"V, With
Proposition 8.5.16p, (X) = po(X™). And again with Proposition 8.5.16, also,
pPo (X™) = po (X"V). Hence,py (X) = po (X). The proof forp, (X) = po (XY)
is fully analogous. .

For relations induced by a theory over a set of valuations, this corollary means that a
theoryI” may be closed under arbitrary conjunctions and disjunctions without affecting
the relationpo(1").

The ground has now been cleared to formulate exact conditions under which the
relationsp, (X) andp, (Y) are identical, for possibly distinct sets of s¥tandY.

Proposition 8.5.18 LetX andY be sets of subsets of a set S. Then:

po(X) =po(Y) iff X" =Yy""

Proof: For the right-to-left direction, observe thxt'Y = Y™ immediately im-
plies po (X"Y) = po (YV). Since, by Corollary 8.5.17, botp, (X"Y) = py(X)
andp, (X™Y) = pgy (X), we are done.

The left-to-right direction is less straightforward. Assume the contrapositive
XY £ YOU - Without loss of generality we may assume there beXa@d S such
that X € XY andX ¢ Y™Y. Consider thisX. Observe that triviallyp C Y"
and|Jo = 0. Henceo € Y™V, Moreover, sinces C Y and(\o = S bothSe Y"
and{S} C Y". SincelJ{S} = S alsoS e Y"V. It follows thatX # @ andX # S.
Now consider the set*, defined as:

Y* =g {YGYOZ YgX}.
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Clearly, | JY* € Y"Y andJY* C X. Due to the assumption that ¢ Y™, how-
ever,X # |J Y*. Hence, there is som& € X such thax* ¢ [JY*. Consider thisc".
We prove that ax in Sexists such that is not containedXnand for which it is more-
over the case that, forafl € Y, x € Y, if x* € Y as well.l.e:

(%) there is ax ¢ X such that for allY € Y: x* € Y impliesx € .

This suffices because, wikti € X then(x*,x) ¢ po(X). Then(x*,x) ¢ p, (X""), be-
causeX had been assumed to bedp(X""). With Corollary 8.5.17, thep, (X™¥) =
po (X) and (x*,X) ¢ po (X) follows. Moreover, als@x*, x) € po(Y), for eachy € X.
Hence(x*,X) € py (Y), which would prove the proposition.

We prove(x) by areductio ad absurdumSo assume:

() for all x ¢ X thereis a¥ € Y such that botix ¢ Y andx* € Y.
Then, consider the s&t*, defined as:

Y =g U {YeY: x¢Yandx* € Y}.
XEX

By (xx) and the fact thak # S we haveY** # @. Obviously,Y** C Y and so
A Y** € Y. By constructionx* € (| Y**. Moreover, by construction anex), also
N Z** C X. It would follow that( Y** € Y* as well as that* € | J Y*, quod non

Corollary 8.5.17 has as a special case hatX) = p, (X"), which signifies that
closing a set of subsek under arbitrary intersections and then arbitrary unions does
not affect the relation induced on the universe. As a corollary of Proposition 8.5.18 we
now find, moreover, thaX™" is also maximal in this respedte., thatX can not be
extended beyond"" without distorting the relatiopg (X).

Corollary 8.5.19 LetX andY be sets of subsets of S. Then:
Po (X)) = pg (XY UY) iff Y C X

Proof: From right to left the proof is trivial. So assume thag (X)) =
po (XY UY). It can easily be verified that UY C XY UY C (XUY)"". By
Proposition 8.5.16, themy (XU Y) = po (XY UY). In virtue of the same propo-
sition, alsopy (X) = po (X™Y). With the initial assumption then it follows that
po(X) = po (XUY). Proposition 8.5.18 then give§™” = (XUY)™. Because,
XMWUY C (XUY)Y, thenX"Y UY C XY, We may conclude that C XY, A

Similar results can be obtained for relatign$X) induced by sets of set. Un-
fortunately, things are not as neat as fgr( X). Because (X) andp, (X) are distinct
only if X contains the empty set (Proposition 8.5.2), Proposition 8.5.18 also has the
following corollary for p (X).

Corollary 8.5.20 LetX andY be sets of subsets of a set S. Then:
p(X)=p(Y) iff XYU=Y"orpeXnYy.
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Proof: Immediately by the Facts 8.5.2 and 8.5.3 together with Proposition 8.5.18.

It is, however, not in general the case thatXonot containing the empty set the rela-
tions p (X) andp (X"V) coincide. Observe in this respect tht always contains the
empty set, since) » = @ andp C X. Moreover,p (X) need not be the empty relation,
not even ifX contains disjoint sets. In any such case, howeXéerwill contain the
empty set angb (X) will also end up empty. In order to obtain the desired closure
properties, define faX a set of subsets of a s&t

XY =g {UX': X' CXandX' # 0o}
XT =g XU{OX: X' CXand X #0}.

The idea behind these definitions is essentially the same as thiseafd X", be it
that they prevent the empty set to be include&Xthor Y™ if, and only if, X does not
conclude the empty set. It is therefore not surprising ¥taandX™ are in extension
very similar to X" andX", respectively.

Fact 8.5.21 For X a set of subsets of some set S:

i _ {XU—{Q)} if o ¢ X, “ {X“—{@} if o ¢ X,

XY otherwise XN otherwise

Proof: For the first case, first assume¢ X. Observe thap ¢ X“. For, assuming
otherwise would that = [JX’ for some non-emptX’ C X. This would imply
thatX’ = {9} and hences € X, quod non Hence X" C X" — {@} and it suffices to
prove the opposite inclusion. Consider an arbittérg X — {@}. Then,X # @ and
X = |JX forsomeX’ C X. MoreoverX’ # @ by assumption, and $§g X’ = X € X".
Second, assume thate X. Observe that triviallyx" C X“. Hence it suffices to prove
the opposite inclusion. Consider an arbitrarye XY, If X = @, observe that by the
assumptiof@} C X. Since{@} # @, itfollows thatJ {#} = o € X". IncaseX # @
the proof is like the case in whigh ¢ X.

For the second case, first assume that X. Some reflection on the definitions
reveals that thew ¢ X™ and alsoX™ C X" — {@}. Proving the opposite inclusion,
consider an arbitrarX € X" — {¢}. Then,X = (X’ for someX’ C X. It follows
that X’ # ¢ and so X’ = X € X", Finally, letg € X and observe that" C X".
Hence, consider an arbitrady € X". If X = @, we are done immediately by the
assumption thab € X. Otherwise, the reasoning is like the case in whicfd X.

On basis of this fact and employing Proposition 8.5.16 the following closure properties
for p (X) are obtained.

Proposition 8.5.22 Let X andY be sets of subsets of a set S such that Y C
X2 UX™. Then,p (X) = p(Y).
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Proof: First assume € Y. Then,o € X" or o € X". In either casep € X, by
Fact 8.5.21. Thernp (X) = o = p(Y). So, for the remainder of the proof we may
assume thap ¢ Y. Then,o ¢ X and in virtue of Fact 8.5.21 bot- = X" and
XM = X", HenceX C Y C XY UX" and by Proposition 8.5.16, then (X) = py (Y).
With the assumption that ¢ X and Fact 8.5.2p (X) = py (X) andp (Y) = pg (Y)
and we may conclude that(Y) = p (X). .

As corollaries of Proposition 8.5.22 we find that a thedrynay be closed under dis-
junctions andtonsistentonjunctions without this having consequences for the relation
induced on the valuations.

Corollary 8.5.23 LetI" be a theory in a propositional languaggA) Let ¢ and ¢
be formulas inl". Then,p (I") = p(I" U {¢ V ¢}) . Moreover, if{y, 1} is classically
satisfiable, then alsp (I') = p(I" U {¢ A0 }).

Proof: Immediately by Proposition 8.5.22. %

8.6 Conclusion

It becomes natural to conceive of the valuations of a propositional language as strategy
profiles of some strategic game, if the control over the values of the propositional vari-
ables is distributed over different agents. From a game-theoretical perspective, there
seems little reason to confine one’s attention merely to games involving two antago-
nists. In the general case, control over the propositional variables may be distributed
over any nhumber of players.

Holding on to the principle of players as verifiers of a theory, the notion of relative
logical strength can be invoked to fix the preferences of the players over the valua-
tions. The general idea is that a player prefers a valuation to another if it satisfies
a logically stronger subtheory of the theory he aims to verify than the other. Thus
the players’ preferences acquire a more gradated structure than those of the previous
chapter. There they merely distinguished valuations that satisfy the whole theory from
those that do not. The additional structure afforded thus, moreover, sustains the use of
game-theoretical solution concepts in the selection of socially conspicuous valuations.

These considerations were the makings of the concept of a distributed evaluation
game in this chapter. The next chapter they will be put to work. The issue we will be
concerned with can informally be formulated as followghich conclusions to draw
from a family of theories, given that for each of these theories there is a player with
control over a set of propositional variables who seeks to satisfy his theory as well as he
can by choosing appropriate values for the variables in his conti®s is a logical
problem phrased in game-theoretical terms and distributed evaluation games provide
the game-theoretical structure needed for our proposal as to its resolution.






Chapter 9

Game-theoretical Consequence

9.1 Introduction

In their Theory of Games and Economic Behawon Neumann and Morgenstern ar-
gued that situations of conflicting interests present a problem that had been “nowhere
dealt with in classical mathematics” (von Neumann and Morgenstern (1944), p. 11).
They maintained that, due to its interactive nature, a conflict situation could not be
analyzed as a traditional optimization or decision problem. Rather, it is a “peculiar
and disconcerting mixture of several maximum problenibid(, p. 11). An opti-
mization or decision problem for an individual can be represented formally as a func-
tion f (X, ...,%). The individual's predicament is then to choose values for the vari-
ablesxo, . .., X, SO as to maximize the value df%o, . .., %,). The variables on which

the function depends are regarded as decision variables that are in the control of the in-
dividual. Pursuing this conceptualization, a situation of conflict could in similar terms
be understood as@llectionof functionsg; (%o, . . . , X,), each one of which one of the
participants tries to maximize by choosing suitable values for the variables in a way
that furthers his idiosyncratic interests. Moreover, the variables on which these func-
tions depend may overlap and the parties involved may have control over only some
of the relevant variables. This makes that the optimal choices for an individual’s vari-
ables, from his perspective, may be dependent on the very choices the other participants
make in their effort to maximize their functions from their respective points of view.
The issue may thus evoke a sense of immanent circularity.

The variety of interests as well as their interdependence make that there is no uni-
vocal principle as to what to consider a reasonable solution of a situation of conflict.
Traditional notions of optimality were thought to be no longer adequate for such prob-
lems and new mathematical notionswiz., game-theoretical solution concepts — had
to be developed to take over their roikig., page 39, also compare the introduction to
this thesis). In non-cooperative settings Nash equilibrium is archetypical in this respect.

Having distinguished optimization problems and game-theoretical problems thus,

215
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the satisfiability problem for Classical Propositional Logic (CPC) could be classified as
an optimization problem with respect to truth. A formula — or a theory, for that matter
— is thought of as a function in the propositional variables that can take one of two
values, true or false. The issue is then to choose values for the propositional variables, if
that is possible, so as to satisfy the formula in question. Classical logical consequence
can be understood in similar deliberative terms: a formufallows from a collection

of premissed” if and only if, each choice for the truth values of the propositional
variables (henceforth galuation that succeeds in satisfying all formulas ih is a
choice that makeg hold as well.

As in this formulation there is present a definite element of choice with respect to
the possible truth-assignments, we come to think of propositional variables as binary
decision variables that are somehow controllable. The accompanying image of a log-
ical possibility is that of a situation that obtains as the result of the decisions of an
individual, rather than that of an unalterable state of affairs. This is the very view that
was taken in the previous chapters of this thesis. In line with this, it also becomes nat-
ural to consider the case in which control over the propositional variables is distributed
over multiple agents. Logical space then assumes a game-theoretical aspect with the
valuations as strategy profiles. Pursuing this line of thought, each of the agents could
be bestowed his own satisfiability probleie,, a theory to satisfy.

In analogy with the relation between optimization and game-theoretical problems,
these considerations give rise to the following issue, which can be regarded as the
game-theoretical counterpart of the classical problem of logical consequfigeh
conclusions is one to draw from a family of theories, given that, for each of these
theories, there is a player who controls a (disjoint) set of propositional variables and
who seeks to satisfy his theory as well as he can by choosing appropriate values for
the variables in his controlThis is a logical question, at the basis of which there is a
game-theoretical problem. For its resolution we resort to the game-theoretical notion
of amaximum equilibriumintroduced on page 28 of this thesis.

In the previous chapter we saw how each particular distribution of the propositional
variablest and each particular family’, of theories define a unique strategic game,
viz,, the correspondindistributed evaluation gamgiven by G(I;). We propose to
consider as the consequences of the family and the distribution, those formulas that
are satisfied in maximum equilibria of the accompanying game. This defines a game-
theoretical concept of consequence, which conservatively extends to a concept of con-
sequence that relates pairs of families of theories. The following example illustrates
the intuitions behind these considerations.

Example 9.1.1  Consider a situation involving the propositional langubgga, b})

with only two variablesa andb. Let 7 be the partition{{a},{b}} of this set of
variables. Suppose further that the player with control weishes to satisfia A —b

and that the player with control overdesires the formula:(a Vv b) to be true. The
matrix of the ensuing distributed evaluation game is depicted in Figure 9.1. There
are two maximum equilibriayiz., the valuations{a} and {a, b}. Sincea satisfied

by both equilibria,i.e,, in both the valuationga} and{a, b}, we find that,e.g, ais
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{a}

Figure 9.1. The row player has control over and the column player assigns valuebtdhe
numerical values merely represent trelinal structure of the players’ preferences. The two
maximum equilibria are in boldface. Both satisfy

a game-theoretical consequence{¢a A —b} oy {=(@V D)}y }. However,b does
not follow game-theoretically because it not satisfied by the valudi@n although
the latter is an equilibrium.

The distributed evaluation game imposes a game-theoretical structure on logical
space for game-theoretical consequence in a similar way as the set of extensions of the
formulas a theory consists of imposes a set-theoretical structure on the set of valua-
tions in a classical setting. By means of a solution concept particular valuations can
then be distinguished from others and investigated with respect to the formulas and
theories they satisfy. The function of the solution concept, here maximum equilibrium,
can thus be compared to that of the set-theoretic operation of intersection: singling
out particular valuations on the basis of the structures induced by theories on logical
space ¢f., Figure 9.2). The image these reflections are meant to evoke is that of a com-
mon pattern in which theories define a structure over the set of valuations and relative
to which particular valuations are singled out as the more significant ones and stud-
ied with respect toge.g, the formulas and theories they satisfy. Commonly, it is the
valuations that are in, a specified sense, optimal with respect to this structure that are
semantically relevant in this wa¥.g, the extensiorfI"] or the maximum valuations
in the relationp (I") for classical logic, the most normal worlds within the information
set relative to an expectation pattern for Veltman’s update semantics for detduilts (
Section 8.3), and the maximum equilibria for game-theoretical consequence.

The additional structure of distributed evaluation games makes that the logical con-
cept of game-theoretical consequence does sufficient justice to the interactive and in-
terdependent nature of the underlying game-theoretical issues. In a conflict situation,
a player may have to decide in the face of the possibility that whether he can achieve
a most preferred outcome may depend on the choices of the other players. This con-
tingency need not leave the player at a loss — nor the game-theorist examining the
game from the outside. A particular choice of action may thus guarantee a player an
optimal outcome relative to each possible choice of action of the opponents, without
guaranteeing a most preferred outcome in all cases. For each course of action a player’s
opponents may decide upon, there is a set of outcomes that are still possible. The out-
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Figure 9.2. Let X be a set of valuations. X coincides with[I"] the formulay is a classical
consequence af', because of the inclusion &fin [¢]. If, however, the valuations are looked
upon as the strategy profiles of some gaXeould, e.g, have been singled out the set of the
maximum equilibria of a distributed evaluation ga@é{ﬂ}ieﬂ). Then,y is said to be game-

theoretical consequenas {11}, .

comes relevant for determining the maximum equilibria of a game are those that are
optimal relative to the player’s preferences within any such set, rather than those most
preferred by a player within the whole set of outcomes.

9.2 Defining Game-Theoretical Consequence

The purport of the previous section is that game-theoretical consequence can be re-
garded as the game-theoretical counterpart of classical logical consequence, if the lat-
ter is understood in decision theoretical terms. We suggested to consider as game-
theoretical consequences of a family of theordgsindexed by a partitionr of the
propositional variables those formulas that hold in all maximum equilibria of the dis-
tributed evaluation gam@(I ;). In this section we give a precise definition.

Just as the notion of classical consequence that relates theories and formulas ex-
tends to a relation between theories, the concept of game-theoretical consequence can
conservatively be extended to a relation that connects families of theories. On a se-
mantical level this extended relation of game-theoretical consequence compares the
maximum equilibria of two distributed evaluation games. With each family of the-
ories I', we associatéwo games: G(I';) as well asG(I;). Recall that the latter
game is basically identical to the former, be it that the preferences of each player
are given byp (I';) —i.e, by the relationp ({—y: v € I}) — rather than by (I)

(cf., page 193, above). This provides us with the appropriate dual notions to define
game-theoretical consequence. Throughout this chapter, we will assume that the set of
propositional variables of the propositional languages considered is not empty.

Definition 9.2.1 (Game-theoretical consequencdjor partitionsr and=’ of a set of
propositional variables and families of theoried”, and®,. of a propositional lan-
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guagel(A), define:

I FO.
iff
no maximum equilibrium o6(I’;) is @ maximum equilibrium 06(© ).

For any pairr andz’ of partitions ofA, we denote byl .- the binary relation defined
as{(I'x,0.): I'y £ O }. Thesef{A, » : 7' € Part(A)} we denote byA,,
omitting the subscript when clear from the context.

Observe that this definition is quite in line with the truth-theoretical characterization of
classical consequence. The standard semantics for classical propositional logic com-
pares the intersection of the extensions of the formulas in the one theory with the union
of the extensions of the formulas in the other theory with respect to set inclusion. Due
to the duality of union and intersection, this warrants a well balanced and symmetric
system as exemplified by its sound and complete sequent calculi. In the definition of
game-theoretic consequence duality is likewise the guiding principle. Observe that a
theory© follows classically from a theory™ if and only if no valuation that is in the
extension of" is in the extension o{w?: ¥ e 9}, witness the following equalities:

@) = U{lvl: veo} = N{IW: veo} = [{: veob}],
Hence, also:

[I]cqo)y iff [IJC[{w:veo}] iff [IIn[{: veo}]=0.

However cumbersome, this paraphrasis of the semantical characterizition of classi-
cal consequence exposes its structural similarity with the formal definition of game-
theoretical consequence.

For an example of the workings of this definition the reader consult Figure 7.1
on page 159, which shows thgf{a} ,, , {a A b}, } F {{anb} g {aly, | as
well as{ {a}y . {an b} (1) }E{{b — a}y {an b}y, }. Figure 9.3 provides
a slightly more complicated example, in which two distributed evaluation games are
compared that differ in the assignment of the propositional variables to the players.

In the remainder this chapter concerns this game-theoretical consequence relation
as based on maximum equilibrium. In the next section we will investigate how it be-
haves with respect to various structural and logical properties such as monotony, re-
flexivity and cut. In this context its relation with classical propositional logic will
come to be scrutinized as well. We also give a set-theoretical characterization of game-
theoretical consequence using the machinery provided by rough sets.

9.3 Structural Properties

In Section 2.3, above, we introduced a propositional logic as a pair consisting of a lan-
guagel (A) on a set of propositional variablésand a consequence relation connecting
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o {c¢¢ {d {cd} o {b} {d} {bd}
ot[ o1 o0o] 00 10] 10 1] 11

(%) (%)
10 ,/00 ,l10 /00 |, o1 .00 ,lor .11
01| 11| o0o| 10 10| oo 11| o1

{a} {a}
00 .10 o0 , 10 |, 11 o1 11 o1
00| 10| o1 11 11| o1 10| o0

{b} {c}
10 ,/00 |11 o1 o1 ,/11 ,loo ,[120
00| 10| o1 11 11| o1 10| o0

{a,b} {a,c}
00 .10 ,lo1 |11 11 /o1 10 ,l00

Figure 9.3. In the game on the left the preferences of the row player has controbawed b

and entertains preferences that are captured by the formwlag andb A d. The preferences

of the column player, who has control oweandd, are summarized by the formulés\ b) A c

andb < d. The payoff entries indicate the ordinal preferences assuming the product order-
ing over the string®0, 01, 10 and11, i.e, 11 and00 are top and bottom, respectively, ant
and10 mutually incomparable. The matrix on the right depicts the distributed evaluation game
G({{a=bcnd}y,,, . {-(@ave)Abc—d},g ). The valuation{a,c} (indicated by

the number six in the right-bottom corner) is a maximum equilibrium in both games, and there-
fore { {a« b,cAd} ., {~(aVve)Ab,ced}y,,, } does not follow game-theoretically
from { {a < c,bAd} ., {(@Vb)Acb—d} 4}

theories ofL(A). Game-theoretical consequence, by contrast, is defined between fam-
ilies of theories. This reflects exactly the disparity in the distributed and interactive
nature of the problem underlying game-theoretical consequence and the decision theo-
retical character of the one at the basis of classical consequence.

We propose to extend the formal notion of a propositional logic for a propositional
languagel (A) as consequence relation defined over the families of theorie$A)f
indexed by partitions oA. Although this might seem a radical departure from the
original notion of a propositional logic, it is rather meant to conservatively extend it.
Made explicit in this manner, the concept of control over propositional variables is
rendered amenable to logical analysis.

Classical propositional logic reappears under a guise. The following proposition es-
tablishes game-theoretical consequence as a conservative extension of classical propo-
sitional logic. Intuitively, it says that the game-theoretical problem of consequence
reduces to that of classical consequence if there is only one player who wields control
over all propositional variables.
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Proposition 9.3.1 LetI” and® be theories of a propositional languag€A). Then:
{IaYE{Op} iff I'FPCO.

Proof: Since, in bothG({I'x}) andG({6a}) in either game there is one player, here
denoted byA, who has control over the full set of propositional variables. Accordingly,
the set of maximum responses of playés identical to the set of maximum equilibria

in both games. Hence, in virtue of Proposition 8.2.3, it suffices to prove that the set of
maximum responses of these player€if{I’x}) and those irG({©x}) coincide with

the sets of maximum elements pfI'x) and g (©,), respectively. First observe that

for any two valuations ands':

(s_assn) = (SNA)U(SNA) = ous = s.
Consequently, for any valuati@we may reason as follows:
semax(p(In)) iff forall s':(s,s) € p(In)
iff forall §': ((S_a,Sh),S) € p(In)
iff sis amaximum response férin G({Ia}).

In a similar fashion we can demonstrate teat max(p (©a)) if and only if sis a
maximum response fakin G({Oa}). =

The next proposition also connects game-theoretical consequence and classical propo-
sitional logic. It guarantees the extrapolation of negative facts about the former to the
latter.

Proposition 9.3.2 Letr and~n’ be partitions of a set of propositional variables A and
let I, and @, be families of theories in(A). Then:

r. ke, imples | JIi+¢ 6

iem ien’

Proof: It suffices to show that), . [I7] is included in the set of maximum equilibria

of G(I';) and that the every valuatigthat isnota maximum equilibrium irG(@,-)

is included in ;... (@;). Both claims follow from Proposition 8.4.5, the former im-

mediately, the latter by some additional but straightforward set-theoretical reasoning.
_{

In the opposite direction, the proposition does not hold in general. If some trivializing
requirements are met, however, it does. The idea behind the next result is that if each
of the players have control over all propositional variables on which the formulas of
the theories representing their respective preferences depend, then the they can each
achieve their individual ends independently of the decisions the other players make.
In any such case there is no interesting interaction between the players. Each of them
lives and acts as it were in his own compartment of the world demarcated by the propo-
sitional variables he controls.
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Proposition 9.3.3 Letr andn’ be partitions of a set of propositional variables A and
let I and @, be families of theories in(A). Assume thaf\(v) C i, forall = € =
and ally € I'j, and thatA(¥) C mj, for alli € #” and all¥ € ©;. Then:

U I -¢P¢ U e, iff I.E6O,.

iem ien’

Proof: The right-to-left direction is dealt with by Proposition 9.3.2. For the opposite
direction, we reason as follows.

If Uie, I'i contains a contradiction| J,. I'i +"¢ (J.., ©; holds trivially.

In this case it is equally trivial that the gan®(I;) has no maximum equilib-
ria, as(ic, p(I') = . Similarly, if ;.. ©; contains a tautology, then also
Uier i FP€ Uie, ©i. Observe thap (i) is the empty relation for tautologies,
and hence the gan®(@,.) has no maximum equilibria. Accordingly, also in this
case[l’; F ©.. So, for the remainder of the proof we may assurje, I'; to contain
no contradictions and),_., ©; no tautologies.

Assumel ., I F°P¢ (U, ©i. Assume further an arbitrary valuatianto be
a maximum equilibrium of5(I;). First observe that now I ~ for all v € I'; for
alli € . To appreciate this consider an arbitrary 7 and an equally arbitrary € I';.

In virtue of the opening remarks of this proof we may assume there to be a valslation
such thas' I +. Now consider the valuatiofs_;, ). By definition(s_;,s) ~; s and
with A(v) C 7, we also have thats_;, §) I+ . Moreover, withs being a maximum
equilibrium, in particular((s,i,s’),s) € p (7). Hences I v, and withi and~ having
been chosen arbitrarily, also-- | J;,. I'i.

By the assumption, then, there isiag 7’ as well as @} € ©; such thats - ¥.
Since we could assunieto be no tautology, there is some valuat®such thats' ¥ 9.
Now consider the valuatiofs_;, §). Recall that we had assumed tigt}) C ;, and
observing thafs_i,§) ~i S gives us(s_;,§) ¥ 9. Hence,((s_i,s),s) ¢ p (V).
Eventually, we may conclude thais no maximum equilibrium of the gamé(®.)
and withs having been chosen as an arbitrary maximum equilibriu@(ifi; ), we are
done. o

Observe that since the s&fy) of propositional variables on which the interpretation

of the formulay depends is trivially a subset of the set of all propositional variables,

Proposition 9.3.1 can also be obtained as a special case of Proposition 9.3.3.
Proposition 9.3.1, above, has as an immediate consequence that game-theoretical

consequence is consistent in the sense that not every family of theories follows from

any other. For one, since classically#“"¢ @, we have game-theoreticallypa} ¥

{oa}. In a similar fashion Proposition 9.3.2 implies that each of the relatigns is

consistent as well.

Proposition 9.3.4 (Consistency) For [A) a propositional langage, letr and 7’ be
partitions of A and letl”, and @ be families of theories in(A). ThenI’; ¥ @/, if
I'' = ¢ and®; = @, for each ic 7 and each ic .
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Proof: Merely observe that),.. I = ¢ and{J,.,, @i = ¢ as well. Since classi-
cally @ ¥CPC ¢, the claim follows immediately from Proposition 9.3.2 above.

Game-theoretical consequence as introduced in this chapter is based on the notion
of maximum equilibrium rather than maximal equilibrium. In virtue of this choice
game-theoretical consequence is monotonic. Adding more formulas to the theories
constituting a family renders the preference relations in the corresponding games to
be more refined. This observation together with Proposition 2.1.1 on page 28 secures
monotonicity for game-theoretical consequence.

Proposition 9.3.5 (Monotonicity) LetI’, and @, be families of theories in a lan-
guage L(A), indexed by the partitions and =’ of A. Let, furthermoreI™. and ®’.
also be theories such thdt; C I, for eachic m, and®; C @), for eachic «'.
Then:

I.E@, imples I'' FO.,.

Proof: For eachi € «, I} C I7, impliesp (I7) C p(I3). Similarly, p (©]) C

p (), for eachi € #’. By Proposition 2.1.1 on page 28, it follows that the maximum
equilibria of G(I';) are included in those dB(I’;), and the maximum equilibria of
G(©7,) in those ofG(@,). Now assume for contraposition th&f. ¥ @’,. Then
there is a strategy profiethat is a maximum equilibrium in bo®®(I’,) andG(@7.,).
Consequentlys is also a maximum equilibrium in bot®(I";) andG(@,) and so
I, ”6e.,. 4

As a consequence of the Propositions 9.3.3 and 9.3.5 we hav@®thdollows
game-theoretically fronT",, if the family of theoriesI, contains a contradiction or
if the family of theories® . contains a tautology. The following proposition captures
this point.

Proposition 9.3.6 Letr and~’ be partitions of a set of propositional variables A and
let I, and @, be families of theories in (). Then,I’: F @, if either |J,.. I}
contains a contradiction o J, .. ©; contains a tautology.

Proof: First assume that for somec =, the theoryl} contains a contradiction®.
Then classicallyy* € ¢. Observe thal(y*) = @, and so, trivially,A(y*) C .
By Proposition 9.3.3, thed™, F @7, where © = ¢ for eachj € ', I'l = 0
for eachj € = distinct fromi and I = {y*}. By monotonicity of game-theoretical
consequence (Proposition 9.3.5) thBp £ ©,.. If ®; contains a tautology* for

somei € 7', the argument runs along similar lines. =

In stark contrast with these reassuring results, which point at important similarities
between the classical and the game-theoretical notion of consequence, we find that di-
agonality of the consequence relation is no longer guaranteed. Diagonality is important
property of classical consequence,, ¢ - ¢, for all formulasy. However, for game-
theoretical consequence it is not in general the caselthat I';, as the following
example demonstrates.
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{a} {a}

Figure 9.4. For I'; given by {{aA b}y {an b}{b}}, the matrix on the left represents the
extensive gamé& (I ) and the one to right the gan@& ;).

Example 9.3.7  Again consider the classical propositional language contaiaing
andb as only propositional variables. Lét{a},{b}} be the partitionr and letI’.
denote{{aA b}, ,{aA b}, }. The matrices of the game&(I’;) andG(I;) are
represented in Figure 9.4. Observe that the valuatidgd®a maximum equilibrium in
bothG(I';) andG(I';). Hence{{aA b}, {an b}, } ¥ {{aA b}, {aA b}y,

However, it may still be the case th&t, F I, for some partitiont and family of
theoriesI;. Similarly, for any partitionsr and=’ there may be formulag such that
I'. E O, if I and®, are such thal} = ©; = {¢} foralli € = andj € «'.
Whenever this is the case we say that that./ is diagonal with respect te.

Some form of reflexivity can, of course, be rescued by imposing the trivializing
restrictions on the families of theories of Proposition 9.3.3. This gives rise to the fol-
lowing proposition.

Proposition 9.3.8 (Modified overlap) Letr and#’ be partitions of a set of proposi-
tional variables A and lef, and @', be families of theories in(A). Assume that
A(v) Cmj, foralli € wand ally € I'i, andA(y) C 7, foralli € 7/ and ally € ©;.
Then,I'x E O, if Ui, LN Uic, ©1 # 0.

Proof: Immediate consequence of the Propositions 9.3.2 and 9.3.3, above and the fact
thatoverlapholds for classical propositional logic. o

9.4 Control, Consequence, and Coalitions

A characteristic feature of game-theoretical consequence is the distribution of control
over the propositional variables. The families of theories game-theoretical consequence
connects may be indexed by different partitions of the propositional variables. A formal
topic that suggests itself is how the set of game-theoretical consequences of a family
of theories indexed by one partition relates to the set of game-theoretical consequences
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of a family of theories indexed by another partition. In order to assay this issue with
some success, we need some understanding of the ways theories can systematically be
combined into one theory and how a theory can be distributed over various theories. In
Section 8.4 we have already touched upon this issue, addressing one particular way of
combining theoriesyiz,, by simply taking their union.

Game-theoretical consequence brings within the scope of logic the notion of dis-
tributed control over the propositional variables. Classical consequence is the border-
line case in which all control is concentrated in one player. A singleton collection of
theories{ "} will invariably be indexed by the whole set of propositional variables. In
general, however, a family of theories can be indexed by various partitions in a variety
of ways. Moreover, a game-theoretical validity = @, depends both on the theories
in I and®,, and on the way they are indexed by the partitianand=’. An alter-
native indexing of the the same collection of theories by the same partition may have
repercussions with respect to what follows game-theoretically from that collection of
theories.

In the definition of classical consequence we distinguished a subrelétion for
each pair of partitiong and~=’ of the propositional variables. Together these relations
make up the sed , and this section concerns its internal structueg, how the various
relations/A .. relate to one another.

Proposition 9.3.2 says that, in some some sense, the relétign ay) is stronger
than any other relation . ). Some caution is here in place as we have not made clear
yet what ‘in some sense’ signifies in this context. Obviously, it is not in general the case
that A(¢ay,¢a}) coOntainsA . . in the set-theoretical sense, as they relate families of
theories indexed by different partitions. Still, every validitydp ..y has a counterpart
in Agay,{a}) involving the same formulas. As the main result of this section, we find
that this observation can be generalized as to hold between any two reldtiops
and A¢ -y such thatr < 7" andn’ < 7”’. To this end we associate with each
Az 7 in Ay, the proper logicd; |, — i.e, a relation between theories bfA) — as
follows:

AL o = {(Uiew E’Ujéw/ @i) c InE @W’}'

Then defined; »» < Apr gz as/ljm, C A;/,yﬂ,,/. Recall that the partitions over a
set of propositional variables possess a definite order-theoretic structure, as they are
ordered as a complete lattice with respect to their coarseness as follows.

/

7 < iff forall xe «, thereis ay € 7’ suchthak C y.

Intuitively, 7 < =’ denotes thatr is at least as fine as’. Since, ordered thus, the
set of partitiondPart (A) overA constitutes a complete lattice, so does the direct prod-
uctPart (A) x Part(A).

In section 8.4 we argued that each block in a partition represents the control over the
propositional variables a coalition obtains some of players represented by the blocks of
a finer partition decide to collaborate. If, moreover, the coalitional preference relation
is given by the intersection of the preference relations of its members, then Proposi-
tion 2.1.8 on page 35 guarantees that there will be no increase of maximum equilibria as
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a result of this move. This phenomenon is the foundation of the following proposition
about game-theoretical consequence.

Proposition 9.4.1 Letr,#', 7" and ©”” be partitions of some set of propositional
variables A such that < 7" and#’ < #’”. Let furtherI’; and @, be families of
theories in L(A). Define the families of theorids;,, and@..,, such that for all je ="

and ke ©'”";
U I and @E =df. U O;.
iem ien’
igj iCk

Then, I, E @, implies I}, E O

Tl

Proof: Immediately from Proposition 2.1.8 on page 35 and Fact 8.4.6 on pagei198.

In the previous section we found that game-theoretical consequence does not in
general satisfy reflexivity; neither is eadh ., 7] diagonal with respect to all formulas.
The following lemma and theorem show that nevertheless the latter property plays an
important structural role in the anatomy 4f,.

Lemma 9.4.2 Let L(A) be a propositional language and =/, 7" and 7"’ be parti-
tions of A. Then,

<7 andn’ <7

iff
for each formulay : {{(p}i}ieﬂ E {{gp}j }jeﬁ, implies{{go}i}ieﬂ,, E {{@}j }jeﬁ,,,.

Proof: The left-to-right direction follows from Proposition 9.4.1. Merely observe that
U.@r {¢}; = {p} for eachj € 7’ and, srmrlarIyU,eT {¢}; = {p}, for eachj € 7.

The opposite direction is by contraposition. Assume that eithgr "’ or n’ £ 7"

As the proof for both cases runs along analogous lines, we only give that of the former.
Letw £ «”. Then,r” is different from the trivial partition{A} andA # ¢. It

also follows that there is some blorrls of 7 for which there are two distinct blocksy

andry of 7’ such that bothro N 7] # @ andmo N 7{ # @. So we may assume

the existence of two proposrtlonal variablag and a; such thatag € mo N 7y and

a; € mo N 7y. Consider these along with the formwla A a;. First we prove the

following two claims, of which{{ao A ai}; },_ F {{a0 A au}; }jeﬂ, is an immediate

conseguence:

sis a maximum equilibrium it ({ {ag A a}; } iff se [aAay]

iGﬂ')
sis a maximum equilibrium i ({ {ao Aau}; };..) iff s¢ [aoAa].

From right-to-left these claims hold in virtue of Proposition 8.4.5. For the opposite
direction, first consider a valuation such tisa# [ap A a1]; we know that such as
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exists. Defines* =4 sU {ap,a1}. Then, obviouslys* € [ag A a1]. Hence,(s*,s) ¢

p ({a0 A as}). Consequentlys* i s, for each playerof G({ {ao A &t} };., ). More-

over, withag, a; € mj, alsos" = (s_j, s") ands fails as a maximum response for any
playeri and, the set of players never being empty, also as a maximum equilibrium of
G({ {ao N a1} }ieﬂ). This proves the first claim.

Now consider a valuatios such thats € [ag A ;] as well as the uniqug € =’
such thatag € 7rj’. Defines*™ =g s— {ao}; then,s** ¢ [ap A &]. Moreover,s™ =
(s_j,5), having assumed thap € 7/. Hence,(s*™*,s) ¢ p({ap A a1}) ands™ &; s
for all playersj of G({ {ao A an}; }jeﬂ,) and in particular foj as above. Therefors,
is no maximum equilibrium itG({ {ao A & }; }jeﬂ,) either.

An argument analogous to that for the second claim above shows that also:

sis a maximum equilibrium iG({ {ao A a}; }jeﬂ,,,) iff s¢ [aAay.

Hence, in particular, the valuationo is a maximum equilibrium in
G({{aonai}; }c m)-

We complete the proof by showing that the valuatiis also a maximum equi-
librium in G({ {ao Aau}; };_..,), for then it also holds tha{{ao A ai};} ¥

iem!’
{{eonaa) )i,

Consider an arbitrary playdr € 7. Then, not bottay € 7/ anda; € /. Now
consider an arbitrary valuatioh Then not bothey € (¢_k, &) anda; € (0_x, )-
Hence,(9_k, %) ¢ [ao A a1]. Becauses ¢ [ag A a;] it follows that((®_k,3<)7®) S
p ({ao A ai}). With shaving been chosen arbitrarily,is a maximum response fér
And with k having been chosen arbitrarily as well, it follows that the valuatida a

maximum equilibrium inG ({ {ao A ac}; }..)- n

We conclude this section with the following theorem, which, in effect, says that the
ordering on the setl 5 of subrelations of game-theoretical consequence {8y can
be derived from the complete latti®art (A) x Part(A).

Theorem 9.4.3 (Characterization ofA. .+ < A, ) For L(A) a propositional lan-
guage andr, 7/, 7"/ and«’” partitions over A:

"

Aﬂ-’ﬂ-/ < A‘n’”,‘rr“’ iff < 7 and 7’ <.

Proof: For the right-to-left direction assume that< 7/ and=«’ < #«’”” and consider

anarbitrary(1, ©) € A . Then,I" = U, I and® = |J; ., ©j, for some families

of theoriesI’; and®, such thatl; £ @ .. Now letI} =g Uieﬂ I, for eachk € ",
ic

and®y =a. Uje, @i, for eachk € 7. By the assumption that < ' andn’ <
1Ck

7", then obviouslyl ;.. I\ = Uye,» Ik @andUje,» ©i = Uye,n Ok Accordingly,

Uker Ik = I' andU, ... @ = ©. Moreover, in virtue of Proposition 9.4.1, also

Y E©O5.,.Hence(I,0) € A*

il 7'r”,7'r’”'
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The opposite direction follows from Proposition 9.3.5 and Lemma 9.4.2. Assume,
for contraposition, that either £ =" or #’ £ «””. By Lemma 9.4.2, there is a
formulag such that{ {o},},_ F {{o}i}, but{{e} i ¥ {{e}}ic - Then,
({e},{¢}) € A* _,. Now consider arbitrary families of theorid,, and®’.,,, such

T,

that UiEﬂ'“ 1—1I* = UiEﬂ' {(p}l = {410} andUiEﬂ"” @I* = UiEﬂ" {(p}l = {410} Then’
I" C {p}, for eachi € «”, and®; C {¢} eachi € «"”. By Proposition 9.3.5,
stating the monotonicity of game-theoretical consequence, it then followd fhak
©’.. Therefore, we may conclude the proof observing tHat} , {¢}) € A ., but
({e} {e}) & A% - 5
As an immediate consequence, the following corollary also holds. It sayd that<
Ay v ifandonly if Az - preserves diagonality for all formulgsfor which A -/
is diagonal.

Corollary 9.4.4 Let L(A) be a propositional language and, =/, 7" and ="’ be
partitions of A. ThenA( 1y < A 0y if @and only if A 40y is diagonal with
respect to all formulas with respect to whidh, ., is diagonal as well.

Proof: Immediately from Lemma 9.4.2 and Theorem 9.4.3. o

9.5 Rough Set Characterization

In this section we show how game-theoretical consequence can be given a set-theoretical
semantics. Employing the machinery of rough set theory, it is demonstrated how each
family of theoriesI'; can be associated with a set of sets of valuations that precisely
coincides with the maximum equilibria of the distributed evaluation g&f¥, ). The
significance of this result is that it forges a strong link with classical logic, facilitating
the logical analysis of game-theoretical consequence.

The intuition behind this essentially technical result derives from the understanding
of a maximum equilibrium as the intersection of the players’ maximum responses.
Each player has control over a subset of propositional variables and his opponents over
the remaining ones. Each set of propositional variables partitions the valuations and
this is in particular the case for the propositional variables controlled by the opponents
of a particular playerl.e. let = be partition of the propositional variables andet;
be the set of variables controlled by the opponents of play&With this setr_; is
associated the equivalence relatign,, which in turn induces the partition,_, over
the valuations. A maximum response for playerthen a valuation that is a maximum
with respect to his preferences within each block of this partition.

Let now the preference of playebe given by a relatiop (X), whereX is a set of
subsets of valuations. We show that then the approximation opeggio[sandapr 4
on sets of valuations — whet# is a subset of propositional variables — are available
to single out player's maximum responses on the basis of theXsakone. In particular,
we invoke the approximation operations with respect to the empty set and with respect
to the set of propositional variables controlled by the opponents of a player
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Formally, we have the following definition.

Definition 9.5.1 Let « be a partition of the propositional variables of some proposi-
tional language: (A). Let furtherX be a family{X;},_ . of subsets of2,i.e, afamily
of sets of subsets of valuations. Define for eaehnr:

N(Xi) =t ﬂ (a_W@(X)ﬂ(XUa_WL.(Y)))v

1
XeXi

N(X) = (JN(X).

iem

We introduce dual concepts of these notions as follows:

N(X) =a. N({X: XeX})
NX) =u [JWX)

ier

Let I, a family of theories in a languadg(A) indexed by a partitionr of A. For
each € m, wewriteN(I") for N({[+] : v € I'}) and we havé\(I’;) denote ), .. N(I7).
Similarly, N(I") abbreviate#A({[v] : ~+ € I'}) andU(I;) represents ). N(17).

The intuition underlying these definitions is as follows. Assuming that the prefer-
ences of the playearare given byp (X;), the setN(X;) is meant to collect the max-
imum elements of the relatiop (X;) within each block of the partitionr, .. The
relationp (Xi) is given by(\yx. p (X), i.e, for eachX € X, the relationp (X) deter-
mines in part the relatiop (X). In caseX contains the empty set, the relatipt{X)
is empty as well¢f., Fact 8.5.3 on page 200). Then the set of maximum responses of
playeri is empty as well. Observe thapr,(X) is empty ifX is empty, and the whole
set of valuations, otherwise. As su@pr,,(X) constitutes, as it were, a test fteing
non-empty. Thus we have:

Xuapr  (X) ifX#0o

apr,(X) N (Xuapr (X)) = {@ | otherwise

Accordingly, in caseX; contains the empty set, the set of maximum responses for
playeri is empty as well. It is, however, equally true that in that case for s¥raeX;,
the se@pr, (X) N (XU apr_ | (X)) is empty, and with that so B (X;).

Now consider the case in whictidoes not contain the empty set. For exch X;
the relationp (X) distinguishes the valuations containedXrirom those that are not,
intuitively ranking the former higher than the latter. Construed as part of the preference
relationp (X;) of playeri, the relatiorp (X) excludes as maximum responsesifiliose
valuations that are inferior in this senséhin a block of the partitionr,._,, a block of
valuations in which all values for the propositional variables are fixed but those for
those controlled by. l.e, if X has a non-empty intersection with a blogkof 7, _,
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Figure 9.5. Let the preferences of a playebe given by three sets, say by], [+'] and[x] as
in Figure 8.1, on page 182. Each block represents a particular choice of straiégyggponents.
The upper left, upper right and lower left figure then repreapni([»]) N ([v] Uapr_ ([¢])).

apr, ([]) 1 (9] U apr__ (F01)) andapr, (Ix]) 1 (I Uapr, (IX])). respectively. The

bottom right figure depictBl({¢, ¥, x}), i.e., the maximum responses of playeAlso compare
Figure 8.2, on page 187.

then all valuations outsid¥ N Y are disqualified as a maximum responseifolf a
blockY of 7. _, andX are disjoint, howevep (X) does not exclude any valuations¥n
as a maximum response for playerThis is precisely whax U apr_ (Y) achieves

for non-empty subsetX of valuations. Doing this for eack € X; and intersecting
the results delivers precisely the maximum responses fAfso compare Figure 9.5
for further illustration of this point and consider the following proposition for a formal
proof.

Proposition 9.5.2 establish&KX;) as precisely the set of maximum responses for
playeri in a game(m, {2% }ic, {p (Xi)}ic. )- By taking the intersection of the maxi-
mum responses of all players, the set of maximum equilibria is obtained. In this manner
we arrive at the characterization of maximum equilibria in rough set theory we were
after.

Proposition 9.5.2 Let A be a sety a partition of A andX a family {X;},_,. of subsets

of 22", Let the gamér, {22 }ic,, {p (Xi)}ic, ) be denoted by G. Then:

N(X;) is the set of maximum responses for i i(XG3.

Proof: First assumeX; contain the empty set. Thep,(Xi) = @, by Fact 8.5.2 on
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page 200. Accordingly the set of maximum responses ferempty as well. Also,
apr, () = o and henceapr, (o) N (o U a_prm_(@)) = ¢. It follows thatN(X;) = @

as well. So, for the remainder of the proof we may assumexhaves not contain the
empty set.
Assume for some valuatisthats ¢ N(Xi). Then,s ¢ apr,(X)n (Xuapr (X)),

for someX € X;. Having assumed that is not emptyapr, (X) = 24, and it follows
that boths ¢ X ands ¢ apr_ (X). Then,s € apr, (X) and hence there exists

somes € X such thats ~,_, §. It follows that(s,s) ¢ p(X) and, subsequently,
that(s,s) ¢ p (X;). Observing that' = (s_j, §), we may conclude thacontains no
maximum response farin G.

For the opposite direction assume that s@me2” be no maximum response for
in G. Hence, there is some in 2* such that((s_;,s),s) ¢ p(Xi). Accordingly,
for someX € X; we have(s_j,§) € X buts ¢ X. Since,(s_i,s) ~_, S alsos ¢
apr,_ (X) and sos ¢ apr_ i(Y). Hences ¢ apr,(X) N (X U apr_ i(Y)) and so

s ¢ N(X). We may conclude that¢ N(X;), and we are done. .

This proposition has as an immediate consequenceNtd) precisely includes the
maximum equilibria of the gamer, {2 }icx, {p (Xi) }ic,r )-

Corollary 9.5.3 Let A be a sety a partition of A andX a family {X;},_. of subsets
of 22, Let the gamér, {27 }ic,r, {p (Xi)};c, ) be denoted by G. Then:
N(X) is the set of maximum equilibria ifr, {24 }icx, {p (Xi) }ic, )-
Proof: Immediately from Proposition 9.5.2 and the definition of a maximum equilib-

rium as the intersection of the players maximum responses. -

By straightforwardly applying the definitions we can also derive the corresponding
clauses for the dual concefgX;) and(X). Let, furthermore, the gan® be given

by (7(7 {ZA }iETﬁ {ﬁ (xi)}iEﬂ' ) Then:
N(X;) is the set of strategy profilemt containing a best response fan G(X),

N(X) is the set of strategy profiles that are maximum equilibrium inG(X).

These observations prepare the ground for the following theorem.

Theorem 9.5.4 Letw andn’ be partitions of A. Let furthel, and®,.. be theories
in the language [A). Then:

I,E@, iff NI,)CWNeo,).

Proof: Immediately from Proposition 9.5.3 and the subsequent remarks in thel text.

Theorem 9.5.4 has an important consequence concerning the relation between clas-
sical propositional logic and game-theoretical consequence. On page 55 we found that
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each approximation by a subset of propositional variables of the extension of a formula
in a language.(A), is also the extension of a formulalitA). 1.e., propositional logic
has expressive power with respect to approximations of extensions of formulas. This
makes that for each family of theorids., a theoryI™ in L(A) can be found such that
the extensior{I™*] andN(I;) are identical sets. Similarly, it is possible to find for
each family of theorie® ., a theory©* such that{®*) = (O ).

To prove this, we define for each sub¥etC A two injective functiondx andgy
mapping formulas ok (A) onto formulas oL (A).

fx () =da. (@) oA ((X)p— o),
ox () =dar. —fx ().

Observe that, fop a formula,fx (¢) andgx (¢) are one another’s duals. For any the-
ory I" and anyX C A, letfy (I') andgx (I") stand for, respectivelyfx (v) : v € I'}
and{gx (v) : v € I'}. For any family of theoried”; indexed by a partitionr of A,
we havef (I';) andg (I';) denote the theorids), . f, (I7) and{J,. . 9 (I7), respec-
tively. We have the following fact.

Fact9.5.5 Lety be aformula of a propositional languagé¢A) letall X and Y subsets

of A. Then:
[oax (©)] < [e] < [fv(o)]-

Proof: Since[(0) ¢] = apr,([¢]), clearly [¢] C [(2)¢] because of the rough
set law thatZ C apr(Z). Obviously alsof¢] C [(Y)¢ — ¢]. HenceJ¢] C
[fy (¢)]. For the inclusion of[gx (¢)] in [¢], observe thagx (¢) is equivalent
to [o]¢ V (¢ A = [X] ¢). Because in generapr(Z) C Z, for any setZ, also

apt, (I¢l) € [¢] andafortiori [[0]¢] C [¢]. Clearly alsofp A~ [X] ¢ C [e].
It follows that[gx ()] < [¢]- -

We then find that each valid instance of game-theoretical consequence has a coun-
terpart in classical propositional logic (CPC).

Proposition 9.5.6 Letr and=’ be partitions of some set A of propositional variables.
Let furtherI’, and®... be families of theories. Then:

r,=0, if f(I;)+FrgO,)

Proof: Observe that in generdl(o) ¢ A ((X)¢ — ¢)] = apr,([¢]) N ([¢] U
apry ([]))- Then the following equalities hold:

(Ui ven] = NN [oer(Xe—9)] =

iemr ier yerI

NN (@0 (M uaer (B]) = N(IH).

ieryel
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Using this result, the following equalities hold as well:

(Uts@: veo) = U U -

ien’ YEO;
UNEE] = UN{RT: deoi)) = nen).
ien’ YEB; ien’

Hence, we have the following equivalences:
FTI' E @ﬂ'/ iff Prop. 9.5.4 N(Fw) g M(@Tr’)

iff [{U {fi(v): veﬂ}ﬂ §<<.U/{gi (9) : 1969i}>>

iff Ui : ven} e J{a @) : ve o}
ien ien’
iff f(r,) FPCg(O,)
This concludes the proof. o

Proposition 9.5.6 has many corollaries, as it enables one to extrapolate results from
classical propositional logic to game-theoretical consequence. Perhaps the most im-
portant is that game-theoretical consequence is decidable.

Corollary 9.5.7 Let L(A) be propositional language with A finite and leand =’ be
partitions of A. Let furthed”, and @ be finite families of theories of(B). Then, the
problem whetherl . E @, is decidable.

Sketch of proof: Immediately from Proposition 9.5.6 and the decidability of CPC.
For eachi € 7 and eaclj € =, the functionsf,, and Or/ make that the problem

I, F @, can be translated into the equivalent probleph,) °F€ g (@,.), which

we know is decidable. Observe in this respect that, since the funcfj;i,omsdg,rjz map
formulas on formulas, the theoriésI’;;) andg (@) are finite. So it suffices to prove
that the function$,, andgﬁ; are decidable. That this is indeed the case is revealed by
some reflection on their definition and the fact that ¢ and (A) ¢ may be taken to
abbreviate the formuIaAaEEZ o (¢) and \/062Z o (), respectively ¢f., page 2.4)

and it, moveover, being given thaAtis finite. o

An important property of classical propositional logic that has so far been conspic-
uously absent from our analysis of game-theoretical consequence is that it satisfies
(cf., page 45, above). The principle of cut, however, needs some slight rephrasing
before it sensibly said to hold for game-theoretical consequence. To illustrate this
point consider the version of cut in whidhU {¢} - © andI" - @’ U {¢} imply
r'ur’F eue'. Cut, as it were, sets conditions for the ‘removal’ of a formgla
from theories if it occurs on the left of the turnstile in one validity statements and on
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the right in another. With game-theoretical consequence, however, it is families of the-
ories rather than theories that flank the turnstile. For the game-theoretical consequence
relation, we find that a formula may be removed in a similar fashion if it occurs in a
theory in the family to the left of the turnstile in a validity statement and in a formula

in another theory in the family to the right of the turnstile in another validity statement.

Proposition 9.5.8 (Cut) Lety be a formula in ILA) and let = and 7’ be partitions
of a set of propositional variables A. Let furthér ', © and ©’ be theories and”
and I'" be families of theories indexed hyan d ©@ and ®’ be families of theories
indexed byr’. LetI"” and®” be families of theories indexed bByand«’ respectively
such thatl" = I'; U I}, for each ic m, and®]" = ©; U O], for each je «’. Then:

(L, 1), F (0, (0U{p})),, and (I, (I"U{p}))_ F (0,6
imply
(%, (rur’y)_kE(@",(eue)

!

"

Proof: Assume that (I';,I3), F (0,0 U {p}))  along with
(I, (" U{e})i), = (©44,6]) . Invirtue of Proposition 9.5.6 then both:

f((I, 1)) FP¢ 9 ((0-1,6)),.) U{gi(¢) }
F((r%, 1)) U {fi(e) } F° g((04.6)) )
In virtue of Fact 9.5.5, alsg; () F°P<fi (). Proposition 2.3.1 on page 46 then yields:
P, 1)) UE((IS, 1)) 972 9 ((04,6)),,) U g((674,6f) ).
We obtain(I';, ' U I) E (@";,6U @J!)w' through another application of Propo-
sition 9.5.6, which concludes the proof. o

Proposition 9.5.6 established that every problem of game-theoretical consequence
has an equivalent problem in classical propositional logic. The converse of this claim
is of course also trivially true because of the congruencd @f (a, and CPC, wit-
ness Proposition 9.3.1. We conclude this section with a stronger result, stating that
every problem of classical propositional logic has its counterpatt;in. in A,. The
following lemma gives a preliminary result.

Lemma 9.5.9 Lety be a formula in I(A) and 7 a partition of A. Then there are
families of theoried’, and @, with I'} and @; finite for each ic =, such that:

[el = [F(rD] = (9(&x) )

Proof: SinceA(yp) is finite, there is also a finite s&tof blocks inw such thatA(¢) C
UZ. LetX =4 {UY : Y C Z}. Obviously,X can be ordered as a lattice by set
inclusion, withg as bottom and) Z as top. Defind, and® . such that for eache 7:

I =g {<X>QDI XGX} and O =4 {[X]g@: XGX}.
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Clearly, withZ finite, so areX and T, for eachi € . We prove thafy] = [f (Ix)] .
as the claim thafy] = (g (©~) ) follows by a similar argument.

For the inclusion of[¢] in [f (I';)], merely observe that for each € = and
eachX € X, for eachX € X, we have thafy] C [(X)¢] C [fx ((X)¢)]. The last
inclusion is in virtue of Fact 9.5.5.

For the inclusion of off (I';)] in [¢], first consider the case in whichis a contra-
diction, i.e., if [¢] = ©. Then, subsequentlgpry([¢]) = ¢ andapr,(@prk([¢])) =
», for eachX € X. This is because of the rough set law thpt (¢) = @. It follows that
both [(X) ¢] = @ and[(2) (X) ¢] = @. Hence,[f,, ((X) ¢)] = @, for eachn; € ,
and, therefore[f (I';)] = @, as well. So, for the remainder of the proof we may
assumd] to be inhabited.

Assume there be a valuatisrsuch thats ¢ [¢]. As we could assumpp] to be
non-empty, with Fact 2.2.10 on page 43, above, and the definitidn)a#, it follows
that [(0) ] = 2% Thus, in particulars € [(2) ¢]. With, A(p) C |JZ, however,
[e] = aprz([¢]) = [UZ) ¢], by Fact 2.3.10 on page 51, ands¢ [(UZ) ¢].
BecauseX s finite, there is arX € X such thats ¢ [(X) ¢] and for which it is
moreover the case thate [(X') ¢], for all X’ € X with X’ C X. We may moreover
assume thaX is not empty. Hencer; C X, for somer; € Z. DefineX* =4 X — 7;
obviouslyX* € X andX* = 7_j N X*. Then,s € [(X*) ¢], i.e, s € apry. ([¢]). Now
consider the following equalities:

apty- ([¢]) = apr,_qx-([¢]) =ractz28@PT,_ (@Tx- ([¢])) = [(7—i) (X*) ¢].

Hences € [(m_i) (X*) ¢]. It follows thats ¢ [{(7m_i) (X*) ¢ — (X*) ¢]. Accordingly,
s ¢ [fi ((X*) ¢)] and,a fortiori, s ¢ [f (I';)]. =

The following theorem can now be established.

Theorem 9.5.10 LetI” and® be theories in [A) and letr and#’ be partitions of A.
Then there are families of theorid$. and @, such that:

rt+CPCo iff I, E6,.

Proof: Almost immediately from Proposition 9.5.6 and Lemma 9.5.9 a

Hence, for every classical statemént-C © there is an equivalent game-theoretical
statementl; = @ in A, ... Proposition 9.5.6 established that this claim also holds
in the opposite direction. Hence, we obtain the following corollary, which states that
for any partitionsr, 7/, 7/ andz’” the statements of any,. .- have their counterparts

in Aﬂ-//.ﬂ-m .

Corollary 9.5.11 Letw, 7/, #” and ©"” be partitions of A and lef". and @, be
families of theories in [A). Then there are families of theorids., and @, such
that:

r,e@, if Ir.,.Fe

e

Proof: Almost immediately from Proposition 9.5.6 and Theorem 9.5.10. -
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9.6 Conclusion

In this chapter we advanced a concept of logical consequence based on the game-
theoretical notion of maximum equilibrium. For the notion of game-theoretical con-
sequence there are various possible definitions, involving different game-theoretical
solution concepts. We have chosen for the option that is closest to classical logic, as
to assure that the idiosyncratic features of the framework can indeed be ascribed to the
game-theoretical angle we adopted and not so much to non-standard features of the
underlying propositional logic. Other choices are, however, quite possible and worth
investigating. In particular, one could define a game-theoretical notion of consequence
using the solution concept ofiaximalequilibrium, instead ofmaximumequilibrium.

This would give rise to a non-monotonic framework.

Classical consequence was proved to be a special case of game-theoretical con-
sequence. From this perspective, it stands to reason to investigate game-theoretical
consequence using the standard logical techniques and concepts. The issue of sound,
complete and elegant formal systems for it is still very much open in this respect.

Game-theoretical consequence, however, also raises some issues of its own, for the
proper treatment of which it would seem that concepts from other sciences should be
employed. We have already mentioned social choice theory as a possible conceptual
source to get a firm grasp of how to combine and distribute theories, if the latter are
looked upon as representing preference orders.

In distributed evaluation games the players were identified with the variables they
control. So far the emphasis has been on the set maximum equilibria given different
theories defining the preferences of the players. We could also invert this image, and
take the preferences of players as fixed and investigate the sets of maximum equilibria
for varying assignments of the variables to the players. Game theory may here provide
the apposite concepts.

Another issue is that of the existence of maximum equilibria in distributed evalu-
ation games. This is the game-theoretical counterpart of the issue of satisfiability in
classical logic. Maximum equilibria in pure strategies do not in general exist, and only
pure strategies we considered. Lattice theoretic restrictions may be imposed on the
strategies and preferences of players such that the existence of equilibria is guaranteed
(cf. Topkis (1998), Fudenberg and Tirole (1991)). An example is the lattice-theoretic
concept of (quasi-)supermodularity, which is closely related to economic notion of
complementarity. These reflections, however, raise the question what these concepts
correspond to on a logical level.

Game-theoretical consequence provides a generalization of classical logic, in the
study of which we argued concepts from game-theory, economics and social choice
theory become relevant and apposite.



Bibliography

Arnott, R. and Small, K. (1994), “The Economics of Traffic Congestigknierican
Scientist32, 446-455.

Arrow, K. J. (1963),Social Choice and Individual Value®Viley, New York, second
edition.

Aumann, R. J. (1985), “What is Game Theory Trying To Accomplish?.” in: Arrow, K.
and Honkapohja, S. (edshrontiers of EconomicsBasil Blackwell, London and
New York. Includes comments by Reinhard Selten and Martin Shubik.

(1997), “Game Theory.” in: Eatwell, J., Milgate, M. and Newman, P. (eds.),
Game TheoryThe New Palgrave, pp. 1-54. Macmillan, London and Basingstoke.
Aumann, R. J. and Brandenburger, A. (1995), “Epistemic Conditions of Nash Equilib-

rium.” Econometrice63, 1161-1180.

Baltag, A. (1999), “A Logic for Games.” in: Pauly, M. and Baltag, A. (edBrpceed-
ings of the ILLC Workshop on Logic and Games, Held in Amsterdam, November
19-20, 1999ILLC Prepublications Series PP-1999-25, pp. 19-20. ILLC, Amster-
dam.

(2002), “A Logic for Suspicious Players: Epistemic Actions and Belief-
Updates in GamesBulletin of Economic Resear@ (1), 1-45.

Barwise, J. (1977), “An Introduction to First-Order Logic.” in: Barwise, J. (¢dand-
book of Mathematical Logjchapter 1. North-Holland, Amsterdam.

Battigalli, P. and Bonanno, G. (1999), “Recent Results on Belief, Knowledge and the
Epistemic Foundations of Game Theoifg&search in Economids3, 149-225.

Benthem, J. F. A. K. van (1996xploring Logical DynamicsStudies in Logic, Lan-
guage and Information. CSLI, Stanford, Ca.

(2001a), “Games in Dynamic Epistemic Logi&ulletin of Economic Re-
search53 (4), 219-248.

(2001b),Logic and Games. Lecture NotésLC, Amsterdam.

(2002), “Extensive Games as Process Modelstrnal of Logic, Language
and Informationl11 (3), 289-313. Special issue on Logic and Games edited by P.
Dekker and M. Pauly.

——— (2003a), “The Epistemic Logic of IF Games.” ILLC Prepublication Series

237



238 BIBLIOGRAPHY

PP-2003-04, ILLC, Amsterdam.

(2003b), “Rational Dynamics and Epistemic Logic in Games.” ILLC Prepub-

lication Series PP-2003-06, ILLC, Amsterdam.

(2003c), “What Logic Games are Trying to Tell Us.” ILLC Prepublication

Series PP-2003-05, ILLC, Amsterdam.

(no date-a), “Logic and Game Theory: Close Encounters of the Third Kind.”

in preparation.

(no date-b), “Logic Games are Complete for Game Logics.” in preparation.

(to appear), “Games and Strategies inside Elementary Logid?roceedings
of the 7th Asian Logic Conference, Taiwan, June, 199@ppeatr.

Bernheim, B. D. (1984), “Rationalizable Strategic BehaviBcbnometricé2, 1007—
1028.

Binmore, K. (1992)Fun and Games. A Text on Game The®@yC. Heath and Com-
pany, Lexington, MA.

Blackburn, P., de Rijke, M. and Venema, Y. (200¥)pdal Logic Volume 53 ofCam-
bridge Tracts in Theoretical Computer Scien€Gambridge U.P., Cambridge.

Bonanno, G. (1991), “The Logic of Rational Play in Games of Perfect Information.”
Economics and Philosopt# 37-65.

(1998), Branching Time Logic, Perfect Information Games and Backward
Induction Department of Economics, University of California.

Boutilier, C. (1994), “Towards a Logic for Qualitative Decision Theory.” Rroceed-
ings of the Fourth International Conference on Knowledge Representation and Rea-
soning (KR'94) pp. 75-86. Morgan Kaufmann, San Francisco.

Boutilier, C., Shoham, Y. and Wellman, M. P. (1997), “Economic Principles of Multi-
Agent Systems.Artificial Intelligence94, 1-6.

Braess, D. (1968), Uber ein Paradoxon aus der Verkehrsplanurdyiternehmens-
forschungl2, 258—-268.

Brandenburger, A. and Dekel, E. (1987), “Rationalizability and Correlated Equilibria.”
Econometricab5, 1391-1402.

Bruin, B. P. de (1998), “Game Transformations and Game Equivalence.” Discussion
Paper X-1999-01, ILLC, Amsterdam.

(2000), “Modelling Knowledge in Games, Topology and Logic.” Master’s

Thesis X-1999-01, ILLC, Amsterdam.

(in preparation), “The Epistemic and Rationality Assumptions of Game Theo-

retic Solution Concepts (working title).” Ph.D. thesis, Institute for Logic, Language

and Information, Amsterdam.

(to appear), “Game Theory in Philosophydpoi XXIV (2). To be published
in 2005.

Carnap, R. (1943¥%ormalization of LogicHarvard U.P., New Haven.

Chang, C. C. and Keisler, J. K. (1978)pdel Theory Studies in Logic and the Foun-




BIBLIOGRAPHY 239

dations of Mathematics. North-Holland, Amsterdam.

Cholvy, L. and Garion, C. (2001), “An Attempt to Adapt a Logic of Conditional Pref-
erences for Reasoning with Contrary-To-Duti¢aihdamenta Informaticd8, 183—

204.

Cleave, J. P. (19914 Study of LogicsOxford U.P., Oxford.

D’Agostino, M. (1999), “Tableau Methods for Classical Propositional Logic.” in:
D’Agostino, M., Gabbay, D. M., Ehnle, R. and Posegga, J. (edsiandbook of
Tableau Method<luwer, Dordrecht.

Davidson, D. (1980)Essays on Actions and Even®xford U.P., Oxford.

Ditmarsch, H. van (2000), “Knowledge Games.” Ph.D. thesis, University of Groningen
and Institute for Logic, Language and Information, Groningen and Amsterdam.

Doets, K. (1996)Basic Model TheoryStudies in Logic, Language and Information.
CSLI Publications, Stanford, Ca.

Dunne, P. E. and van der Hoek, W. (to appear), “Representation and Complexity in
Boolean Games.” inProceedings of the 9th European Conference Logics in Artifi-
cial Intelligence, September 27-30, Lisbon, Portyy@lume 3229 ol ecture Notes
on Artificial Intelligence Springer Verlag, Berlin.

Duntsch, I. (1999)Rough Sets and Algebras of Relatiodsiversity of Ulster.

(no date)A Logic for Rough Set&Jniversity of Ulster.

Eatwell, J., Milgate, M. and Newman, P. (eds.) (1989ame TheoryThe New Pal-
grave. Macmillan, London and Basingstoke, 2nd edition.

Ehrenfeucht, A. (1962), “An Application of Games to the Completeness Problem for
Formalized TheoriesFundamenta Mathematical®, 129-141.

Epstein, R. L. (1995)The Semantic Foundations of Logic: Propositional Logi0g-
ford U.P., Oxford, second edition.

Etchemendy, J. (1990)The Concept of Logical Consequen¢tarvard U.P., Cam-
bridge, Mass.

Fagin, R., Halpern, J., Moses, J. and Vardi (19%8asoning about Knowledge!I T
Press, Cambridge, Mass.

Fitting, M. (1999), “Introduction to Handbook of Tableau Methods.” in:
D’Agostino, M., Gabbay, D. M., Ehnle, R. and Posegga, J. (edsizndbook of
Tableau Method<luwer, Dordrecht.

Franssen, M. (1997), “Some Contributions to Methodological Individualism in the So-
cial Sciences.” Ph.D. thesis, University of Amsterdam, Amsterdam.

Fudenberg, D. and Tirole, J. (1998ame TheoryThe MIT Press, Cambridge, Mass.

Gale, D. and Steward, F. H. (1953), “Infinite Games with Perfect Information.” in:
Kuhn, H. W. and Tucker, A. W. (eds§ontributions to the Theory of Games, Volume
II, Annals of Mathematics Studies 28, pp. 1-54. Princeton U.P., Princeton, N.J.

Gardenfors, P. (1988Knowledge in FluxThe MIT Press, Cambridge, Mass.

Gentzen, G. (1934-35), “Untersuchungéper das logische SchlieRemMathemat-




240 BIBLIOGRAPHY

ische Zeitschrif89, 176-210, 405—-431. English translation in M.E. Szabo (&th,
Collected Papers of Gerhard Gentzé\orth-Holland, Amsterdam, 1969.

Gerbrandy, J. (1999), “Bisimulations on Planet Kripke.” Ph.D. thesis, University of
Amsterdam, Amsterdam. ILLC Dissertation Series DS-1999-01.

Goldblatt, R. (1992)Logics of Time and ComputatioWolume 7 of CSLI Lecture
Notes CSLI Publications, Stanford, 2nd edition.

Goranko, V. (2001a), “The Basic Algebra of Game Equivalences.” in: Pauly, M. and
Sandu, G. (eds.ESSLLI Workshop on Logic and Games

(2001b), “Coalition Games and Alternating Temporal Logics.” in: Ben-
them, J. van (ed.)Theoretical Aspects of Rationality and Knowledge, Proceedings
of the Eighth Conference (TARK 2000)organ Kaufmann, San Francisco.

Gratzer, G. (1968)Jniversal AlgebraD. Van Nostrand, Princeton, N.J.

Groenendijk, J. and Stokhof, M. (1997), “Questions.” in: Benthem, J. van and ter
Meulen, A. (eds.)Handbook of Logic and Languagglsevier, Amsterdam.

Halmos, P. R. (1960Naive Set Theorylhe University Series in Undergraduate Math-
ematics. D. van Nostrand Company, Inc., Princeton, N.J.

Harel, D., Kozen, D. and Tiuryn, J. (200IDynamic Logic MIT Press, Cambridge,
Mass. & London.

Harrenstein, B. P. (1998), “From a Modal Point of View. A Logical Investigations into
Modalities De Dicto and De Re.” Technical Note X-1998-02, ILLC, Amsterdam.

(2002), “A Game-theoretical Notion of Consequence.” in: Bonanno, G.,

Colombatto, E. and van der Hoek, W. (eds:)ith Conference on Logic and the

Foundations of Game and Decision Theory (LOFTIBER, Turin.

(to appear-a), “Logical Consequence and the Theory of GarRéddsophia

Scientiaeto appear in the special issue on game theory and logic.

(to appear-b), “Set Induced Relations and Relational Semantics.” Technical
Report UU-CS-2004-032, ICS, Utrecht University, Utrecht.

Harrenstein, B. P., van der Hoek, W., Meyer, J.-J. C. and Witteveen, C. (1999), “Sub-
game Perfect Nash-Equilibria in Dynamic Logic.” in: Pauly, M. and Baltag, A.
(eds.),Proceedings of the ILLC Workshop on Logic and Games, Held in Amster-
dam, November 19-20, 199R.LC Prepublications Series PP-1999-25, pp. 29-30.
ILLC, Amsterdam.

(2000), “A Modal Interpretation of Nash-Equilibria and Some Related Con-

cepts.” in: Giacomo, B., Colombatto, E. and van der Hoek, W. (eeés}eedings of

the Fourth Conference on Logic and the Foundations of Game and Decision Theory

(LOFT4), June 30—July 2, 2000p. 1-21. ICER, Torino.

(2001), “Boolean Games.” in: Benthem, J. van (etiheoretical Aspects of

Rationality and Knowledge, Proceedings of the Eighth Conference (TARK,2{101)

287-298. Morgan Kaufmann, San Francisco.

(2002), “On Modal Logic Interpretations of Games.” in: Harmelen, F. van

(ed.),ECAI 2002, 15th European Conference on Atrtificial Intelligence, July 21-26




BIBLIOGRAPHY 241

2002, Lyon, FranceVolume 77 ofFrontiers in Atrtificial Intelligence and Applica-

tions, pp. 28-32. 10S Press, Amsterdam.

(2003), “A Modal Characterization of Nash Equilibriunt:indamenta Infor-
matica57 (2—4), 281-321.

Henkin, L. (1961), “Some Remarks on Infinite Long Formulas.” in: Bernays, P. (ed.),
Infinitistic Methods. Proceedings of the Symposium on Foundations of Mathematics
pp. 167-183. Pergamon Press and PWN, Oxford and Warsaw.

Henkin, L., Monk, J. D. and Tarski, A. (1971¢ylindric Algebras, Part | Studies in
Logic and the Foundations of Mathematics. North-Holland, Amsterdam.

Hintikka, J. (1962)Knowledge and BeliefCornell U.P., New York.

——— (1973),Logic, Language Games, and Informati@xford U.P., Oxford.

(1983),The Game of Language. Studies in Game-Theoretical Semantics and

Its Applications Volume 22 ofSynthese LibraryD. Reidel, Dordrecht.

(2002), “Hyperclassical Logic (A.K.A. IF Logic) and Its Implications for Log-
ical Theory.”The Bulletin of Symbolic Logig (8), 404—-423.

Hintikka, J. and Sandu, G. (1997), “Game-theoretical Semantics.” in: Benthem, J. van
and ter Meulen, A. (eds.Handbook of Logic and Languagglsevier, Amsterdam.

Hodges, W. (1985)Building Models by Games&/olume 2 ofLondon Mathematical
Society Student TextS8ambridge U.P., Cambridge.

Hodges, W. (1993)Model Theory Cambridge U.P., Cambridge.

Hughes, G. E. and Cresswell, M. J. (1968 Introduction to Modal LogicMethuen,
London.

Jongh, D. de and Veltman, F. (1998)tensional LogicsFdW, University of Amster-
dam, Amsterdam.

Kelly, J. S. (1987)Social Choice Theory: An Introductio8pringer, New York.

Kleene, S. C. (1952)ntroduction to Metamathematicblorth-Holland, Amsterdam.

—— (1967),Mathematical LogicJohn Wiley & Sons, New York.

Kooi, B. P. (2003), “Knowledge, Chance and Change.” Ph.D. thesis, University of
Groningen and Institute for Logic, Language and Information, Groningen and Ams-
terdam.

Kozen, D. (1983), “Results in the PropositionaiCalculus.” Theoretical Computer
Science7, 333-354.

Kraus, S. (1997), “Negotiation and Cooperation in Multi-Agent EnvironmeAifi-
cial Intelligence94, 79-97.

Kraus, S., Lehmann, D. and Magidor, M. (1990), “Nonmonotonic Reasoning, Prefer-
ential Models and Cumulative LogicsAtrtificial Intelligence44, 167—207.

Kreps, D. M. (1997), “Nash Equilibrium.” in: Eatwell, J., Milgate, M. and Newman, P.
(eds.),Game TheoryThe New Palgrave, pp. 157-177. Macmillan, London and Bas-
ingstoke.

Kuhn, H. W. (1953), “Extensive Games and the Problem of Information.” in:




242 BIBLIOGRAPHY

Kuhn, H. W. and Tucker, A. W. (eds.Lontributions to the Theory of Games, Vol-
ume I, Annals of Mathematics Studies 28, pp. 1-54. Princeton U.P., Princeton, N.J.
Reprinted in Kuhn (1997).

(ed.) (1997)Classics in Game Theorfrinceton U.P., Princeton, N.J.

Kuratowski, K. and Mostowski, A. (1976%et Theory. With and Introduction to De-
scriptive Set TheoryStudies in Logic and the Foundations of Mathematics. North-
Holland and PWN, Amsterdam and Warszawa, second edition.

Leonard, R. J. (1992), “Creating a Context for Game Theory.” in: Weintraub, E. R.
(ed.), Toward a History of Game Theaqrpp. 29—-76. Duke U.P., Durham, N.C. and
London. History of Political History. Annual Supplement to Volume 24.

Lewis, D. (1969)Convention: A Philosophical Studdarvard U.P., Cambridge, Mass.

——— (1973),CounterfactualsBasil Blackwell, Oxford.

Lin, Y. Y. and Lin, T. Y. (n.d.),Generalization of Rough Sets using Modal Logics
Lakehead University and San Jose University.

Linder, B. van (1996), “Modal Logics for Rational Agents.” Ph.D. thesis, Faculty of
Mathematics and Computer Science, Utrecht University, Utrecht.

Lorenzen, P. and Lorenz, K. (1978)jalogische Logik Wissenschaftliche Buchge-
sellschaft, Darmstadt.

Luce, R. D. and Raiffa, H. (1957fames and Decisions. Introduction and Critical
Survey John Wiley & Sons, New York.

Makinson, D. (1994), “General Patterns in Nonmonotonic Reasoning.” in: Gabbay, D.,
Hogger, C. J. and Robinson, J. A. (ed&lpnmonotonic Reasoning and Uncertain
ReasoningVolume 3 ofHandbook of Logic in Artificial Intelligence and Logic Pro-
gramming pp. 35-110. Oxford U.P., Oxford.

Meyer, J.-J. C. and van der Hoek, W. (199%5pistemic Logic for Al and Computer Sci-
ence Volume 41 ofCambridge Tracts in Theoretical Computer Scier@ambridge
U.P., Cambridge.

Mirkowski, P. (1992), “What Were von Neumann and Morgenstern Trying to Accom-
plish.” in: Weintraub, E. R. (ed.)Joward a History of Game Theqrpp. 113-147.
Duke U.P., Durham, N.C. and London. History of Political History. Annual Supple-
ment to Volume 24.

Myerson, R. B. (1991)Game Theory. Analysis of Confli¢larvard U.P., Cambridge,
Mass.

Nasar, S. (1998)A Beautiful Mind. A Biography of John Forbes Nash, Jr., Winner of
the Nobel Prize for Economics 19%8imon and Schuster, New York.

Nash, J. (1950), “Equilibrium Points mPerson GamesPNAS36, 48—-49. Reprinted
in Kuhn (1997).

(1951), “Non-Cooperative GamesAnnals of Mathematic$4, 286—295.
Reprinted in Kuhn (1997).

Neumann, J. von (1928), “Zur Theorie der Gesellschaftsspiblathematische An-




BIBLIOGRAPHY 243

nalen100, 295-320.

Neumann, J. von and Morgenstern, O. (1944eory of Games and Economic Behav-
ior. Princeton U.P., Princeton, N.J.

Osborne, M. J. and Rubinstein, A. (1994,Course in Game ThearMIT Press,
Cambridge, Mass.

Otterloo, S. van , van der Hoek, W. and Wooldridge, M. (2004), “Preferences in Game
Logics.” in: Proceedings of AAMAS 200Mew York. Accepted for publication.

Parikh, R. (1984), “Logics of Knowledge, Games and Dynamic Logic.” in: Joseph, M.
and Shyamasundar, R. (ed$:pundations of Software Technology and Theoretical
Computer Sciengé.ecture Notes in Computer Science 181, pp. 202—-222. Springer,
New York.

(1985), “The Logic of Games and its Applications.” in: Karpinski, M. and van

Leeuwen, J. (eds.Yopics in the Theory of Computation, FCT'83, Borgholm, Swe-

den, August 21-27, 1983nnals of Discrete Mathematics 14, pp. 111-140. North-

Holland, Amsterdam.

(1998), “A Connection between Nash Equilibria and Propositional Logic.”
Unpublished two-page technical note.

Pauly, M. (2001), “Logic for Social Software.” Ph.D. thesis, Institute for Logic, Lan-
guage and Information, Amsterdam.

Pawlak, Z. (1991)Rough Sets: Theoretical Aspects of Reasoning about Bétaver,
Dordrecht.

Pearce, D. G. (1984), “Rationalizable Strategic Behavior and the Problem of Perfec-
tion.” Econometriceb2, 1029-1050.

Popkorn, S. (1994¥%irst Steps in Modal LogicCambridge U.P., Cambridge.

Ramsey, F. P. (1926), “Truth and Probability.” in: Braithwaite, R. (€fhle Founda-
tions of Mathematics and other Logical Essgys. 156—198. Routledge and Kegan
Paul, London.

Rapoport, A. (1997), “Prisoner’s Dilemma.” in: Eatwell, J., Milgate, M. and New-
man, P. (eds.)Game TheoryThe New Palgrave, pp. 199-204. Macmillan, London
and Basingstoke.

Rosenschein, J. S. and Zlotkin, G. (199)les of Encounter. Designing Conventions
for Automated Negotiation among ComputévBT Press, Cambridge, Mass.

Rosenthal, R. (1981), “Games of Perfect Information, Predatory Pricing and the Chain
Store Paradox.Journal of Economic Theorg5, 92—100.

Saarinen, E. (ed.) (1978game Theoretical Semantid3. Reidel, Dordrecht.

Sandholm, T. W. and Lesser, V. R. (1997), “Coalitions among Computationally
Bounded Agents Artificial Intelligence94 (1), 99—-137. Special Issue on Economic
Principles of Multiagent Systems.

Savage, L. J. (1954Foundations of Statisticdohn Wiley, New York.

Schelling, T. C. (1960)The Strategy of ConflicHarvard U.P., Cambridge, Mass.




244 BIBLIOGRAPHY

Scott, D. (1973), “Background to Formalization.” in: LeBlanc, H. (ediryth, Syntax
and Modality Volume 68 ofStudies in Logic and the Foundations of Mathematics
North-Holland, Amsterdam and London.

(1974), “Rules and Derived Rules.” in: LeBlanc, H. (ed.pgical Theory
and Semantic Analysis. Essays Dedicated to Stig Kanger on His Fiftieth Birthday
Volume 63 ofSynthese Librarypp. 147-161. D. Reidel, Dordrecht and Boston.

Segerberg, K. (1982 lassical Propositional Operatord/olume 5 of Oxford Logic
Guides Oxford U.P., Oxford.

Selten, R. (1965), “Spieltheoretische Behandlung eines Oligopolmodells mit Nach-
fragetigheit.”Zeitschrift fir die gesamte Staatswissenschafl, 301-324.

Sevenster, M. (2004), “Complexity Results for an Independence Friendly Propositional
Logic.” in: Otterloo, S. van , McBurney, P., van der Hoek, W. and Wooldridge, M.
(eds.),Proceedings of the First Knowledge and Games Workshop, Liverpool, 10th
and 11th July 2004pp. 23—-33. AgentLink and the University of Liverpool, Liver-
pool.

Shoham, Y. (1988)Reasoning About Chang®lIT Press, Cambridge, Mass.

Smullyan, R. (1968)First-Order Logic Springer Verlag, New York.

Spohn, W. (1982), “How To Make Sense of Game Theory.” in: Sidn W.,
Balzer, W. and Spohn, W. (edsBhilosophy of Economic@p. 298-312. Springer,
Berlin.

Stirling, C. (1996), “Games and Modal Mu-Calculus.” in: Margaria, T. and Steffen, B.
(eds.),Proceedings of Second International Workshop on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS19&)ture Notes in Computer
Science 1055, pp. 298-312. Springer, New York.

Tamminga, A. M. (1994), “Logics of Rejection: Two Systems of Natural Deduction.”
Logique et Analysé&46, 169—-208.

(2001), “Belief Dynamics. [Epistemo]logical Investigations.” Ph.D. thesis, In-
stitute for Logic, Language and Information, Amsterdam.

Tan, T. C.-C. and da Costa Werlang, S. R. (1988), “The Bayesian Foundations of Solu-
tion Concepts of GamesJournal of Economic Theor5, 370-391.

Tarski, A. (1936a), “Der Wahrheitsbegriff in den formalisierten Sprach&tudia
Philosophical, 261-405. Translated as ‘The concept of truth in formalized lan-
guages’ in: J.H. Woodger (edDpgic, Semantics and Metamathematics

(1936b), ‘Uber den Begriff der logischen Folgerung.” iActes du Congrs

International de Philosophie Scientifigue VKctualitts Scientifiques et Indus-

trielles 394, pp. 1-11. Hermann & Cie, Paris. Translated as ‘On the Concept of

Logical Consequence’ in: J.H. Woodger (ed.hgic, Semantics and Metamathe-

matics

(1944), “The Semantic Conception of Trutihilosophy and Phenomenolog-

ical Researcht, 341-375.

Thompson, F. B. (1952), “Equivalence of Games in Extensive Form.” Research Memo-




BIBLIOGRAPHY 245

randum RM-759, RAND Corporation, Santa Monica, Ca. Reprinted in Kuhn (1997).

Topkis, D. M. (1998) Supermodularity and ComplementariBrinceton U.P., Prince-
ton, N.J.

Veltman, F. (1996), “Defaults in Update Semantidalrnal of Philosophical Logi25,
221-261.

Venema, Y. (2001), “Representing Game Algebras.” in: Pauly, M. and Sandu, G. (eds.),
ESSLLI Workshop on Logic and Games

Vos, M. de and Vermeir, D. (2001), “Decisions, Agents and Games.” in: Ben-
them, J. van (ed.)Theoretical Aspects of Rationality and Knowledge, Proceedings
of the Eighth Conference (TARK 200fp. 219-232. Morgan Kaufmann, San Fran-
cisco.

Walsh, W. E. (2001), “Market Protocols for Decentralized Supply Chain Formation.”
Ph.D. thesis, University of Michigan.

Walsh, W. E. and Wellman, M. P. (2000), “MarketSAT: An Extremely Decentralized
(but Really Slow) Algorithm for Propositional Satisfiability.” ifSseventeenth Na-
tional Conference on Artificial Intelligen¢cep. 303—309.

Walsh, W. E., Yokoo, M., Hirayama, K. and Wellman, M. P. (2001), “On Market-
Inspired Approaches to Propositional Satisfiability.” iBeventeenth International
Joint Conference on Atrtificial Intelligencpp. 1152-1158.

Weerdt, M. de (2003), “Plan Merging in Multi-Agent Systems.” Ph.D. thesis, Delft
University of Technology, Delft.

Williams, J. D. (1954)The Compleat Strategyshe RAND Series. McGraw Hill, New
York.

Wittgenstein, L. (1953)Philosophische Untersuchungen — Philosophical Investiga-
tions. Basil Blackwell, Oxford. German-English edition.

Yao, Y. Y., Wong, M. and Lin, T. Y. (1997), “A Review of Rough Set Models.” in:
Lin, T. Y. and Cercone, N. (edsRough Sets and Data Mining. Analysis of Imprecise
Data, pp. 47—75. Kluwer, Dordrecht.

Yokoo, M., Durfee, E. H., Ishida, T. and Kuwabara, K. (1992), “Distributed Constraint
Satisfaction for Formalizing Distributed Problem Solving.” imternational Con-
ference on Distributed Computing Systepys 614-621.

(1998), “The Distributed Constraint Satisfaction Problem: Formalization and
Algorithms.” Knowledge and Data Engineeriri® (5), 673—-685.

Zermelo, E. (1913), Uber eine Anwendung der Mengenlehre auf die Theorie des
Schachspiels.” in: Hobson, E. W. and Love, A. E. H. (edBrpceedings of the
Fifth International Congress of Mathematicignglume I, pp. 501-4. Cambridge
U.P., Cambridge.







Logica in conflict

(samenvatting in het Nederlands)

Speltheorie biedt een formeel raamwerk voor de strategische analyse van situaties van
sociale interactie, verder ook wel conflictsituaties of spelen genoemd. Kenmerkend
voor conflictsituaties is dat de uitkomst afhangt van de beslissingen die verschillende
actoren kunnen maken ten aanzien van een individueel te volgen strategie en dat voor
ieder individu de raadzaamheid van een bepaalde keuze essentieel kan afhangen van
de beslissingen die de andere individuen nemen. Zo bezien is conflict een natuurlijk
sociaal verschijnsel.

Naast haar voor de hand liggende relevantie voor de sociale, economische en po-
litieke wetenschappen, heeft de speltheorie ook belangrijke toepassingen binnen zulke
uiteenlopende disciplines als de evolutionaire biologie, wiskundige logica en verzame-
lingenleer. De afgelopen jaren heeft de speltheorie zich ook kunnen verheugen op een
toegenomen interesse vanuit de informatica en de (gedistribugtntifeiele Intelli-
gentie

Binnen de informatica wordt formele logica toegepast bij de specificatie en veri-
ficatie van computerprogramma’s en computationele systemen. Het gedrag van een
complex en gedistribueerd systeem kan in sommige gevallen worden gezien als het re-
sultaat van een interactie tussen verschillende (tot op zekere hoogte) autonome proces-
sen. Bij het redeneren over dergelijke computersystemen wordt met succes een beroep
gedaan op concepten die afkomstig zijn uit de sociale en economische wetenschappen,
waaronder de speltheorie. Deze ontwikkeling vormt de achtergrond van het onderzoek
waarvan in deze dissertatie verslag wordt gedaan, een logische verkenning waarbij het
speltheoretische begrgirategisch equilibriuntentraal staat. De aanpak behelst zo-
wel een logische analyse van speltheoretische concepten (Deel 1) als het gebruik van
speltheoretische concepten om logische analyses te verrijken (Delen Il en 111).

Speltheorie

Speltheoretisch onderzoek betreft situaties waarin meerdere actieve elensgaten (
lers) kunnen worden onderscheiden die ieder de keuze hebben tussen verschillende
wijzen van handelensrategién). Een combinatie van keuzes waarbij iedere speler
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Figuur 1.

Zijn strategie bepaalt (eestrategieprofiél resulteert in een unieke uitkomst van het

spel. ledere speler wordt bovendien geacht bepaalde voorkeuren te hebben ten aanzien
van de mogelijke uitkomsten. Merk in dit verband op dat de individuen in een con-
flictsituatie zowel gemeenschappelijke als tegengestelde belangen kunnen hebben en
dat puur antagonisme eerder uitzondering dan regel is. Het speltheoretisch vraagstuk
betreft welke beslissing iedere speler het best kan nemen in het licht van zijn indivi-
duele belangen. Het punt is dat de optimaliteit van een bepaalde beslissing voor een
speler kan afhangen van de beslissingen die de andere spelers nemen en een zekere
circulariteit dient zich aan.

In het inleidende hoofdstuk van hun baanbrekende Whagory of Games and Eco-
nomic Behaviordat in 1944 zijn eerste editie beleefde, betogen von Neumann en Mor-
genstern dat het speltheoretisch vraagstuk de wiskundige voor een nieuw probleem stelt
waarvan niet op voorhand mag worden aangenomen dat traditionele wiskundige con-
cepten volstaan voor een bevredigende analyse. In het bijzonder beargumenteerden zij
dat een speltheoretische situatie niet zonder meer gerepresenteerd kan worden als een
optimaliseringsvraagstuk, waarbij waarden voor variabglen. . , x, gevonden moe-
ten worden teneinde de waarde van een furfcti®, . . ., %) te maximaliseren. Een
speltheoretische situatie zou beter voorgesteld kunnen worden als een verzameling van
functiesg; (X, . - . , %»), waarvan iedere speler &én tracht te maximaliseren, met dien
verstande dat de variabelen waarvan de verschillende functies afhankelijk zijn kunnen
overlappen en iedere speler controle heeft over slechts een deel van die variabelen. De
traditionele noties van optimaliteit zouden te kort schieten voor de analyse van derge-
lijke problemen en hun rol dient overgenomen te worden door concepten die specifiek
zijn toegesneden op het interactieve en latent circulaire karakter van de materie.

Ter illustratie diene het volgende voorbeeld. Beschouw de situatie waarin twee
spelersRij enKol, ieder de keuze hebben tussen twee mogelijk in te nemen houdingen:
een agressieve, als een havik, en een inschikkelijke, als een vredesduif. Hierbij zij
aangetekend dat iedere speler er het meeste baat bij heeft zich als een duif op te stellen
wanneer hij zich geconfronteerd ziet met een havik, terwijl het beter is een havik te zijn
ten opzichte van een duif. De minst nastrevenswaardige uitkomst voor beide spelers
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resulteert indien zowel d&&n als de ander zich agressief opstelt; voor beide zou het dan
beter zijn geweest zich inschikkelijk te tonen. De situatie is samengevat in Figuur 1,
waarRij de keuze heeft tussen de rijenkol tussen de kolommen. De preferenties van
de speler«Kol enRij worden aangeduid door, respectievelijk, de getallen rechts boven
en linksonder in iedere cel. Voor beide spelers is het afhankelijk van welke strategie de
ander kiest of het beter is een inschikkelijke dan wel een agressieve koers te varen.

Speltheoretische oplossingsconcepten dienen ertoe wiskundig vat te krijgen op der-
gelijke conflictsituaties. &n van de bekendste oplossingsconcepten idlash equi-
librium, dat uitdrukking geeft aan een iiitieve notie van strategisch evenwicht. Er is
sprake van een Nash equilibrium indien geen van de spelers er voordeel bij heeft een-
zijdig af te wijken van zijn gekozen strategie. In het voorbeeld zijn de Nash equilibria
gegeven door die keuzes waaréijn zich als een duif en de ander zich als een havik
opstelt.

In bepaalde klassen van spelen blijkt de notie van Nash equilibrium nauw verbon-
den te zijn met een andere belangrijke speltheoretische notie, namelijindende
strategie Een handelingswijze geldt als een winnende strategie voor een speler, indien
deze een overwinning garandeert ongeacht de handelwijze van eventuele tegenstan-
ders. Beschouw de specifieke klasse van spelen waarin twee antagonisten figureren en
iedere uitkomst kan worden geclassificeerd als een overwinning voor de ene dan wel
een overwinning voor de andere speler. Het kan eenvoudig worden aangetoond dat
een strategieprofiel een Nash equilibrium is dan en slechts dan als het een winnende
strategie voorschrijft aagén van de twee spelers.

Voor speltheoretische analyses kunnen ook andere aspecten van een conflictsituatie
in beschouwing worden genomen dan enkel de spelers, de hun ter beschikking staan-
de strategién en hun preferenties over de mogelijke uitkomsten. Zo kan bijvoorbeeld
de sequenéle structuur van een spel — d.w.z. de volgorde waarin de verschillende
spelers hun keuzes maken — expliciet worden gemaakt in de zogenaxtedsie-
ve vorm Formeel kan een spel dan worden gerepresenteerd als een gelabelde boom,
waarbij de wortel, de interne knopen en de bladeren respectievelijk de begintoestand,
de beslismomenten voor de spelers en de eindtoestanden vertegenwoordigen. De tak-
ken staan voor de keuzes die spelers kunnen maken op een bepaald beslismoment. De
linker boom in Figuur 2 geeft de extensieve vorm van het spel van ons voorbeeld waar-
bij we als additioneel gegeven hebben dat eRigen danKol hun opstelling in het
conflict bepalen. Merk op ddtol hier de beschikking heeft overer strategi&n: voor
beide beslismomenten waléol een keuze moet maken heeft hij twee opties. Hierdoor
kan Kol zijn handelingswijze af laten hangen van de beslissingRilimeemt op een
eerder moment.

In sommige gevallen is het evenwel onrealistisch aan te nemen dat een speler zijn
handelswijze afhankelijk kan maken van eerder gemaakte keuzes, bijvoorbeeld indien
de informatiestructuur van het spel zodanig is dat hij in het ongewisse blijft wat betreft
de eerder genomen beslissingen. Hierdoor kan het voor een speler onmogelijk blijken
om op basis van de hem ter beschikking staande informatie een onderscheid te ma-
ken tussen verschillende mogelijke toestanden waarin hij zijn keuze moet maken, hier
gerepresenteerd door de beslisknopen. Aldus wordt het hem onmogelijk een strategie
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te spelen die verschillende acties voorschrijft op ononderscheidbare beslisknopen. Dit
epistemische aspect van spelsituaties wordt gerepresenteerd door equivalentieklassen
van beslisknoperinformatieverzamelingemman de structuur van een extensief spel toe

te voegen en te postuleren dat op alle beslisknopen in dezelfde informatieverzameling
een speler dezelfde keuze dient te maken. In ons voorbeeld zouden aldkl/der
strategién die verschillende handelswijzen voorschrijven op zijn twee beslisknopen
uitgesloten worden, indieldol wordt geacht onwetend te zijn wat betreft de eerder ge-
maakte strategiekeuze v&ij. Grafisch wordt een informatieverzameling gerepresen-
teerd als een stippellijn die precies die beslismomenten verbindt die de informatiever-
zameling bevat, zoals in de rechter boom in Figuur 2. Een extensief spel heet een spel
van volledige infomatiandien iedere informatieverzameling sleclén beslisknoop
bevat, en anders een spel v@avolledige informatie

Deel I: Modale karakterisering van Nash equilibrium

De formele talen van modale logica’s zijn bij uitstek geschikt om over relationele struc-
turen te redeneren. Met hun onderliggende boomstructuur lenen extensieve spelen zich
bij uitstek voor een modaal logische analyse. Met dit oogmerk wordt in Deel | van
deze dissertatie een klasse van multi-modale talen voorgesteld — de klasse van de
multi-modale matrixtalenDe semantiek van een dergelijke taal is beperkt tot de klasse
van de zogenaamde spelframes. leder spelframe kan op een systematische manier ge-
associeerd worden met een extensief spel van volledige informatie en met een eindige
horizon.

Het blijkt dat, indien een strategieprofiel van een spel een Nash equilibrium is, dit
zijn weerslag vindt in een structurele eigenschap van het spelframe dat met het spel
geassocieerd is. Wat meer zij, we tonen aan dat deze structurele eigenschap van frames
gekarakteriseerd kan worden middels een formuleschema van de betreffende multi-
modale taal. Dat wil zeggen dat er een formuleschér(s) is, met een parameter
die varieert over strategieprofielen, zodanig dat voor ieder extensiefespelhaar
geassocieerde frang geldt dat:

Se IF ¥ (s) dan en slechts dan edsen Nash equilibrium is van het sgels.
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Soortgelijke resultaten worden bewezen voor een verfijning van Nash equilibrium, na-
melijk het zogenaamde subspel-perfecte equilibrium. Ook tonen we aan dat de analyse
kan worden volvoerd gebruikmakend van Propositionele Dynamische Logica (PDL),
een bekende multi-modale logica specifiek ontwikkeld om over computer programma’s
te redeneren.

Deel | sluit af met een hoofdstuk dat geheel is gewijd aan de correctheid en volle-
digheid van een Hilbert-stijl axiomasysteem ten aanzien van de klasse van spelframes.

Deel Il: Booleaanse Spelen

In de laatste twee delen wordt de aandacht verlegd naar speltheoretische analyses van
propositielogica. Een propositionele taal bevat formules die volgens bepaalde syn-
tactische regels zijn opgebouwd uit propositievariabelen en logische symbolen voor
conjunctie (), disjunctie {/), negatie {) en materéle implicatie (). Aan de basis

van de semantiek voor klassieke propositielogica ligt de notie van een valuatie, een
functie dieéén van de waarheidswaarden ‘waar’ of ‘onwaar’ toekent aan iedere propo-
sitievariabele enyia een inductieve definitie, eveneens aan iedere formule. Klassiek
logisch gevolg kan dan worden gekarakteriseerd als een relatie die bestaat tussen twee
verzamelingen formules en© in geval de waarheid van ten mingten formule uit

© afgedwongen wordt in alle valuaties waarin alle formules Yawaar zijn. Dit is

een conservatieve uitbreiding van het traditionele idee dat een conclusie logisch volgt
uit een verzameling premissen indien de waarheid van de premissen de waarheid van
de conclusie afdwingt. Een formule is logisch geldig, indien haar waarheid wordt af-
gedwongen in alle valuaties.

De bovenstaande informele presentatie kan de indruk wekken dat een valuatie de
waarheidswaarde van een propositievariabele bepaalt als ware het een soort van onaf-
hankelijk gegeven mogelijke stand van zaken. Een gedachte die aan de twee laatste
delen van deze dissertatie ten grondslag ligt is dat propositievariabelen ook als binaire
beslisvariabelen kunnen worden gezien waarvan de waarheidswaardes gecontroleerd
worden door spelers met individuele preferenties ten aanzien van de waarheid van be-
paalde formules. De valuaties, die tezamen de logische ruimte constitueren, kunnen
dan worden beschouwd als de mogelijke uitkomsten van een interactief beslisproces
dat geanalyseerd kan worden als een spel. Valuaties die voldoen aan speltheoretische
oplossingsconcepten, zoals Nash equilibrium en winnende strategie, verkrijgen zo een
logische significantie. Deel 1l en Deel Ill van deze dissertatie betreffen de logische
consequenties van deze voorstelling van zaken.

In hoofdstuk 5, het eerste hoofdstuk van Deel I, introducereBoaeaanse spe-
lenals reprensentaties van de epistemische structuur van eindige extensieve spelen voor
twee antagonistische spelers, 1 and 0, waarvan er @adret spel kan winnen. ledere
interne knoop van een Booleaanse spel is gelabeld met een binaire beslisvariabele en
wel zo dat twee knopen met dezelfde beslisvariabele worden gelabeld dan en slechts
dan als zij element zijn van dezelfde informatieverzameling. De controle over de be-
slisvariabelen is verdeeld over de twee spelers. Een strategie voor een speler is dan een
toewijzing van een binaire waarde aan iedere variabele in zijn beheer. Een strategiepro-
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Figuur 3. Een extensief spel met onvolledige informatie en haar representatie als een Boole-
aanse spel, waarlfgij controle heeft over de propositievariabalenKol overb.

fiel is dus een toewijzing van binaire waarden allebeslisvariabelen en bepaalt aldus
een valuatie voor de propositievariabelen. Een Booleaans spel zonder de allocatie van
controle over de variabelen noemen we een Booleaanse vorm.

Op deze wijze kan met iedere verzameling beslisvariabelen een verzameling Boole-
aanse spelen worden geassocieerd. Merk op dat de strategieprofielen van ieder Boole-
aans spel in zo’n verzameling gelijk zijn. Dit maakt het mogelijk een notie van equi-
valentie tussen Booleaanse vormen te défemn: twee Booleaanse vormen zijn equi-
valent indien ieder strategieprofiel in beide spelen dezelfde uitkomst bepaalt.

We definéren ook een aantal operaties op Booleaanse vormen en tonen aan dat de
aldus gevormde algebra van Booleaanse vorm@agulode bovenstaande notie van
equivalentie, een Booleaanse algebra is. Deze algebra is bovendien isomorf met de
Lindenbaum algebra van de klassieke propositionele taal waarvan propositievariabelen
samenvallen met de beslisvariabelen die voorkomen in de Booleaanse vormen. ledere
Booleaanse vorm kan aldus worden geassocieerd met een unieke propositionele for-
mule envice versa

Het wordt zo mogelijk de speltheoretische eigenschappen van Booleaanse vormen
te vergelijken met de logische eigenschappen van de corresponderende propositionele
formules. Zo blijkt de logische notie van geldigheid gerelateerd aan het speltheoreti-
sche concept van een winnende strategie. De notie van een winnende strategie heeft
echter betrekking op Booleaanse spelen, waarbij de controle over beslisvariabelen is
gespecificeerd, en niet zozeer op Booleaanse vormen als zodanig, terwijl logische gel-
digheid een eigenschap van formules is. Op natuurlijke wijze kan evenwel de notie van
controle over variabelen verdisconteerd worden in de definitie van logische geldigheid.
Laat A een deelverzameling propositievariabelen zijn. Een formuikdanA-geldig
indien het mogelijk is de waarheid vanaf te dwingen door een keuze te maken voor
de waarden voor de propositievariabelendn Traditionele logische noties blijken
randgevallen van dit gerelativeerde concept; zo valt klassieke geldigheid samen met
»-geldigheid, en klassieke vervulbaarheid mageldigheid, waaA de volledige ver-
zameling propositievariabelen is. Meer in het algemeen hebben we de volgende cor-
respondentie: een formule i4-geldig dan en slechts dan als de speler met controle
over A een winnende strategie heeft in de corresponderende Booleaanse vorm.
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De notie vanA-geldigheid kan op natuurlijke wijze worden uitgebreid naar een
gerelativeerd concept van gevolg. Dan geldt=, © indien het mogelijk is door
waarheidswaarden aan de propositievariabeled toe te kennen, te garanderen dat
tenminsteéén formule in© waar is als alle formules id” waar zijn. In het zesde
hoofdstuk wordt deze gerelativeerde geldigheidsnotie bestudeerd, waarbij zich tenmin-
ste twee vragen aandienen. Enerzijds is er het probleem, voor welke #rebrén ©
het het geval is dat’ F, ©, gegeven een verzameling propositievariabetervoor
iedere deelverzameling van propositievariabelewordt de notie vanA-gevolg van
een correcte en volledige sequenten-calculus voorzien. Anderzijds wordt de vraag on-
der de loep genomen voor welke verzamelingen van propositievariadelest zo is
datl” E ©, voor gegeven theo@m " eno.

Deel lll:  Speltheoretisch gevolg

Deel Il leidt tot een speltheoretische generalisering van de klassieke notie van logisch
gevolg. Net als in Deel Il, staat hier staat de gedachte centraal dat valuaties kunnen
worden beschouwd als de uitkomsten van een strategisch spel, waarbij iedere speler
waarden toekent aan een apart deel van de propositievariabelen waarover hij controle
heeft. Het traditionele probleem van logisch gevolg betreft welke conclusies kunnen
worden getrokken gegeven de waarheid van bepaalde premissen. We beargumenteren
dat aan dit probleem een optimaliseringsprobleem ten grondslag ligt. De vraag is dan
wat het analoge speltheoretische probleem is. In ons voorstel wordt de waarheid van de
premissen bepaald door individuele keuzes van de spelers ten aanzien van de variabelen
die ze controleren. Dit geeft aanleiding het volgende probleem dat de kern vormt van
Deel llI: welke conclusies mag men trekken ten aanzien van de uitkomst van een spel
waarbij iedere speler een individuele verzameling van premissen poogt waar te maken
door een strategische keuze te maken ten aanzien van de propositievariabelen waarover
hij controle heeftDit is een logische vraag waaraan een speltheoretisch probleem ten
grondslag ligt.

Bij het bepalen van de formules die klassiek volgen uit een thdodgn seman-
tisch gezien sommige valuaties van groter belang dan andere, namelijk die waarin alle
formules inI” waar zijn. Dit beroep op waarheid is in overeenstemming met het beeld
van valuaties als mogelijke standen van zaken. Worden valuaties daarentegen voor-
gesteld als de uitkomsten van een strategisch spel dan ligt het meer voor de hand de
aandacht te richten op die valuaties die zich onderscheiden vanwege hun speltheoreti-
sche eigenschappen.

Hoofdstuk 7 is gewijd aan de logische analyse van een gevolgrelatie tussen theo-
rieén die gebaseerd is op de speltheoretische notie van een winnende strategie. Laat
voor iedere theorid” en voor iedere deelverzameling van propositievariabelen,
G(I', A) een spel zijn dat de speler met controle over de propositievariabelén in
wint indien de uitkomst een valuatie is die alle formules/irwaar maakt. Met be-
trekking tot een verzamelingl van propositievariabelen, geldt een formylelan als
een gevolg van een theorié dan en slechts dan ais het geval is in alle valuaties
die resulteren als de speler met controle ateeeen winnende strategie speelt in het
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spelG(I', A). Deze notie van gevolg wordt onder meer voorzien van een bewijsthe-
oretische basis in de vorm van een sequentencalculus, waarvan we de correctheid en
volledigheid aantonen.

Ten einde meer recht te doen aan het speltheoretische karakter van de materie,
wordt in de laatste twee hoofdstukken de scope van de analyse verruimd door meer
expliciet spelen in beschouwing te nemen waarin meerdere spelers deelnemen die bo-
vendien zowel tegengestelde als gemeenschappelijke belangen kunnen hebben. De rol
van het concept van een winnende strategie wordt bovendien overgenomen door een
variant van het speltheoretische oplossingsconcept Nash equilibrium.

Dientenbehoeve worden in Hoofdstuk 8 de zogenaagedistribueerd evaluatie-
spelengeintroduceerd. Een gedistribueerd evaluatiespel geeft formeel invulling aan de
notie van een spel waarin iedere speler de waarheid van een individuele theorie “zo-
veel mogelijk” poogt te bewerkstelligen door een strategische keuze te maken voor de
propositievariabelen die hij controleert. Wat het exact betekent meer of minder van een
theorie waar te maken, maken we formeel precies door iedere theopesenduidige
wijze te asso@ren met een reflexieve en transitieve relat{d”) op de valuaties. Voor
7 een partitie van de propositievariabelen{gn}, .. een familie van theorién metr
als indexverzameling, i6({I}};.,) het gedistribueerde evaluatiespel waarbij iedere
speler controle heeft over preciéan blok vanr en de preferenties van de speler met
controle over het blokvanz gegeven zijn door de relatie(7;). Bij de evaluatie van
gedistribueerde evaluatie spelen hanteremveikimum equilibriunals oplossingscon-
cept. Maximum equilibrium is een conservatieve uitbreiding van Nash-equilibrium die
ook van toepassing is op pdte preferentierelaties.

Gedistribueerde evaluatiespelen vormen een omvangrijke doch stricte subklasse
van de volledige klasse van strategische spelen met valuaties als strategieprofielen.
Hoofdstuk 8 sluit af met een resultaat dat betrekking heeft op de formele karakterise-
ring van gedistribueerde evaluatiespelen in dit verband.

Hoofdstuk 9 staat in het teken van de een speltheoretische gevolgtrekkingsrela-
tie tussen families van theoéa die partities van de propositievariabelen als index-
verzameling hebben. Deze speltheoretische notie van speltheoretisch gevolg laat zich
evenwel het best begrijpen als een relatie tussen een familie thedrig};_ . en een
formule o. Dan geldty als een speltheoretisch gevolg vafi }; . indieny het geval
is in alle valuaties die een maximum equilibrium zijn in het gedistribueerde evaluatie-
spelG({Ii}ic,).

Voor een eenvoudig voorbeeld beschouwe men een propositionele taal met slechts
twee propositievariabelem, enb, en de partitie{ {a} , {b} }. Stel dat de speler met
controle overa de waarheid van de formule A —b als doel heeft, terwijl de andere
speler, met controle ovéx het liefst de formule- (a v b) waar ziet. De spelmatrix van
deze situatie is weergegeven in figuur 4. Er zijn twee equilibria in dit spel, namelijk de
valuaties{a} en{a, b}. Aangezien de formulawaar is in beide equilibria, geldtals
een speltheoretisch gevolg van de famfliga A =0} ,y , {=(a V )} }-

Klassiek logisch gevolg is het randgeval van speltheoretisch gevolg wé&éarbij
speler controle heeft over alle propositievariabelen. Meer in het algemeen blijkt spel-
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{a}

Figuur 4. De speler die rijen kiest heeft controle over de propositievariadgede andere spe-
ler, met de keuze tussen de kolommen, bepaalt de waarheidswaarde e dikgedrukte
uitkomsten zijn de maximum equilibria.

theoretisch gevolg inbedbaar in klassiek logisch gevolgiemversa Deze resultaten
worden verkregen dankzij een verzamelingtheoretische karakterisering van speltheo-
retisch gevolg. Hierbij wordt een beroep gedaan op benaderingsoperaties die bekend
Zijn uit de theorie van de zogenaanmdegh setsDit maakt dat speltheoretisch gevolg
formele eigenschappen als monotonie en beslisbaarheid overerft van klassiek gevolg.
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